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Background: Lung adenocarcinoma (LUAD) is the most common subtype of non-small
cell lung cancer. Fatty acid metabolism takes part in malignancy progression. However, the
roles fatty acid metabolism plays in LUAD are still unclear.

Methods: The transcriptomic and clinical data of LUAD patients from The Cancer Genome
Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were extracted. ssGSEA,
WGCNA, univariable Cox regression, and LASSO Cox regression analyses were
performed to identify the fatty acid metabolism-related genes which influenced the
overall survival (OS) and build a fatty acid-related risk score (FARS) model. A
nomogram was established based on the FARS and other clinicopathological features,
and ROC and calibration plots were used to validate the prediction accuracy. The tumor
microenvironment (TME) of patients with high and low FARS was compared.

Results: A total of 38 genes were identified to be independently related to the survival
outcome and put into a FARSmodel. High FARS patients exhibited significantly worse OS.
The nomogram included the FARS and pathological stage, and the AUC of the nomogram
predicting 1-, 2-, 3-, 4-, and 5-year OS was 0.789, 0.807, 0.798, 0.809, and 0.753,
respectively. Calibration plots also indicated good accuracy. Moreover, the samples of the
high FARS had higher expression of PDL1.

Conclusion: We constructed a FARS model which could accurately predict the survival
outcome of the LUAD patients. The genes of the FARS are related to the tumor
microenvironment and patients with high FARS can potentially benefit more from anti-
PD1/PDL1 immunotherapy. In addition, the mechanisms of the genes in the FARS
affecting prognosis are worthy of further research to develop new gene-targeted drugs.
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INTRODUCTION

Non-small cell lung cancer (NSCLC), the leading reason for
cancer-related deaths, constitutes approximately 85% of
malignant lung tumors (Bray et al., 2018). Lung
adenocarcinoma (LUAD) is the most common subtype which
accounts for nearly half of NSCLC (Chen et al., 2014). Moreover,
LUAD is well-known for its heterogeneity in clinical, behavioral,
cellular, and molecular features. Although most lung cancers are
characterized by aggressive nature, almost 18.5% of lung cancers
found by computed tomography (CT) screening are dormant and
can lead patients to the hazard of overdiagnosis and
overtreatment (Patz et al., 2014). Although significant effort
has been made, the underlying cellular and molecular
mechanisms of tumor behavior are still unclear, and long-term
survival rates of lung cancer patients have been scarcely improved
compared with other cancers (Siegel et al., 2016). Thus, it is
important to detect new potential molecular signatures and
therapeutic targets for LUAD.

Gene markers, particularly in tumor tissues, are dependable
factors for predicting the long-term survival of cancer patients (Li
et al., 2017; Hu et al., 2021). Therefore, detecting the molecular
characterization which may cause poor outcomes can guide
clinical adjuvant therapeutic strategies for a subgroup of
patients who are at high risk. Moreover, this can be helpful in
identifying new molecular targets for developing new medicines.
The public database of gene expression of large cohorts of patients
facilitates the aim of establishing a metabolic gene signature for
predicting survival outcomes and analyzing the tumor
microenvironments (TMEs).

Attributed to the fast proliferation of cancer cells and
insufficient angiogenesis, the main characteristics of TMEs are
malnutrition, hypoxia, high oxidation, and acidity. Hence,
compared to normal cells, tumor cells manifest distinct
metabolic features to cope with diverse deleterious
microenvironments via metabolic recoding processes which
maintain the proliferation and survival of tumor cells when
the oncogenic signal is blocked (Lue et al., 2017).
Reprogramming of energy metabolism, known as a hallmark
of cancers, has been lately verified to take part in the initiation,
progression, and drug resistance in lung cancer (Hensley et al.,
2016; Chen et al., 2019). There is a distinct difference in
carbohydrate, amino acid, and lipid metabolism between
tumor cells and normal cells (Yu et al., 2019). Taking
carbohydrate metabolism as an example, normal tissue cells
decompose glucose into pyruvate by glycolysis, and in addition
to glucose decomposition, oxidative phosphorylation in
mitochondria generates vast energy. On the other hand, in
cancer cells, the glucose is catabolized into lactate with an
insufficient generation of energy; thus, cancer cells consume
much more glucose than normal cells (Faubert et al., 2017).
As demonstrated by Xue et al., cellular pyruvate metabolism of
LUAD changed, including the reduction of expression of
mitochondrial pyruvate carrier 1 (MPC1) compared with
adjacent normal tissues. Xue et al. (2021) also revealed that
higher MPC1 expression was related to a favorable prognosis.
In addition to carbohydrate metabolism, lipid metabolism is also

a potential hallmark for cancers. Lipogenesis, lipid uptake, and
lipid storage are highly upregulated in malignant tumors to meet
the augmented demands of membrane biogenesis and promote
cancer cell proliferation and survival, especially under conditions
of insufficient nutrition and oxygen (Menendez and Lupu, 2007;
Nath et al., 2015; Qiu et al., 2015; Röhrig and Schulze, 2016; Geng
and Guo, 2017). Presently, fatty acid metabolism, involved in
many biological activities including signaling molecule synthesis,
cell membrane formation, and energy storage in carcinogenesis,
has been widely researched (Currie et al., 2013). For example,
Ding et al. (2021) exhibited that the signature of fatty acid
metabolism can predict the prognosis of colorectal cancer and
was associated with chemoresistance and TME characteristics. In
another study conducted by Svensson et al. (2016), ND-646, an
allosteric inhibitor of the acetyl-CoA carboxylase (ACC) enzymes
ACC1 and ACC2 which suppress ACC subunit dimerization,
prevented the synthesis of fatty acid in vitro and in vivo. Thus,
ND-646 significantly inhibited lung cancer growth in the KRAS
p53 and KRAS Lkb1 mouse models of NSCLC, indicating the
therapeutic potential of the ACC inhibitor in malignant tumors
(Svensson et al., 2016). Based on previous studies, it is clear that
an analysis of the metabolic pathway of lung cancer can help us
comprehend the molecular mechanism of lung cancer and
develop novel personalized therapeutic regimens (Sayin et al.,
2019). However, the characterization of the genes related to fatty
acid metabolism in LUAD has not been systematically
investigated.

To detect the underlying genomic mechanism of fatty acid
metabolism of LUAD, we used the genomic information on the
clinicopathological features of 1,087 LUAD patients from The
Cancer Genome Atlas (TCGA) and Gene Expression Omnibus
(GEO) database to reveal the pattern of fatty acid metabolism and
establish a fatty acid-related risk score (FARS) model. The FARS
model proved to be an independent prognostic factor in the
survival outcome of LUAD patients. Moreover, the FARS can
recognize patients who are suitable for anti-PD1/PDL1 antibody
immunotherapy, indicating that fatty acid metabolism is highly
related to individual characterizations of the TME. All these
findings give a new insight into lipid metabolic mechanism
and potential therapeutic targets.

MATERIAL AND METHODS

Data Acquisition and Processing
The clinicopathological features and fragments per kilobase per
million mapped reads (FPKM) of 573 LUAD samples were
extracted from UCSC Xena (http://xena.ucsc.edu/; accessed
October 8 2021). The exclusion criteria were as follows:
patients (a) with no survival information or survival time less
than 30 days; (b) with no age, sex, or the American Joint
Committee on Cancer Tumor Node Metastasis (AJCC TNM)
stage information; and (c) has received neoadjuvant therapy. As a
result, 468 LUAD samples with complete clinicopathological
characteristics, including age, sex, AJCC TNM stage, and
overall survival (OS) data, were put into the analysis as the
training cohort.
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The microarray dataset GSE72094 was downloaded from GEO
datasets (https://www.ncbi.nlm.nih.gov/gds/) and was used as the
first validation cohort. This dataset was produced by using a Rosetta/
Merck Human RSTA Custom Affymetrix 2.0 microarray and
contained 393 samples of lung adenocarcinoma. In addition,
226 lung adenocarcinoma samples from GSE31210 [(HG-U133_
Plus_2) Affymetrix HumanGenomeU133 Plus 2.0 Array] were used
as the second independent validation cohort. The microarray and
RNA-seq data in this study were normalized and log2 transformed.

Fatty Acid-Related Pathways and Biological
Processes
A total of 68 fatty acid-related pathways or biological processes
were extracted fromhallmark gene sets (H collection), curated gene
sets (C2 collection), and ontology gene sets (C5 collection) in
Molecular Signatures Database (MSigDB, http://software.
broadinstitute.org/gsea/index.jsp). All these pathways, biological
processes, and their corresponding genes were fused into a file in
CSV format (Supplementary Material S1). The related infiltration
and activity levels of those pathways or biological processes in
LUAD samples were quantified using the single-sample Gene Set
Enrichment Analysis (ssGSEA) in the R package GSVA and
normalized by using the Z-score method. The univariate and

multivariate Cox analyses were used to assess the significance of
these pathways or biological processes, and a two-side p-value <0.
05 was considered to be statistically significant.

Candidate Gene Selection and Signature
Construction in the Training Cohort
Using the R package WGCNA, weighted gene co-expression
network analysis (WGCNA) was performed. The analysis was
performed on the top 5,000 genes with the highest standard
deviation by the standard protocol. A gene correlation matrix
with an optimal soft thresholding of power was used to derive
the adjacency matrix. Modules were obtained with the following
criteria: module size ≥30 and height for merging modules ≥0.2. The
relationship between the modules and fatty acid-related pathways or
biological processes was calculated based on ssGSEA scores, and
modules correlated with fatty acid-related pathways or biological
processes were extracted based on p-value < 0.05 and | r | > 0.3.

Thereafter, the genes related to prognosis in those modules
were selected by the univariate Cox analysis. Then, the least
absolute shrinkage and selection operator (LASSO) regression
model was applied to further detect the most robust prognostic
markers. A fatty acid-related risk score (FARS) of each sample
was established using the formula

FIGURE 1 | (A)Multivariate Cox analysis of 10 pathways and biological processes; (B) Kaplan–Meier curves of patients with high and low ssGSEA scores; (C) violin
plot comparing ssGSEA scores of survival and dead patients. GOBP, gene ontology biological process; ssGSEA, single-sample Gene Set Enrichment Analysis.
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FIGURE 2 | (A)Cluster was based on the expression data of the training cohort, which contained 468 lung adenocarcinoma samples. The top 5,000 genes with the
highest standard deviation were used for the analysis by WGCNA. The color intensity was proportional to age, sex, pStage, and ssGSEA score; (B) detection of the
optimal soft thresholding power; (C) cluster dendrogram of genes in the training cohort. Every branch in the figure denotes one gene and each color below denotes one
co-expression module; (D) heatmap of the relationship between module eigengenes and the ssGSEA score. The blue, magenta, and purple modules were most
positively correlated with the ssGSEA score. WGCNA, Weighted Gene Co-expression Network Analysis; ssGSEA, single-sample Gene Set Enrichment Analysis.

FIGURE 3 | (A) Screening of optimal parameters (lambda) at which the vertical lines were drawn; (B) Lasso coefficient profiles of the fatty acid metabolism-related
genes with non-zero coefficients determined by the optimal lambda.
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FARS � ∑1

i
Coefficient(mRNAi) × Expression(mRNAi).

Predictive Power of the Fatty Acid-Related
Risk Score in Training and Validation
Cohorts
A violin plot was drawn to compare the FARS of the dead and alive
patients in the training cohort. Then, the FARS was divided into high-
score and low-score groups using themedian value as the cut-off value.
For different risk score groups in the training cohort, theKaplan–Meier
curve, risk factor curve, and survival status scatter plot were plotted. To
authenticate the predictive power of the FARS in the training cohort,
the area under the curve (AUC) according to 3- and 5-year OS was
calculated and plotted, respectively, using the survivalROC package. In
addition, the predictive performance and applicability of the FARS
were further verified in the two validation cohorts.

Subgroup Analysis of the Fatty Acid-Related
Risk Score in Different Clinicopathological
Features
To determine the robustness of the FARS for predicting the
survival outcome in different subgroups of clinicopathological

features containing age, sex, and pathological stage (pStage), the
Kaplan–Meier curve was plotted to evaluate the discriminative
capacity of the FARS based on the median value.

Immune Profile
To explore the relationship between immune status and the FARS,
the expression of 22 immune cells was calculated in high and low
FARS groups using the CIBERSORT package. Furthermore, the
expression levels of the immune checkpoint containing PD-1, PD-
L1, and CTLA4 of high and low FARS groups were compared.

Establishment of a Prognostic Nomogram
All samples of the training cohort from TCGA database were used
to construct the nomogram. The FARS and clinicopathological
features were included in the univariate and multivariate Cox
analyses with p-value <0.05 as the screening criterion. The
variables selected were included in the nomogram using the
“RMS” package; the predictive performance of the nomogram
was assessed by the time-dependent receiver operating
characteristic curves (tROC) and calibration curves.

Statistical Analysis
R software (www.r-project.org) was used in statistical analyses.
Manuals for the R packages used in the present study could be

FIGURE 4 | (A) Violin plot comparing the FARS of survival and dead patients for the training cohort; (B) Kaplan–Meier curves of patients with high and low FARS for
the training cohort; (C) distribution patterns of risk scores for the training cohort; (D) distribution patterns of survival status for the training cohort; (E) ROC curves of the
FARS for the training cohort. FARS, fatty acid-related risk score; ROC, receiver operating characteristic.
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downloaded from the Internet (https://cran.r-project.org/web/
packages/available_packages_by_name.html).
Clinicopathological characteristics of the training and
validation cohorts were compared using the Kruskal–Wallis
test and chi-square test as appropriate.

RESULTS

Data Processing
Expression data of FPKM and clinicopathological features of
468 LUAD cancer samples from TCGA were selected and
downloaded according to the screening criteria, and these
samples were analyzed as the training cohort. A total of
393 cancer samples in GSE72094 were the first validation
cohort and the corresponding expression data and
clinicopathological features were downloaded using the
GEOquery package. Similarly, the information of
226 samples from GSE31210 was obtained as the second
validation set. The clinicopathological characteristics of
these three cohorts are presented in Supplementary
Material S2. A total of 170 (36.3%), 111 (28.2%), and 35
(15.5%) patients died in the training, first validation, and

second validation cohorts, respectively. The median
(interquartile range) follow-up times for these three cohorts
were 658 (435-1118), 825 (541-1012), and 1744 (1246-2050)
days, respectively.

Identification of Prognosis-Related
Pathways and Biological Processes
Using the CSV file of fatty acid-related pathways and
biological processes and the method of ssGSEA, separate
enrichment scores for each sample from LUAD were
calculated. A total of 10 pathways and biological processes
were selected for the univariate Cox analysis in terms of
p-value < 0.05. Finally, only four biological processes,
namely, gene ontology biological process (GOBP)
response to fatty acid, GOBP fatty acid homeostasis,
GOBP fatty acid derivative biosynthetic process, and
GOBP cellular response to fatty acid proved to be
independent risk factors in the multivariate Cox analysis
(Figure 1A). The Kaplan–Meier curve and violin plot
demonstrated similar results that the ssGSEA score was
related to prognosis (Figures 1B,C).

FIGURE 5 | (A) Violin plot comparing the FARS of survival and dead patients for the first validation cohort (GSE72094); (B) Kaplan–Meier curve of patients with high
and low FARS for the first validation cohort (GSE72094); (C) distribution patterns of risk scores for the first validation cohort (GSE72094); (D) distribution patterns of the
survival status for the first validation cohort (GSE72094); (E) ROC curves of the FARS for the first validation cohort (GSE72094). FARS, fatty acid-related risk score; ROC,
receiver operating characteristic.
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Establishment of the Fatty Acid-Related
Risk Score
WGCNA was performed on the top 5,000 genes with the highest
standard deviation in TCGA cohort to explore the genes
correlated with the fatty acid-associated pathways, and the
sample dendrogram was exhibited (Figure 2A). The quality of
all samples was very good. The optimal soft thresholding power of
4 was selected to obtain the adjacency matrix (Figure 2B). A total
of 12 modules were constructed under the minimummodule size
of 30 and there was no module merged with the minimum height
for merging modules of 0.2 (Figure 2C). In Figure 2D, the blue,
magenta and purple modules met the criteria of
p-value <0.05 and | r | > 0.3.

Univariate Cox analysis was performed for each 1,567 genes in
the three modules, and those 653 genes with p-value <0.05 in the
univariate analysis were included in the LASSO regression
analysis (Supplementary Material S3) to construct the FARS.
The ten-fold cross-validation was used to determine the optimal
penalty parameter (λ) of the model (Figure 3). A total of 38 genes
(LDHA, TM4SF1, HPCAL1, P4HA1, TP53I3, HGSNAT, MYO6,
SQLE, IVD, KLHDC8B, GNPNAT1, PAQR4, ENPP5, JAG1,
MCTP2, PLEKHA6, MAOB, ANKRD29, ELOVL6, ABAT,
ZNF738, BEX5, LETM2, WASF1, INPP5J, DKK1, SLC4A5,
CDC25C, FAIM2, BAIAP2L2, GPR37, TM4SF4, TCN1,

GALNT13, CNTNAP2, IGFBP1, IGF2BP1, and SALL1) were
included in the LASSO model. The coefficient of each gene is
given in Supplementary Material S4.

Predictive Power of the Fatty Acid-Related
Risk Score in Training and Validation
Cohorts
As shown in Figure 4A, the dead patients had a significantly
higher FARS than the alive patients during the follow-up
period. A total of 468 samples of the training cohort were
divided into the high FARS group and low FARS group by the
median value of the FARS, and the high FARS group exhibited
worse OS than the low FARS group, with p-value <0.01
(Figure 4B). Moreover, the plot distribution patterns of risk
scores and survival status showed good results (Figures 4C,D).
As the FARS increased, the OS time decreased and mortality
increased. Calculated by the “survivalROC” package, the 3-
and 5-year AUC (AUC = 0.787 and 0.750) of the FARS is
presented in Figure 4E.

These results indicated that the high FARS showed a worse
prognosis, and FARS had a good performance in predicting the
prognosis of LUAD patients. The same result was also
demonstrated in the two validation cohorts. The FARS of the
two validation cohorts was calculated according to the LASSO

FIGURE 6 | (A) Violin plot comparing the FARS of survival and dead patients for the second validation cohort (GSE31210); (B) Kaplan–Meier curves of patients with
high and low FARS for the second validation cohort (GSE31210); (C) distribution patterns of risk scores for the second validation cohort (GSE31210); (D) distribution
patterns of the survival status for the second validation cohort (GSE31210); (E) ROC curves of the FARS for the second validation cohort (GSE31210). FARS, fatty acid-
related risk score; ROC, receiver operating characteristic.
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formula. The dead patients had significantly higher FARS than
the alive patients in the two validation cohorts (p-value <0.01,
Figure 5A, Figure 6A). The high FARS patients showed a worse
OS compared with the low FARS patients (p-value <0.01, Figures
5B, 6B). The trend of the survival time and mortality in the

validation cohorts was similar to those in the training cohort
(Figures 5C,D, 6C,D). We also found that the 3- and 5-year AUC
(AUC of validation 1 = 0.608, 0.681; AUC of validation 2 = 0.676,
0.729) of the FARS was similar to those of the training group
(Figures 5E, 6E).

FIGURE 7 | (A) Kaplan–Meier curves of patients with age<70 in the training cohort comparing high and low FARS; (B) Kaplan–Meier curves of patients with age ≥
70 in the training cohort comparing high and low FARS; (C) Kaplan–Meier curves of female patients in the training cohort comparing high and low FARS; (D)
Kaplan–Meier curves of male patients in the training cohort comparing high and low FARS; (E) Kaplan–Meier curves of I–II pStage patients in the training cohort
comparing high and low FARS; (F) Kaplan–Meier curves of III–IV pStage patients in the training cohort comparing high and low FARS. FARS, fatty acid-related risk
score; pStage, pathological stage.
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Subgroup Analysis of the Fatty Acid-Related
Risk Score in Different Clinicopathological
Features
The Kaplan–Meier curve comparing the survival outcome of high
and low FARS in subgroups of clinicopathological features
including age, sex, and pStage is shown in Figures 7A–F,
where the high FARS patients exhibited worse OS than the
low FARS patients in each subgroup.

Immune Profile
To further detect the correlation between the immune profile and
FARS, the degree of immune cell infiltration of the high and low
FARS groups was compared (Figure 8A). B cells memory, plasma
cells, T cells CD4 memory resting, T cells gamma delta, dendritic
cells resting, and mast cells resting were significantly more
prevalent in the low FARS patients. Whereas, T cells
CD4 memory activated, NK cells resting, and macrophages
M0 were significantly more prevalent in the high FARS patients.

The expression of immune checkpoint inhibitors targeting
immune checkpoint proteins including programmed cell death
protein 1 (PD1), programmed death-ligand 1 (PDL1), and
cytotoxic T-lymphocyte-associated protein 4 (CTLA4) was also
calculated in high and low FARS patients (Figures 8B–D). The

high FARS group exhibited higher expression of PDL1
(Figure 8C), suggesting that patients with a high FARS may
be more susceptible to immune checkpoint inhibitors targeting
PD1/PDL1.

Establishment of a Prognostic Nomogram
In the end, a nomogram was established to predict the OS more
conveniently. The FARS and clinicopathological features of all
TCGA samples were included in the univariate and
multivariate Cox analyses, and FARS and pStage proved to
be independent risk factors of LUAD (p-value <0.01). A
nomogram based on the FARS and pStage was plotted using
the “rms” package (Figures 9A,B). The tAUC of FARS,
clinicopathological characteristics, and nomogram is shown
in Figure 10A. The figure showed that the prediction ability of
the FARS (AUC = 0.787, 0.796, 0.787, 0.806, and 0.750) was
higher than that of other clinicopathological features and the
predictive performance of the nomogram (AUC = 0.789, 0.807,
0.798, 0.809, and 0.753) was higher than that of other features.
Furthermore, the calibration curves of the nomogram
predicting 1-, 3-, and 5-year OS were plotted, and the
predicted OS probability was very close to the actual OS
probability in each calibration curve (Figures 10B–D).

FIGURE 8 | (A) Immune profile of high and low FARS; (B) expression of programmed cell death protein 1 (PD1) of high and low FARS; (C) expression of
programmed death-ligand 1 (PDL1) of high and low FARS; (D) expression of cytotoxic T-lymphocyte-associated protein 4 (CTLA4) of high and low FARS. FARS, fatty
acid-related risk score.
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DISCUSSION

Metabolic reprogramming, as a defining characteristic of
malignant tumors, plays an important role in cancer
development and opens up novel opportunities for cancer
therapies (Kapadia et al., 2018). Lipid metabolism has been
demonstrated as a pivotal regulator of malignant tumor
immunology (Chen et al., 2021a). Most malignant tumor cells
exhibit characteristic modifications in de novo lipid biosynthesis,
lipogenic characteristics, and lipid metabolism (Wymann and
Schneiter, 2008; Santos and Schulze, 2012). Upregulated lipid
metabolism is one of the physiological features of human cancers
and supports signal molecule synthesis and transduction and
energy generation (Zaugg et al., 2011; Louie et al., 2013).
Molecules regulating lipid metabolism can be potential
therapeutic targets. For example, Montal et al. (2015) revealed
that phosphoenolpyruvate carboxykinase (PEPCK) promotes
lipid synthesis in cancer cells, helping to coordinate a pivotal
feature of cancer metabolism. In addition, Svensson et al. (2016)’s
study proved that the ACC inhibitor, ND-646, could prevent the
biosynthesis of fatty acids in a mouse model of NSCLC. Blockage
of fatty acid oxidation leads to the death of lung and ovarian
cancer cells (Sullivan et al., 2014). Inhibition of fatty acid
oxidation can enhance cancer therapies by modulating the
immunosuppressive functions of myeloid-derived suppressor
cells (Hossain et al., 2015). Previous studies focused on the

influence of a single regulator of pathways related to fatty acid
metabolism; however, the comprehensive roles of genes related to
fatty acid metabolism have not been presented.

Until now, this is the first research to investigate the
relationship between LUAD and fatty acid metabolism-related
genes. Based on TCGA and GEO dataset and using the methods
of ssGSEA, WGCNA, univariable Cox regression model, and
LASSO Cox regression model, a FARS model with 38 fatty acid
metabolism-related genes was built and proved to be an
independent predictive factor for the survival outcome of
LUAD patients. The high-risk score patients showed worse OS
than low-risk score patients both in TCGA cohort and two GEO
cohorts. Subgroup analyses of different clinicopathological
features confirmed the stable prediction of the FARS model.
These results indicated the FARS could discriminate patients
with poor prognoses. Furthermore, compared to age, gender, and
pStage, the FARS model had a larger AUC. As a matter of fact, the
AUC of the FARS in predicting survival probability within 5 years
was as high as close to 0.8, marking a relatively accurate
prediction. Based on the FARS and pStage, a nomogram was
established and the calibration plots exhibited good accuracy. It
was interesting to find that the FARS model and the nomogram
combining the pStage and FARS had a similar AUC, indicating
that the pStage brought little improvement to the model. As
shown in the nomogram, the FARS contributes much more than
the pStage in the points, which means that the FARS maybe more

FIGURE 9 | (A)Multivariate Cox analysis of the variables selected for the nomogram; (B) nomogram predicting 1-, 3-, and 5-year OS for LUAD patients. OS, overall
survival; LUAD, lung adenocarcinoma.
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important than the pStage in predicting the survival outcome of
LUAD patients.

Of all these 38 genes included in the FARS, 30 have been
reported to be related to LUAD/NSCLC in the PubMed database.
However, no research studies were found to concentrate on the
relationship between LUAD with the other eight genes:
HGSNAT, ENPP5, MCTP2, PLEKHA6, ANKRD29, ZNF738,
SLC4A5, and CNTNAP2. ENPP5, MCTP2, PLEKHA6,
ANKRD29, SLC4A5, and CNTNAP2 were shown to play a
role in malignancy other than NSCLC (Bralten et al., 2010;
Langevin et al., 2012; Smith et al., 2012; Parris et al., 2014;
Yang and Loh, 2019; Gopalakrishnan et al., 2020; Song et al.,
2020; Sun et al., 2020; Chen et al., 2021b). No previous research
studies were published concerning the relationship between
cancer and HGSNAT or ZNF738. Overall, the underlying
mechanisms of these genes included in the FARS relating to
fatty acid metabolism and LUAD prognosis are worth further
investigation.

The genes with the largest hazard ratio with a value >1 in
the FARS were LDHA, HPCAL1, and IGF2BP1. MYO6, BEX5,
and ABAT exhibited the smallest hazard ratio with a value <1.
LDHA is a critical enzyme which can catalyze the mutual

transformation of lactic acid and pyruvic acid in glycolysis
(Massari et al., 2016), and pyruvic acid can be converted into
acetyl-CoA which is the substrate for fat synthesis. As reported
in previous studies, malignant tumors have a higher level of
lipogenesis (Menendez and Lupu, 2007; Röhrig and Schulze,
2016). In the present study, higher expression of LDHA
indicated worse OS, which suggests that higher LDHA in
LUAD might help enhance fat synthesis by promoting
acetyl-CoA generation in glycolysis, thus providing more
energy for tumor progression. HPCAL1 was the gene with
the second-largest hazard ratio in our study, and interestingly,
a recent study demonstrated that HPCAL1 could directly bind
to LDHA and enhance its activation, thus influencing fatty acid
synthesis and promoting NSCLC growth (Wang et al., 2022).
IGF2BP1 was reported to be associated with lipid
accumulation in macrophages or serve as a biomarker for
NSCLC; however, the relationship between IGF2BP1 and
fatty acid metabolism in LUAD had not been shown (Kato
et al., 2007; Liu et al., 2022). As for MYO6, its relationship with
fatty acid metabolism or LUAD was also obscure. The
expression of BEX5 was significantly decreased in several
LUAD cell lines compared with normal lung epithelial cells

FIGURE 10 | (A) Time-dependent AUC for the FARS, age, sex, pStage, and nomogram; (B) calibration plot for 1-year OS prediction of the nomogram; (C)
calibration plot for 3-year OS prediction of the nomogram; (D) calibration plot for 5-year OS prediction of the nomogram. AUC, area under the curve; FARS, fatty acid-
related risk score; pStage, pathological stage; OS, overall survival.
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in vitro and also downregulated in LUAD tissues compared
with adjacent normal tissues (Zhang et al., 2019), while the
association between BEX5 and fatty acid metabolism in LUAD
was never studied. A previous study revealed that ABAT was
related to the survival of LUAD patients, but no research
disclosed whether ABAT influenced LUAD survival via fatty
acid metabolism (Wang et al., 2021).

As immunotherapy has drastically improved the survival
outcome of many cancer patients as compared to
chemotherapy or radiotherapy, more studies concerning the
relationship between fatty acid metabolism and
immunotherapy were carried out recently (Bleve et al.,
2021). For instance, in a Lewis lung carcinoma model,
inhibiting CTP1, a rate-limiting enzyme in the fatty acid
oxidation cycle, could significantly enhance adoptive cell
transfer therapy and reduce tumor progression (Hossain
et al., 2015). Another study revealed that lipofermata could
reduce the uptake of fatty acid by polymorphonuclear myeloid-
derived suppressor cells and suppress tumor progression when
combined with anti-CTLA4 or anti-PD1 antibodies in lung
carcinoma models (Veglia et al., 2019). Several other studies
also proved that targeting fatty acid metabolism could inhibit
the immunosuppressive function of myeloid-derived
suppressor cells and reduce cancer cell growth (Li et al.,
2016; Kim et al., 2017; Prima et al., 2017; Goyal et al., 2018).
An improved understanding of the relationship between fatty
acid metabolism and the immune profile of the TMEs can help
find other therapeutic targets and extend the clinical benefit of
immunotherapy to more patients. In this study, the difference
in the immune profile of LUAD was compared between the
high-risk and low-risk score patients. Although there was no
difference in the expression level of PD1 and CTLA4, the high-
risk score cohort showed higher PDL1 expression, indicating
that the high-risk score patients can potentially benefit from
anti-PD1/PDL1 antibodies.

There are some limitations to be noted in the study for the
reference of future studies. First, selection bias potentially exists
for the inevitable retrospective nature, and the genomic and
clinical data are extracted from the public database. Second,
the sample size of this study is small, and further studies are
warranted to validate the results.

CONCLUSION

In summary, we identified 38 fatty acid metabolism-related
gene-based FARS which could accurately predict the survival

outcome of LUAD patients. Patients with higher FARS can
potentially benefit from anti-PD1/PDL1 immunotherapy. In
addition, the mechanisms of the genes in the FARS affecting
prognosis are worthy of further research to develop new gene-
targeted drugs.
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