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Diabetic kidney disease is the leading cause of end-stage renal disease. Albuminuria is recognized as the most important
prognostic factor for chronic kidney disease progression. For this reason, blockade of renin-angiotensin system remains the main
recommended strategy, with either angiotensin converting enzyme inhibitors or angiotensin II receptor blockers. However, other
antiproteinuric treatments have begun to be studied, such as direct renin inhibitors or aldosterone blockers. Beyond antiproteinuric
treatments, other drugs such as pentoxifylline or bardoxolone have yielded conflicting results. Finally, alternative pathogenic
pathways are being explored, and emerging therapies including antifibrotic agents, endothelin receptor antagonists, or transcription
factors show promising results. The aim of this review is to explain the advances in newer agents to treat diabetic kidney disease,
along with the background of the renin-angiotensin system blockade.

1. Introduction

Diabetes mellitus (DM) and chronic kidney disease (CKD)
have become two of the fastest growing pathologies world-
wide [1, 2], while diabetic kidney disease (DKD) is still the
leading cause of CKD and end-stage renal disease [2]. Popu-
lation ageing and increase in prevalence of many interrelated
comorbidities suggest that these numbers will worsen in the
near future [3].

Despite emerging strategies and constant investigation,
no current single treatment has been able to reverse or at
least stop DKD progression. At best, some of the measures
can partially slow the speed at which renal function is lost.

There are several possible reasons for this fact. First,
most clinical trials have been addressed to evaluate the effect
on albuminuria. Although albuminuria probably remains as
the most influencing prognostic factor, up to one-fourth of
normoalbuminuric diabetic patients will eventually develop
CKD [4–6]. This has raised questions about the suitability of
albuminuria as a surrogate marker in clinical trials, and renal
function decline still remains as the most important target of
nephroprotection [7, 8]. On the other hand, a growing body
of evidence is uncovering variousmechanisms of renal injury

in the context of DM, leading to the appearance of potential
novel drugs.

In this review, we summarize the available evidence reg-
arding classical treatments for diabetic nephropathy, as well
as novel agents, paths, and targets under basic and clinical
investigation.

2. The Classical Nonspecific Measures

2.1. Glycemic Control. DKD occurs in approximately 20%
of diabetic patients, and it can appear despite a good
glycemic control [9]. Nevertheless, many important studies
have demonstrated that a tighter glycemic control can delay
the onset of DKD and slow its progression, beyond its well-
known cardioprotective effect. This effect has been proved
valid in both type 1 and type 2 DKD and in the short
and long terms [10–16]. However, the risk of severe hypo-
glycemic adverse events prompted a change in international
guidelines, which currently recommend individualization
in treatment intensity according to patients’ characteristics
[17, 18]. Glycemic control can be achieved through diverse
pharmacological treatments. Some of them, such as incretin
degradation inhibitors or glucagon-like peptide analogues,
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may have specific nephroprotective effects independent of
their glycemic impact, but these results require confirmation
[19, 20].

2.2. Blood Pressure Control. Given the pathogenetic impor-
tance of intraglomerular hypertension in the initiation of
DKD, earlier guidelines recommended a stricter blood pres-
sure control in diabetic patients [21]. The latest 2012 KDIGO
guidelines maintain a tighter blood pressure recommen-
dation for proteinuric patients, regardless of etiology [22].
However, more recent data from several studies in the field
of hypertension have evidenced the risks of hypotensive
episodes and their vascular consequences [23, 24]. Hence,
similarly to the evolution of recommendations in glycemic
control, a more individual approach to blood pressure targets
is advised [17].

2.3.Weight Loss. Overweight and obesity are frequent comor-
bidities to diabetes and play an important role in the
pathogenesis of CKD [25]. This may be due both to a
further increase in hyperfiltration and to specific hormonal
dysregulations related to adipokines [26]. Weight loss in
obese diabetic patients has been shown to markedly reduce
albuminuria [27]. A decrease in serum creatinine has also
been demonstrated in very hypocaloric diets, but this effect
could be secondary to muscular mass loss [28]. There is
also growing evidence about the beneficial effects of bariatric
surgery in morbid obese patients over diabetes, renal func-
tion, and albuminuria [29, 30], but no trial has been yet
specifically designed to analyze this effect on DKD.

2.4. Protein Restriction. Dietary advice in DKD patients
is a complex issue: it compels carbohydrate consumption
regulation, but the frequent concurrence of comorbidities
also requires a low-salt diet for hypertension, fat-free for
dyslipidemia, and hypocaloric intake for obesity. There is
evidence of the benefits of moderate protein restriction up
to 0.8 g/kg/day [31–33], and this indication is included in
international guidelines at least for patients with reduced
glomerular filtration rates (GFR) [21].

2.5. Smoking Cessation. Cigarette smoking has been linked
to the appearance and progression of DKD, probably due to
oxidative stress stimulation, and the cessation of this habit has
also been associatedwith slower progression of the nephropa-
thy [34–36]. If not for this reason, strong smoking cessation
support should be offered to all diabetic and/or CKD patients
as a means to reduce their increased vascular risk.

3. Past and Present: Renin-Angiotensin-
Aldosterone System Blockade

3.1. ACEI and ARB. One of the most important risk factors
for kidney disease progression in diabetic patients is the onset
and persistence of proteinuria [37]. The use of angiotensin
converting enzyme inhibitors (ACEI) or angiotensin II recep-
tor blockers (ARB) to reduce proteinuria is currently the first-
step strategy [17, 18, 38]. This benefit is valid for both type 1

and type 2 diabetic patients, even with low-grade proteinuria
and normal GFR [39, 40].

Many clinical trials have been performed in this respect.
A different approach that has attracted much attention has
aimed to demonstrate the usefulness of combining two or
even three of these drugs. The efficacy for lowering protein-
uria with the combination of renin-angiotensin-aldosterone
system blockers is at least the same as using one of them
at maximum dosage. However, published studies have not
succeeded in demonstrating these positive outcomes with the
same adverse effects (renal function decline or hyperkalemia
in the combination arms of several trials forced to stop some
of them). While using ARB or ACEI to lower proteinuria
in DKD and in proteinuric CKD is considered mandatory
(evidence grade 1A), the lack of positive studies has encour-
aged a change in current recommendations against the use of
dual blockade [41–43]. In spite of this fact, dual blockade is
spreading more than ever, as shown in a recent retrospective
study that included a great number of diabetic patients [44].

In a more detailed analysis of these trials (Table 1), ACEI
and ARB combined treatment efficiently decreases protein-
uria, and adverse events are usually limited to hyperkalemia
and renal impairment [44]. For these reasons, we recommend
that, in adequately selected cases with very high urinary
protein excretion, dual blockade can probably be tried as long
as a close monitoring can be ensured [50].

The unsolved issue is probably to find the optimal drug
doses. The ROAD study showed that uptitration to the
highest tolerated dose can be an interesting strategy to avoid
adverse effects while achieving the maximum reduction in
proteinuria [51]. In this sense, the use of a combination with
equipotent doses of ACEI and ARB is not supported, due
to a lack of benefits in terms of proteinuria as shown in the
PRONEDI trial [42].

The controversy about an early treatment of nonprotein-
uric diabetic patients still remains. In the ROADMAP trial,
proteinuria had a delayed onset in those patients treated
with olmesartan, although at the expense of higher rates of
cardiovascular events [23].This benefit in primary prevention
of DKD had been previously demonstrated with trandolapril
in the BENEDICT trial [52]. A review and meta-analysis of
the Cochrane Database concluded that ACEI could reduce
the risk for new onset of albuminuria, but this effect cannot
be proved with the use of ARB [53].

3.2. Aliskiren. Another option that has been proposed is the
use of a selective inhibitor of human renin in combination
with an ACEI, an ARB, or an aldosterone blocker. Aliskiren
is a direct renin inhibitor that has been tested as an antipro-
teinuric agent in DKD.TheAVOID trial generated important
evidence about the efficacy of this drug with a nonsignificant
rise of adverse effects (the aliskiren group developed more
hyperkalemia, but the difference did not achieve statistical
significance). However, the security profile of this treatment
was questioned after the premature stop of the ALTITUDE
trial due to a higher rate of adverse effects in an intermediate
analysis [45, 46]. For this reason, the use of aliskiren in
combination with ACEI/ARB is not supported for lowering
proteinuria in kidney disease.



Journal of Diabetes Research 3

Table 1: Most relevant clinical trials assessing dual blockade of renin-angiotensin-aldosterone system in diabetic nephropathy.

Study Patients and treatment arms Commentary
Dual blockade using ACEI and ARB

VA NEPHRON-D [41]
724 (losartan 100mg/day) Stopped due to adverse effects.

724 (losartan 100mg/day + lisinopril 10–40mg/day) Primary endpoint included change in eGFR, death,
or end-stage renal disease.

ONTARGET [43]
8576 (ramipril 10mg/day)
8542 (telmisartan 80mg/day)
8502 (both)

Telmisartan equivalent to ramipril.
No benefit of combination in proteinuria.
Worse eGFR in combination group.

PRONEDI [42]
35 (lisinopril 40mg/day)
28 (irbesartan 600mg/day)
70 (lisinopril 20mg/day + irbesartan 300mg/day)

No benefit of combination in proteinuria or renal
function.

Dual blockade using aliskiren

ALTITUDE [45] 8561 (ACE/ARB + aliskiren 300mg/day)

Stopped due to adverse effects.
Greater reduction in proteinuria.
Renal function was included in the primary
endpoint.

AVOID [46]
298 (losartan 100mg/day) Greater reduction in proteinuria without differences

in the decline of eGFR.
301 (losartan 100mg/day + aliskiren 150–300mg/day) No increased risk of adverse events.

Dual blockade using aldosterone blockers

Sato et al. [47] 55 (spironolactone 25mg/day to those patients with
aldosterone escape after ACEI)

Early stage of CKD (eGFR >60mL/min/1.73m2).
Greater reduction in proteinuria.
No increased risk of adverse events.

Esteghamati et al. [48]
62 (enalapril 30–40mg/day + losartan 50–100mg/day) Greater reduction in proteinuria.
74 (spironolactone 25mg/day + losartan 50mg/day) Greater loss of eGFR.

Epstein et al. [49]
91 (enalapril 20mg/day)
91 (enalapril 20mg/day + eplerenone 50mg)
86 (enalapril 20mg/day + eplerenone 100mg/day)

Greater reduction in proteinuria in combination.
No differences in eGFR reduction.
No increased risk of hyperkalemia in combination.

ACEI: angiotensin converting enzyme inhibitor; ARB: angiotensin II receptor blockers;mg:milligram; eGFR: estimated glomerular filtration rate; CKD: chronic
kidney disease.

3.3. Spironolactone and Eplerenone. The benefits of the addi-
tion of an aldosterone blocker to the standard therapy in
DKD have been noted in some clinical trials [54, 55]. Beyond
the mere addition of spironolactone or eplerenone, these
drugs have demonstrated slight renoprotective superiority
in small studies compared to ACEI or ARB therapies [56].
For example, a recent study conducted by Esteghamati et
al. including 136 patients that were using dual blockade
with ACEI and ARB demonstrated that the substitution of
the first one by spironolactone provides additional benefits
in terms of proteinuria reduction with the same profile of
adverse effects after 18 months of follow-up [48]. However,
a reduction in GFR was noted in the spironolactone group,
independent of blood pressure control. In CKD, this drop
in renal function has been reported by other authors, but
it appears reversible after the first treatment weeks [57, 58].
Although this beneficial effect is not well understood, it is
hypothesized that these drugs avoid the aldosterone escape
that happens in up to 40% of patients treated with an ACEI
(Table 1) [47]. In an interesting study conducted by Sato et al.,
55 patients received maximum doses of an ACEI. Of these,
18 patients showed aldosterone escape, so spironolactone was
started. After 24weeks, proteinuria was significantly reduced,
showing no adverse effects [57].

Regarding the use of eplerenone, only one clinical trial
has assessed the antiproteinuric value of this aldosterone
blocker [49]. Epstein et al. demonstrated in a randomized
double-blind study that eplerenone decreased albuminuria
in diabetic patients at 4-, 8-, and 12-week follow-up. No
differences in adverse effects were seen.

In spite of these good results, and given that these trials
were only performed in early CKD stages, we must still
be cautious until larger studies with long-term follow-up
are published. Potential adverse events must still be closely
monitored, especially hypotension, hyperkalemia, and renal
failure [59].

4. Present: Beyond
Renin-Angiotensin-Aldosterone System

Blocking renin-angiotensin system is not always enough to
avoid proteinuria, so other approaches have been proposed.
The formerly unexplored fields of inflammation and oxida-
tive stress now become more important as targets for new
treatments. Unfortunately, most of the studies performed
yield incomplete conclusions or results that have not been
confirmed in other studies [60].
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4.1. Bardoxolone Methyl. Bardoxolone methyl is an antiox-
idant agent that activates Keap1-Nfr2 [nuclear 1 factor
(erythroid-derived 2)-related factor 2] pathway and regu-
lates inflammation in the kidney. However, the inhibition
of this pathway focusing on slowing CKD progression in
diabetic animals has produced controversial conclusions [61,
62]. Nrf2-deficient mice do not develop hyperfiltration in
response to hyperglycaemia but experience a faster decline
in renal function. In addition, some studies report different
degrees of proteinuria in diabetic Nrf2 knock-out mice.

In humans, two relevant clinical trials have been pub-
lished with bardoxolone methyl in DKD. The BEAM
trial included 227 CKD patients (GFR between 20 and
45mL/min/1.73m2) that were randomized to placebo or var-
ious doses of bardoxolone for 52 weeks [63]. GFR increased
significantly in all the bardoxolone arms, with a peak at 12
weeks that then remained stable. One of the most impor-
tant results of the study regarding renal function was that
albumin-to-creatinine ratio (ACR) was raised inversely to
GFR in the treatment group. However, four weeks after
treatment discontinuation, ACR returned to baseline levels.
Besides, adverse effects were more frequent in the bardox-
olone groups, especially muscle spasms (that reached 61% in
the 75mg group).

The BEACON trial was designed to confirm the findings
of the BEAM trial, but it was stopped prematurely due
to unacceptable high rates of cardiovascular events in the
bardoxolone methyl arm [64]. In this study, 2185 type 2
diabetic CKD patients were randomized to receive placebo
or 20mg/day of bardoxolone methyl. A composite cardiovas-
cular endpoint (nonfatal myocardial infarction, stroke, heart
failure, or cardiovascular death) was achieved after a median
exposure time to the drug of 7 months, so the trial was
terminated due to safety concerns.

Recently, a derivative of bardoxolone methyl, an Nrf2
agonist called dh404, has shown beneficial effects in mice via
decreasing inflammation and oxidative stress, but only at low
doses. This study reopens the interests on the Nrf2 pathway
in renoprotection in DKD [65].

4.2. Vitamin D Receptor Activation: Paricalcitol. Vitamin D
is a well-known modulator of many different processes, and
its deficiency can drive abnormalities in immune system,
inflammation, or even cardiovascular events [49]. In addi-
tion, lower 25-OH-vitamin D levels have been independently
linked to DKD progression in a subanalysis of the PRONEDI
study [66]. The pleiotropic effects of vitamin D receptor
activation have aroused a growing interest in some drugs,
such as paricalcitol [67].

The presence of vitamin D receptors in podocytes has
promoted several clinical studies, with the hypothesis of an
effect of podocyte modulation on proteinuria. Agarwal et al.
designed a small trial of 113 diabetic patients randomized to
placebo or paricalcitol, demonstrating proteinuria reduction
with paricalcitol qualitatively assessed by dipstick [68]. This
effect was later confirmed in the VITAL study, published by
de Zeeuw et al. [69]. In this study, 281 patients were ran-
domized to receive placebo or 1 or 2 𝜇g/day of paricalcitol for

24 weeks. Only 40% of the patients were receiving maximum
doses of ARB or ACEI, and the median of urinary ACR
was 612.3mg/g [70]. Proteinuria was not reduced in patients
with paricalcitol at any dose when compared to placebo, but
albuminuria was significantly reduced in patients with higher
sodium intakes. It should be noted that only 58% of the
patients assigned to 2𝜇g/day of paricalcitol received the full
dose during the whole study, due to adverse effects.

A recent paper published by Eren et al. demonstrates
that the combination of paricalcitol with other drugs such
as aliskiren can reduce DKD progression in rats beyond the
simple reduction of proteinuria, when the renin-angiotensin
system is adequately blocked [71]. In this study, the main
finding was that paricalcitol in association with aliskiren
reduced interstitial fibrosis.

A recent systematic review that included clinical trials
about the effect of active vitamin D (both paricalcitol and
calcitriol) on the control of proteinuria in CKD concludes
that these drugs provide a significant reduction in proteinuria
in addition to rennin-angiotensin system blockade. However,
except the VITAL trial, the rest of the included studies were
small in sample size, and the underlying conditions differed
between them (like the etiology of the proteinuric state) [72].

4.3. Pentoxifylline. Both insulin resistance and diabetes are
linked to inflammation. This fact has generated a growing
interest in anti-inflammatory therapies to slow diabetes and
DKD progression [73]. Indeed, diabetes is now considered an
inflammatory disease.

Pentoxifylline is a methylxanthine derivative and a non-
specific phosphodiesterase inhibitor of tumor necrosis factor
(TNF-𝛼) that has demonstrated an antiproteinuric effect in
DKD [71, 74]. However, the heterogeneity and short follow-
up of published studies have turned pentoxifylline away from
the usual therapeutic arsenal against diabetes.

A well-designed long-term trial by Navarro-González et
al. has been recently published. One hundred and sixty-nine
diabetic patients with 3-4 stage CKD were randomized to
placebo or pentoxifylline 600mg daily one month, followed
by 600mg twice daily for 23 more months. All of them were
receiving renin-angiotensin system blockers and the median
of urinary albumin excretion was 1.1 grams per day.The study
concludes that pentoxifylline slows renal disease progression
(GFR slope) after the first year of treatment and maintained
a statistically significant difference with placebo after 24
months [75]. Our group had previously published a small
trial including 91 CKD patients, showing that pentoxifylline
stabilizes renal function at 12 months, while patients in
the placebo arm experienced a decline in renal function
(estimated by MDRD) [76]. In the PREDIAN trial, urinary
albumin excretionwas reduced (mean of reduction difference
of 20.6% between groups) in the pentoxifylline group at 6,
12, 18, and 24 months. Surrogate markers of inflammation
also decreased at the end of the study in those patients
receiving pentoxifylline [73]. These results therefore place
pentoxifylline as one of the first-line drugs to be used in
addition to renin-angiotensin system to avoid or at least
decrease residual proteinuria in diabetic kidney disease.
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Table 2: Summary of main pathogenic pathways and agents under evaluation for diabetic nephropathy.

Mechanism Agent Situation
Endothelin-receptor antagonism
Avosentan
Atrasentan

Stopped due to adverse events
Ongoing RCT

Antioxidant agents

Direct renal effect N-Acetylcysteine
Probucol

Inconclusive results
Apparent positive results

Xanthine oxidase inhibition Allopurinol
Febuxostat

Ongoing RCT
Ongoing RCT

Transcription factor modulation

Protein kinase modulation
Ruboxistaurin
Imatinib
Fasudil

Stopped due to adverse events
Animal models/other indications
Animal models

JAK-STAT pathway inhibition Baricitinib Ongoing RCT

Neurohormonal modification
D3-RA
Sarpogrelate
ACTH

Animal models
Ongoing RCT
Ongoing RCT

Endogenous agents Apelin
Activated protein C

Animal models
Animal models

Antifibrotic agents
Anti-TNF𝛼 Infliximab Animal models/other indications

Anti-TGF𝛽 Pirfenidone
Fresolimumab

Stopped due to adverse events
Ongoing RCT

Anti-CTGF FG3019 Animal models
Chemokine inhibition CCX 140-B and others Ongoing RCT

MMP inhibition Tetracyclines
XL081, XL874

Ongoing RCT
Limited efficacy

miRNA modulation LNA-anti-miR-192 Animal models
Other agents

RAGE inhibition Pimagedine
Pyridoxamine

Stopped due to adverse events
Ineffective

Oral adsorbents Kremezin Moderate efficacy
Urotensin-II inhibition Palosuran Ineffective
Glycosaminoglycans Sulodexide Ineffective
RCT: randomized controlled trial; JAK-STAT: Janus kinase-signal transducer and activator of transcription; ACTH: adrenocorticotropic hormone; TNF-𝛼:
tumor necrosis factor𝛼; TGF-𝛽, transforming growth factor𝛽; CTG: connective tissue growth factor;miRNA:microRNA; RAGE: receptor of advance glycation
end-products.

4.4. Other Approaches. Some studies have tried to show
beneficial effects of other drugs such as statins, aspirin, or
rapamycin [77–80]. These anecdotal results should be cau-
tiously managed, until studies designed with hard endpoints
reveal further evidence.

5. Present and Future: Novel Drugs for
Novel Approaches

An increasing knowledge of pathogenicmechanisms in DKD
beyond proteinuria has enhanced studies of new molecules
that could interfere in CKD progression (Table 2).

5.1. Endothelin Receptor Antagonists. Endothelins are small
vasoactive peptides that influence hypertension and CKD
through various mechanisms, including endothelial dys-
function, vasoconstriction, cell damage, and albuminuria
[81, 82]. Their action is mediated through two families of
receptors: endothelin-1 receptor (ETA) has been implied

in the deleterious effects of endothelins, while endothelin-
B receptors (ETB) act in the proximal tubule enhancing
sodium excretion. All endothelin inhibitors have demon-
strated positive effects on the kidney, by reducing proteinuria
and renal function loss. However, the effect of inhibiting
ETB results in inappropriate sodium retention, with more
episodes of peripheral edema, congestive heart failure, and
cardiovascular events. Unfortunately, this mishap happens
with all known endothelin inhibitors, since they all have an
effect on both ETA and ETB. Although first described with
the earlier bosentan, molecules with higher selectivity on ETA
over ETB like sitaxsentan and avosentan also showed these
adverse events, which led to early termination of several trials
[83–85]. Currently, the SONAR study is evaluating the effect
of atrasentan on renal endpoints in type-2 diabetic patients
[86], but it excludes patients with a history of peripheral
edema or heart insufficiency and those with higher levels
of type-B natriuretic peptide, so a limitation in its future
indications is expected.
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5.2. Antioxidant Therapies. Oxidative stress is part of the
hyperglycemic-generated renal dysfunction. Several vitamin
analogs and other molecules that inhibit redox reactions
(such as taurine, luteolin, D-saccharic 1,4-lactone, silybin, or
hemin) have proved to diminish kidney damage in ani-
mal models by normalizing superoxide dismutase, inducing
hemoxygenase, or inhibiting NADPH oxidase [87–91]. N-
Acetylcysteine, which has been tested in many clinical trials
for the prevention of contrast-induced nephropathy with
controversial results [92], has not yet been proved effective
in DKD, although studies are too small to be conclusive
[93, 94]. Probucol is another antioxidant drug that has shown
nephroprotective capacity besides its hypolipidemic use [95].

Results regarding inhibition of xanthine oxidase are
more promising. Allopurinol has already shown efficacy in
preventing vascular events and slowing kidney function loss
in several clinical trials [96, 97], some of which included
diabetic patients. The ongoing clinical trials PEARL and
FEATHER are currently investigating the specific usefulness
of allopurinol, and its novel analogue febuxostat, in type 2
DKD [98, 99].

5.3. Transcription Factor Modulation. There are many atte-
mpts to interfere with the inflammatory pathways of DKD,
aiming to interrupt the fibrotic pathogenesis. Some of these
attempts are addressed at the earlier phases of the process, by
inhibiting several transcription factors.

Protein-kinase activity is directly related to fibrosis [100],
and several molecules have been studied to inhibit them.
Ruboxistaurin, a protein-kinase C inhibitor, showed promis-
ing initial results in the fields of retinopathy and peripheral
neuropathy [101, 102]. Data on DKD are very scarce with
either negative effects [103] or a discreet benefit on protein
excretion and GFR loss in the long term [104, 105]. However,
these results have not been confirmed in larger populations
or in patients with a decreased GFR. Other protein-kinase
inhibitors are under current evaluation after associating
renal benefits in animal models: tyrosine-kinase inhibitors
imatinib, nilotinib, genistein, and PP2 [106–109], Rho-
kinase inhibitors fasudil and Y27632 [110–112], p38-MAPK
inhibitor FR167653 [113, 114], phosphoinositide 3-kinase
(PI3K) inhibitors wortmannin, IC87114, and AS101 [115–117],
or activin-like kinase 3 agonists (Alk-3) THR-123 [118].

The Janus kinase-signal transducer and activator of tran-
scription (JAK-STAT) system has also been related to kidney
damage [119]. Baricitinib is a JAK inhibitor currently under
evaluation or rheumatoid arthritis that is also being studied
for DKD [120].

Transcription processes can also be indirectly regulated
through neurohormonal paths. The most studied pathway
in this area is vitamin D receptor activation, but other ways
are under evaluation. On the one hand, dopamine has been
involved in blood flow regulation and hyperfiltration in
earlier diabetic kidney disease. Experimental antagonism of
D3 receptor with D3-RA showed beneficial effects on albu-
minuria and glomerulosclerosis [121], but results in humans
are not yet available. On the other hand, serotonin has
also been studied, and 5-hydroxytryptamine receptor antag-
onist sarpogrelate, which is more known for its antiplatelet

action, has also demonstrated renal anti-inflammatory and
antiproteinuric effects [122, 123] and is undergoing a phase
IV randomized control trial. Melanocortin receptor activa-
tion has been evaluated in several nondiabetic proteinuric
glomerulopathies, and treatment with subcutaneous ACTH
has also shown efficacy in reducing proteinuria inDKD [124].

Finally, reinforcement of endogenous mechanisms that
are inherently protective against hyperglycemia-derived kid-
ney damage has also been tried. For example, exogenous
administration of the adipocytokine apelin [125, 126] or of
activated protein C [127] has renoprotective effects in DKD
animals models. The exogenous activation of cannabinoid
receptors has shown similar results [128, 129].

5.4. Antifibrotic and Anti-Inflammatory Agents. More down-
stream regulation of inflammatory and fibrosis cascades is
also being explored. Treatments that inhibit cell adhesion and
accumulation and cytokine production appear promising. In
fact, TNF-𝛼 inhibition with infliximab or etanercept has been
shown to decrease albuminuria and slow CKD progression
in animal models, but further investigation in humans is
required [130–132].

Transforming growth factor beta (TGF-𝛽) blockade has
been achieved through pirfenidone, currently approved for
lung and liver fibrosis. Pilot studies showed a renal bene-
fit but were halted due to adverse effects [133]. Tranilast,
currently approved for allergic states and keloids, showed a
reduction in albuminuria in a small pilot study with diabetic
patients [134, 135], but never underwent a larger clinical
trial. After promising experimental data, there are several
ongoing studies to evaluate the efficacy of specific anti-TGF-
𝛽 monoclonal antibodies, such as fresolimumab, in various
proteinuric nephropathies [136, 137]. Other TGF-𝛽 blockers
have been tested in animal models but have not yet arrived to
human subjects [138–140].

Connective tissue growth factor (CTGF) has also been
implied in the process of renal fibrosis in DKD. FG3019 is an
anti-CTFG monoclonal antibody that showed albuminuria
reduction in DKD [141] but has not been further investigated
for this indication.

Reduction of chemokine production is also a potential
treatment target in DKD. Several antagonists of the receptors
CCR2 and CCR2/5 of the MCP-1 pathway (such as CCX 140-
B, TLK-19705, RS102895, PF-04634817, or BMS-813160) have
shown positive experimental results and some of them are
being evaluated in clinical trials [142–145].

Another important family of proteins is that of matrix
metalloproteinases (MMPs), mainly involved in extracellular
matrix regulation [146]. Molecules with capacity to inhibit
MMPs, such as the antibiotic agents doxycycline andminocy-
cline or the newer XL081 and XL874, were expected to have
renoprotective effect, but when tested in humans, the impact
was limited inmagnitude and duration [147, 148]. Some trials
are still under way.

Finally, one of the newest therapeutic approaches is based
on developing molecules that target microRNA (miRNA)
pathways [149]. These small noncoding RNA fragments are
involved in gene expression regulation, and many of them
have been identified with both protective and pathogenic
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roles [150]. Growing knowledge in their functions triggers
interest in developing new drugs to either silence pathogenic
miRNAs (via anti-miRNA oligonucleotides or similar agents)
or to enhance renoprotective miRNAs (with mimics, vectors,
or exosomes). To date, only one oligonucleotide has been
tested in diabetic mice to prove its renoprotective efficacy
[151].

5.5. Other Agents. Hyperglycemia-derived advanced glyca-
tion end-products (AGE) are known to have a pathogenic
effect through the activation of their receptor (RAGE),
causing protein dysfunction and altered collagen turnover
activating metalloproteinases [152, 153]. Inhibition of RAGE
with neutralizing antibodies reversed these pathogenic effects
[154]. Several molecules that inhibit AGE formation, such
as pimagedine or pyridoxamine, showed beneficial effects on
animal models [155] but negative results or unacceptable
adverse events in human trials [156–158].

Several oral adsorbents for uremic toxins have been
tested, based on the hypothesis that reducing intestinal
absorption of some of these toxins would diminish systemic
inflammation and immune system activation. The most
studied compound has been AST-120, also called kremezin,
a spherical carbon preparation [159]. Initial studies cast
hopeful results in early CKD [160, 161], but randomized
clinical trials in moderate-to-severe CKD showed no effect
[162]. A recent meta-analysis that included both kremezin
and other adsorbents from Asian origin like Ai Xi Te and
Niaoduqing granted a possible benefit in slowing the speed
of renal loss, but without clear evidence [163].

Finally, other approaches are still in earlier stages of inves-
tigation.These include infusion of endovenousmesenchymal
precursor cells or modulation of immune response through
regulatory T cells or autophagy [164–166].

Many other attempts have revealed unsuccessful, despite
arriving to phase II or III, clinical trials. This has been the
case of palosuran, a urotensin-II receptor antagonist [167],
or sulodexide, a glycosaminoglycan with anti-inflammatory
properties in animal models [168–170].
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