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Abstract: Type 2 diabetes mellitus is a progressive disease that is characterized by the appearance
of insulin resistance. The term insulin resistance is very wide and could affect different proteins
involved in insulin signaling, as well as other mechanisms. In this review, we have analyzed the
main molecular mechanisms that could be involved in the connection between type 2 diabetes and
neurodegeneration, in general, and more specifically with the appearance of Alzheimer’s disease.
We have studied, in more detail, the different processes involved, such as inflammation, endoplasmic
reticulum stress, autophagy, and mitochondrial dysfunction.
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1. Introduction

Diabetes is a metabolic disease that is characterized by the appearance of chronic
hyperglycemia because of pancreatic β cell failure by different mechanisms. This decline
of β cells occurs in all types of diabetes, but it is an essential mechanism in the main
forms of diabetes; type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) [1].
According to American Diabetes Association (ADA), diabetes can be classified into different
categories: Type 1 diabetes mellitus (T1DM); type 2 diabetes mellitus (T2DM); gestational
diabetes mellitus (GDM); other causes of the disease, including monogenic diabetes, such
as maturity-onset diabetes of the young (MODY), or secondary to the use of different drugs
or chemical compounds [2].

T1DM is known as “insulin dependent” and represents 5–10% of the total amount of
diabetics. The etiology of the disease is an autoimmune attack towards pancreatic β cells.
Although there are several genetic predispositions related to the disease [3,4], it is also
considered the existence of an environmental component, which is poorly understood [5,6].

T2DM is known as “insulin independent” and represents the majority of all diabetics
(90–95%). The main characteristic of the disease is the appearance of insulin resistance,
which is a defect in insulin signaling and a correct coupling of insulin with its receptor. It can
be distinguished 2 phases in the disease progression. During the first one, there is insulin
resistance, and concomitantly, a compensatory mechanism in pancreatic β cells, associated
with hyperinsulinemia [7,8]. Although T2DM is considered non-insulin dependent, it is
known that as the disease progresses, many patients need insulin because of pancreatic β
cell destruction. Then, β cell function maintenance is a key treatment strategy [9]. Although
β cell death is one of the main events of pancreatic β cell failure, some authors indicate that
dedifferentiation is another important mechanism for β cell dysfunction [10]. In this regard,
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it has been observed that β cells can dedifferentiate to α and δ cells in human diabetic
donors [11].

GDM is the appearance of insulin resistance during pregnancy and its maintenance
after delivery. During gestation, all women suffer a series of both physical and metabolic
changes, which make them more susceptible to develop insulin resistance [12]. Since GDM
facilitates the development of T2DM after delivery, women with a GDM diagnose should
be monitored for prediabetes and T2DM.

Monogenic diabetes are a heterogeneous group of diseases, which are the most com-
mon group of disorders affecting pancreatic β cells by a mutation in one gene. Represents
1–5% of all diabetics, and the majority of these mutations alter insulin secretion. There are
14 different variants of MODY (For instance, there are mutations that affect glucokinase
(GK) gene, and it is known as MODY2, or different transcription factors which are involved
in the maturation of pancreatic β cells, such as pancreatic and duodenal homeobox 1 (Pdx1),
known as MODY 4). Apart from Pdx1 and GK, there is another important group of mutated
genes that is involved in MODY and are the hepatocyte nuclear factors (HNFs) [13–15].

Once insulin is recognized by insulin receptor (IR), there is a conformational change
in its structure, and the activation of the endogenous tyrosine kinase activity of β subunits.
Phosphotyrosine residues permit the recruitment of other proteins, the insulin receptor
substrates (IRSs), which recognize these phosphorylated tyrosine residues, known as phos-
photyrosine binding (PTB) domains. After the recruitment of IRSs to the receptor, they
are phosphorylated by the receptor on different residues. Then, phosphorylated IRSs
acts as scaffolds proteins for other proteins, by Src-homology 2 (SH2) domains [16,17].
There are multiple IRSs proteins, which are involved in different functions depending
on the tissue [18]. Furthermore, IRSs can be phosphorylated in serine and threonine
as well, leading to attenuation in insulin signaling. Alternatively, there are other adap-
tor molecules, which could be recruited to the activated IR, including the Src homology
2 domain-containing (Shc) proteins. One of the critical steps after insulin treatment is
the activation of phosphoinositide-3 kinase (PI3K) and Akt signaling pathway, which
are recruited by the SH2 domains to the IRSs. After that, the catalytic domain phos-
phorylates phosphatidylinositol 4,5-bisphospate (PIP2), generating phosphatidylinosi-
tol (3,4,5)-triphosphate (PIP3), which is maintained in the cell membrane. Afterward,
PIP3 recruits several proteins with pleckstryn homology (PH) domains, such as Akt and
phosphoinositide-dependent kinase 1 (PDK1). Then, these proteins are recruited to the cell
membrane, and Akt is phosphorylated in threonine 308 by PDK1 activity. It is known that
insulin can phosphorylate Akt in Ser 473, which is mediated by another kinase, known as
the mechanistic target of rapamycin complex 2 (mTORC2) [19]. Then, Akt is fully active
and phosphorylates its target substrates, including FOXO, tuberous sclerosis complex 2
(TSC2), glycogen synthase kinase 3 β (GSK3β), Bad among others [18].

Alzheimer’s disease (AD) is a neurodegenerative disorder and one of the major causes
of dementia in the world. Furthermore, AD is linked to T2DM being, at least, part of the
mechanisms shared between these two diseases. One of the common features connecting
both diseases is insulin resistance. Hence, the link between T2DM and AD is nowadays
more and more evident, and molecular pathways that characterize this crosstalk are
emerging because of the numerous pathophysiological homologies among both diseases.
But there are still a lot of questions to be answered about how T2DM might influence AD
and the derived therapeutic strategies that could be used to impulse future approaches to
more efficient treatments.

2. Insulin Resistance

Insulin resistance is an altered response of insulin receptors to a given insulin con-
centration. This insulin resistance can occur at multiple levels of insulin signaling and
is involved in different mechanisms. In this section, we are going to explain the main
regulators of insulin resistance in cells in more detail.
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2.1. MAPK and Insulin Resistance

The family of mitogen-activated protein kinases (MAPK) comprises 14 different com-
ponents involved in the control of different cellular processes, such as proliferation, survival,
differentiation, and apoptosis. MAPKs are divided into four different sub-classes, including
extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK1-3),
p38 (α, β, γ, and δ), and ERK5. These kinases have involved in the appearance of insulin
resistance [20]. In addition, there is another group of MAPKs, known as atypical kinases
(ERK3/ERK4, NLK, and ERK7). However, this group of proteins is poorly understood
and needs more investigation. A recent review about all these groups of proteins was
completed by the authors of [20].

2.1.1. Extracellular Signal-Regulated Kinases 1 and 2 (ERK1/2)

After insulin receptor activation, IRSs are recruited and phosphorylated in tyrosine
residues by the insulin receptor, leading to the recruitment of the adaptor protein growth
factor receptor-bound protein 2 (Grb2). Alternatively, another adaptor protein Src homol-
ogy 2 domain-containing (Shc) and then tyrosine phosphorylated in different residues [21].
Then, Shc binds Grb2, forming a complex with the guanine nucleotide exchange factor
(GEF) called son of sevenless (SOS). SOS is a GEF for p21Ras, facilitating its activation. After
that, Ras-GTP is active and phosphorylates the rapidly accelerated fibrosarcoma (Raf) [22],
translocating to the cell membrane. Raf is a serine/threonine kinase, and is known as the
MAP kinase kinase kinase (MAPKKK), which then phosphorylates and activates a MAP
kinase kinase (MAPKK), the serine, and threonine MAPK/ERK kinases (MEK). Afterward,
MEK phosphorylates the MAPK, extracellular-signal regulated kinase (ERK), regulating
the phosphorylation status of different proteins in the cells [23–25]. The main effectors
of ERK1/2 are by direct phosphorylation or by indirect mechanisms, including MAPK-
interacting kinase (MNK), mitogen and stress-activated kinase (MSK), and p90 ribosomal
S6 kinase (p90RSK). The direct effects are involved in the control of metabolism, such as
gluconeogenesis, in the control of protein synthesis, as well as in the mTORC1 signaling
pathway. Furthermore, ERKs can directly regulate lipid homeostasis through the control
of the sterol regulatory element-binding protein 1α and 2 (SREBP1α/2) or the hypoxia-
inducing factor (HIF1α), among others, and reviewed by the authors of [20,23]. Regarding
the indirect effects, ERKs can regulate the phosphorylation state of the protein synthesis
initiation regulator, eIF4E, through MNK activation [26,27]. MSK can phosphorylate the
cAMP response element-binding protein (CREB) [28], and p90RSK can regulate glycogen
synthesis through the modulation of GSK3 phosphorylation [29,30].

One of the mechanisms involved in insulin resistance is through the modulation of
insulin receptor clathrin-mediated endocytosis [31–33]. Very recently, it has been proposed
that both Src homology phosphatase 2 (SHP2) and MAPK are implicated in the endocytosis
of insulin receptors and reviewed by the authors of [34]. ERK proteins are one of the
best-characterized groups of proteins able to phosphorylate IRSs [35,36]. IRS1 and IRS2
can bind directly to one of the clathrin adaptors called AP2M1, promoting insulin receptor
endocytosis, and mediated by the concomitant action of both SHP2 and ERK proteins [37].
Furthermore, ERK proteins control insulin resistance in in vitro studies by the effect of
c-Jun activation domain-binding protein-1 (JAB1), activated under chronic inflammation,
increased in insulin-resistant states, and mimicked using palmitic acid in hepatocytes [38].
Furthermore, oxidative stress is related to insulin resistance in cardiac tissue through the
downregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) mediated by ERK
phosphorylation [39]. In this regard, nicotine, which generates insulin resistance in the
heart, inhibits Nrf2 expression with a concomitant increase in ERK phosphorylation sta-
tus in this tissue [40]. ERK signaling can upregulate bromodomain-containing protein 2
(Brd2), a nuclear serine/threonine kinase, during adipocyte differentiation, generating
insulin resistance [41]. In addition, Brd2 is involved in the negative control of adipoge-
nesis through its action towards c/EBPα and PPAR-γ via ERKs [42]. Another possible
mechanism for enhancing insulin resistance is through the increased phosphorylation
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status of β-3 adrenergic receptor in an ERK2-dependent manner, facilitating lipolysis [43].
Very interestingly, the elimination of kinase suppressor of Ras 2 (KSR2) in mice, a scaffold
protein that coordinates Raf/MEK/ERK signaling pathway, causes insulin resistance and
obesity [44]. Direct activation of PPAR-γ by ERK has been observed with a concomitant
increase in insulin resistance, which could be suppressed by cyclin-dependent kinase 5
(CDK5) in a MEK-dependent manner [45]. However, tumor necrosis factor-α (TNF-α),
involved in insulin resistance, stimulates CDK5 phosphorylation in an ERK-dependent
manner [46]. A maintained ERK activation suppresses the expression of the gluconeogenic
enzyme glucose-6-phosphatase (G6Pase), decreasing glucose output in liver cells, through
the ERK-dependent phosphorylation and retention of FOXO in the cytosol [47,48]. Sus-
tained activation of ERKs downregulates the expression of both insulin receptors and IRSs
(IRS1 and IRS2), with a concomitant reduction in insulin signaling in adipocytes [49]. Tyro-
sine phosphorylation mediates the docking effect for downstream effectors and adaptor
proteins, such as PI3K and SHP2, favoring insulin signaling. However, serine/threonine
phosphorylation, depending on where it occurs, could have a different effect on insulin
signaling [50]. In macrophages, it has also been described an enhanced production of
cytokines in response to insulin by the modulation of ERKs, as well as the modulation
of inhibitor of κB kinase β (IKKβ). The consequence of this dual activation is the serine-
phosphorylation of IRSs [51]. Nuclear factor-kB (NF-kB), which is linked to inflammation
and insulin resistance, modulates several cytokines, including interleukin-6 (IL-6) [52]. In
this regard, it has been defined a protective role of p53 in improving insulin signaling
via the inhibition of NF-kB and ERKs, although the exact molecular mechanism of p53 in
insulin signaling is not understood [53]. Blocking ERKs activity promotes the development
of obesity and insulin resistance depending on the animal model that it is used [54,55].

2.1.2. c-Jun N-Terminal Kinase (JNK)

It is very well known that JNKs are activated in response to insulin [56–58]. Differ-
ent studies indicate the involvement of JNKs in obesity-induced insulin resistance and
T2DM [59–61]. The activation of JNKs after insulin stimulation is dependent on MKK4
and MKK7 [62]. Originally, JNKs were originally described as the activating kinase in the
N-terminal domain of the transcription factor c-Jun [63]. As it was previously explained in
the case of ERKs, JNKs can phosphorylate directly different targets, or indirectly by acti-
vating intermediary kinases, such as p90RSK [57,64,65]. As the direct nuclear target is GR,
involved in gluconeogenesis and perilipin in the control of lipolysis. In addition, indirectly,
JNKs through p90RSK activation can regulate glycogen synthesis as ERKs do [29,30].

JNKs are involved in the regulation of obesity, T2DM, and insulin resistance [66–69].
Although there are three proteins belonging to JNKs, only JNK1 and JNK2 have a negative
effect on insulin signaling [70]. However, it seems that both kinases do not have overlap-
ping functions. In this regard, mice with JNK1 deletion were protected from obesity and
insulin resistance [71]. However, the deletion of JNKs protects from atherosclerosis [72]. In
any case, it is known as crosstalk between JNK1 and JNK2 in the control of obesity and
insulin resistance [73]. One of the most obvious mechanisms of insulin resistance genera-
tion is through the modulation of IRS1 phosphorylation status, suggested using in vitro
approaches [74]. The involvement of JNKs in the prevention of insulin resistance depends
on the tissue. For instance, JNK1 deletion in adipose tissue was protected against liver
steatosis. Paradoxically, JNK1 ablation in hepatocytes developed insulin resistance [75].
In this regard, in knock-in mice with a mutation in which the authors replaced Ser 307
with Ala 307 in IRS1 resulted in increased insulin resistance [76]. Alternatively, ER stress is
linked to obesity, insulin resistance, and T2DM [77,78]. In fact, the use of different chem-
ical chaperones can reduce ER stress, diminishing insulin resistance [79]. In this regard,
different compounds with a potentiating action on ER chaperone capacity, uncovering azo-
ramide as a compound for protecting cells against ER stress [80,81]. A high fat diet (HFD)
induces ER stress as well, leading to JNK1 activation [82]. Furthermore, saturated fatty
acids activate the JNK signaling pathway, as well as a protein kinase C (PKC)-dependent
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mechanism [83]. The JNK-interacting protein 1 (JIP1), a scaffold protein that is able to
interact with different components of JNK signaling, has a key role in the activation of JNK
in the adipose tissue of obese mice [84]. Then, JIP1 exerts an essential role in the control
of metabolic stress regulation of JNK activity, and the elimination of JIP1-mediated JNK
activation leads to a decreased in obesity-induced insulin resistance [85] and associated as
a potential regulator of T2DM in humans [86].

2.1.3. p38

These groups of proteins are activated by different growth factors, inflammatory cy-
tokines, hypoxia, oxidative stress, among others [25]. Although the mechanism responsible
for p38 activation in response to insulin is unknown, insulin treatment has been associated
with p38 in adipogenesis. p38 can either directly phosphorylate its targets or can mediate
its effects indirectly, by the activation of MNK and MSK. Its direct effectors are, many of
them, shared with the other MAPKs (JNKs and ERKs). For instance, FOXO, PPAR-γ, and
C/EBP-α are regulated by both ERK and p38 MAPKs [87]. However, PGC1-α is regulated
by p38 [88,89]. Furthermore, it is involved in the phosphorylation of many other substrates,
including ATF2 [90] and C/EBP-β [91] involved in adipocyte differentiation. Indirectly,
through MNK activation, p38 regulates the protein synthesis initiation factor eIF4E, and
through MSK, controls CREB protein [92].

The activation of p38 in the liver from obese mice diminishes ER stress, through the
phosphorylation of X-box binding protein 1 (XBP1) and its translocation to the nucleus [93].
Furthermore, through ATF6 phosphorylation, another component of the unfolded protein
response (UPR), promotes its translocation to the nucleus and regulates transcription of the
luminal ER-resident chaperone called glucose-regulated protein-78 (Grp78)/Bip [94]. p38
MAPKs are implicated in inflammation through the modulation of ATF2 and NF-kB [95,96].
Under oxidative stress, there is an increased in IRS-1 serine phosphorylation and associated
with a decrease in IRS1 protein levels, by an increased degradation in rat muscles under
oxidative stress conditions [97]. The use of a p38 inhibitor, improved insulin-dependent
glucose transport, indicating a decrease in insulin resistance [98]. Moreover, p38 MAPKs,
and more specifically, p38α regulates other receptors, such as epidermal growth factor
EGF/ErbB family, belonging to the tyrosine-kinase receptors, facilitating IRS-1 phospho-
rylation and insulin resistance in response to different stimuli [99]. Furthermore, another
two isoforms, p38γ and p38δ, have been associated with hepatic steatosis, controlling
neutrophil infiltration [100]. Very interestingly, p38 activation in the hypothalamus, could
regulate insulin resistance and inflammatory cytokines expression [101,102].

2.1.4. ERK5

First of all, it is also known as big mitogen-activated protein kinase-1 (BMK1). ERK5 is
controlled as all MAPKs upstream by different kinases. As MAPKKKs, it can be considered
MEKK2 and MEKK3, phosphorylating specifically MEK5 (MAPKK), and then, ERK5. Like
the rest of MAPKs, there are a great variety of substrates, including transcription factors
(MEF2, Sap1, and others) and other kinases, such as the serum and glucocorticoid-induced
protein kinase (SGK) [103,104]. Although it is necessary more knowledge, ERK5 activa-
tion mediates protection against diabetes and obesity, through different actions [20]. For
instance, ERK5 induces an anti-inflammatory effect through the activation of PPARδ [105].
Furthermore, it is known that ERK5 is involved in insulin sensitivity in adipocytes [106].
Very recently, it has been published the implication of ERK5 in the preservation of IRS1
through the repression of mir128-3p under hypoxic conditions [107]. However, more efforts
are needed to understand more deeply the effects of ERK5 in insulin resistance in the
different tissues.

2.2. PI3K/Akt and Insulin Resistance

Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that phosphorylate
phosphatidylinositol (PI) and its derivatives phosphatidylinositol 4,5-bisphosphate (PIP2)
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and phosphatidylinositol 4-monophosphate (PI4P) [108]. PI3Ks are divided into three
classes: Classes I, II, and III. The best-characterized is the class I PI3K, which is a het-
erodimer composed of a catalytic subunit p110 and a regulatory subunit p85 or p84/p101,
depending on the subdivision in classes IA or IB, respectively [109].

It is known that growth factors, cytokines, and hormones, activate receptor tyrosine
kinases (RTKs), and then, their adaptor proteins GPCR (G-protein-coupled receptors)
activate class I PI3Ks, which are previously recruited to the plasma membranes relieving
the inactivation function of p85 and p110; indeed, RTKs and GPCRs can also activate Ras
to activate PI3K [110]. Class I PI3K phosphorylates PIP2 to form PIP3 on intracellular
membranes. Phosphatases, such as phosphatase and tensin homolog (PTEN), act as
negative regulators of PI3K, generating PIP2 from PIP3 through dephosphorylation. PI3K
is activated to recruit downstream effectors, including AKT [111].

AKT/PKB is a serine-threonine kinase divided into three isoforms: AKT1 expresses
ubiquitously contributing to the maintenance of glucose homeostasis and regulating adipo-
genesis [112]; AKT2 is mainly expressed in insulin-sensitive tissues, and AKT3 is located
in the brain, regulating neuronal size and functions [113,114]. AKT is activated by initial
phosphorylation in the kinase domain by phosphoinositide-dependent protein kinase
1 (PDK1) and subsequent phosphorylation in the regulatory domain through mTORC2
by a PI3K-dependent mechanism [115]. Since AKT is activated, several apoptotic and
cell cycle substrates and signaling pathways related to glucose and lipid metabolism are
regulated [111,116].

Both insulin and IGFs can bind to their respective receptors, leading to activation and
autophosphorylation [117]. There are six isoforms of IRS proteins—IRS-1 and IRS-2 are the
most studied and present a major contribution to PI3K signaling. Once IRS proteins are
phosphorylated, catalytic subunit are activated, obtaining PIP3 for AKT [118].

AKT pathway is a critical regulator of metabolism. First of all, the activation of
PI3K/AKT stimulates glucose mobilization through the activation of AS160/TBC1D4 [119],
which promotes the translocation of glucose transporter 4 (GLUT4) and the inhibition of
TXNIP, which controls the internalization of glucose transporters [118]. AKT can also regu-
late glycolysis by stimulating hexokinase and phosphofructokinase [117,120] coordinating
gluconeogenesis and fatty acid oxidation through FoxO1 phosphorylation [121]. This phos-
phorylation results in its nuclear exclusion and inhibition of its activity in several tissues, by
reducing gluconeogenesis and glucose levels through the reduction in PGC-1α [122]. When
insulin signaling is activated, AKT also phosphorylates GSK-3β and inhibits its activity,
leading to an increased glycogen synthesis [123]. AKT also phosphorylates TSC2 [117,118].

In the development of T2DM, insulin resistance occurs after chronic excessive energy
conditions with a concomitant lipid accumulation and increased lipolysis with a hyper-
trophied adipose tissue [119,124,125]. Obesity-induced inflammation and the increased
secretion of adipocytokines reduces IRS-1 activation [126], and the AKT-dependent glucose
uptake and mediated inhibition of lipolysis [112,124,127].

The excess of free fatty acids (FFA) reduces blood adiponectin levels and lipid ox-
idation in other tissues, triggering lipotoxicity and insulin resistance [128]. Those FFA
generated reduces glucose transport and glycogen synthesis in skeletal muscle, inhibiting
IRS-1 activity [129]. This lipotoxic environment in skeletal muscle leads to an excessive
production of reactive oxygen species (ROS) that activate intracellular stress kinases to also
inhibit IRS-1 [130] and another downstream effector of the AKT pathway [131]. Circulating
lipids can also contribute to peripheral insulin resistance and the impairment of PI3K/AKT
in the brain [132]. Dysregulated secretion of leptin and the increased expression of FoxO1 in
propiomelanocortin (POMC) neurons provoke hyperphagia and obesity [133,134], as well
as hypothalamic hyperactivation of mTORC1, seems to induce hepatic insulin resistance
through the inhibition of IRS-1/AKT axis and K (ATP) channels [135,136].

In the pancreas, PI3K-mediated insulin secretion is blocked with a deleterious effect
on pancreatic β cells [137,138]. In the liver, excessive oxidation of circulating FFA hy-
peractivates pyruvate carboxylase activity and gluconeogenesis via FoxO1 [139], while
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DAG increased levels reduce PI3K/AKT signaling to exacerbate insulin resistance [140].
Thus, glycogen synthesis is inhibited, and insulin-mediated de novo lipogenesis (DNL)
stimulated [141,142].

2.3. mTOR and Insulin Resistance

The mechanistic or mammalian target of rapamycin (mTOR) is an evolutionary
conserved serine/threonine protein kinase which is related to the PI3K kinase family
(PIKK) [143] and exists in two different complexes: mTORC1 and mTORC2 [144,145],
known as “rapamycin-sensitive” and “rapamycin-insensitive”, respectively [144].

The structure of both complexes shared common proteins that include mTOR itself,
mammalian lethal with sec-13 protein 8 (mLST8 or GβL), DEP domain-containing mTOR-
interacting protein (DEPTOR), Tel two-interacting protein 1 (Tti1), and telomere mainte-
nance 2 (Tel2) [146–148]. Specifically, mTORC1 contains Raptor (regulatory-associated pro-
tein of TOR) and PRAS40 (proline-rich Akt substrate 40kDa) [149,150]; whereas, mTORC2
core components are Rictor (rapamycin-insensitive companion of mTOR), mSIN1 (stress-
activated protein kinase-interacting protein 1), and protein observed with Rictor 1 and
2 (PROTOR 1/2) [151–153]. Figure 1 depicts the composition of both mTOR complexes
in cells.
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Figure 1. Structure of mTOR complexes. Both shared mTOR that is the catalytic subunit, DEPTOR,
which acts as a negative regulator, Tti1/Tel2, as scaffold proteins, and mLST8, which function
is unknown. Specifically, mTORC1 is also formed with RAPTOR (scaffold protein) and PRAS40
(inhibitor of RAPTOR); mTORC2 with RICTOR and mSIN1 both acting as a scaffold; PROTOR 1/2 is
a positive regulator.

Focusing on mTORC1 activation, when growth factors bind to its receptors, PI3K is
activated and phosphorylates Akt, phosphorylating TSC2. TSC2 interacts with TSC1 [154],
acting as a GTPase activating protein (GAP) for Rheb [155]. Rheb is a small G protein lo-
cated on the surface of the lysosome, and its GTP-bound form directly stimulates the kinase
activity of mTORC1 [144,145]. TSC1-TSC2 complex converts the active form of Rheb into
its inactive GDP-bound state, negatively regulating mTORC1 [156]. Akt-mediated TSC2
phosphorylation inhibits its GAP activity causing mTORC1 activation [156]. Moreover, Akt
phosphorylates PRAS40, which acts as a mTORC1 inhibitor, causing its dissociation from
Raptor and mTORC1 activation [157].

Alternatively, AMPK, phosphorylates TSC2, boosting TSC1-TSC2 association and
causing mTORC1 inhibition [158]. Moreover, there is also a TSC2-independently mTORC1
modulation through AMPK by Raptor phosphorylation that leads to mTORC1 inactiva-
tion [159]. In addition, glycogen synthase kinase 3β (GSK3β) phosphorylates TSC2 acting
as a negative regulator of mTORC1, but the Wnt pathway activates mTORC1 by inhibiting
GSK3β [160]. Another mTORC1 modulation occurs under low-glucose conditions by Rheb
sequestration, provoking mTORC1 inhibition [161]. Lastly, amino acid activates mTORC1
through Rags, a group of small G-proteins similar to Rheb [162].

The best-characterized substrates of mTORC1 are eukaryotic translation initiation
factor 4E (eIF4E) binding protein 1 (4E-BP1) and S6 kinase 1 (S6K1), which promote protein
synthesis and ribosome biogenesis [163]. In addition, mTORC1 positively controls the
synthesis of lipids [164]. Moreover, adipogenesis is regulated through the higher activity
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of peroxisome proliferator-activated receptor γ (PPARγ) caused by mTORC1 [165]. Other
studies reported that mTORC1 positively regulates mitochondrial biogenesis and oxidative
metabolism by modulating PPAR-γ coactivator 1α (PGC1-α) [166], and cellular metabolism
and ATP production by activating HIF1α transcription [167].

One of the most important pathways that are regulated by mTORC1 is autophagy, and
the biogenesis of lysosomes. For instance, mTORC1 directly phosphorylates unc-51-like
kinase 1 (ULK1), which is required to initiate this process, provoking its inhibition [168].

Although mTORC2 was originally described as rapamycin-insensitive, in the last
few years, it has been observed that the long-term treatment with rapamycin suppresses
mTORC2 activation [169]. While mTORC2 is insensitive to nutrients, this complex responds
to growth factors, such as insulin through, possibly, ribosomes. This potential mechanism
suggests that mTORC2 binds to ribosomes and explains that these organelles may be
needed for mTORC2 activation [170].

What is well described is the relationship between mTORC2 and some members of
the AGC subfamily of kinases, including Akt, SGK1, and protein kinases C-α (PKC-α). Akt
is fully activated through phosphorylation by the kinase activity of mTORC2 [169]. Lastly,
mTORC2 positively regulates PKC-α activation, which is involved in cell shape through
changes in the actin cytoskeleton [151].

Although both complexes of mTOR are involved in the pathogenesis of diabetes
through their actions in β-cell metabolism and immune cells [171], the role of mTORC1
in insulin resistance and in the progression of T2D will be explained in more detail for a
better understanding of type 3 diabetes (T3D).

Active mTORC1 causes a decrease in glycemia, hyperinsulinemia and improves
glucose tolerance in mice, which can be reverted by rapamycin [172]. mTORC1/S6K1
pathway was identified as a regulator of β-cell apoptosis, size, and autophagy, whereas
mTORC1/4E-BP2-eIF4E pathway seemed to control β-cell proliferation [173]. Although
mTORC1 positively controls β-cell function, a sustained activation in mice leads to higher
insulin resistance in the pancreas, reducing cell survival and promoting apoptosis. In
addition, IRS1 phosphorylation and inactivation cause downregulation of insulin sensi-
tivity [174]. Firstly, mTORC1 increases β-cell mass but, upon aging, exists a loss of β-cells
causing hyperglycemia and hypoinsulinemia [175].

Furthermore, mTORC1 promotes adipogenesis through the activation of S6K1, which
controls the expression of early adipogenic transcription factors, causing adipose tissue
expansion, the main risk factor for developing insulin resistance, and thus, of T2DM.
Moreover, 4E-BPs are activated by mTORC1 and regulates the final differentiation of
adipocytes through PPAR-γ [176].

This complex is highly active in the adipose tissue and in the skeletal muscle of
obese mice, causing insulin resistance through inhibition of insulin signaling by the S6K1
pathway, reducing glucose uptake by the muscle, and contributing to systemic insulin
resistance [177]. In the liver, this high activation promotes hepatic insulin resistance
through the degradation of IRS1, contributing to the dysregulation of glucose and lipid
homeostasis [178,179]. Moreover, a hyperactivation of mTORC1 in the heart muscle causes
a well-known complication of T2D [180].

At the prediabetic or early stages, mTORC1 positively regulates pancreatic β-cells’
growth and secretion of insulin, but when mTORC1 remains chronically overactive,
the compensatory insulin secretion mechanism does not work effectively, pulling to β-
cell death.

3. Autophagy

Autophagy is a catabolic cellular mechanism that participates in the maintenance of
cellular homeostasis by degrading different cellular components. Three different types
of autophagy have been described: Microautophagy, chaperone-dependent autophagy
(CMA), and macroautophagy, the latter being the most common.
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3.1. Types of Autophagy

In microautophagy, invaginations are formed in the lysosomal membrane, where the
components to be removed are located [181]. In CMA, the hsc70 chaperone recognizes
the specific aminoacidic sequence KFERQ in cytosolic target proteins, binding to them
along with other cochaperones. These aggregates reach the lysosome membrane, where
they are recognized by LAMP-2A monomers. LAMP-2A monomers multimerize, forming
complexes that facilitate the protein’s entry into the lysosome where it is degraded [182].
Macroautophagy (hereafter as autophagy), is a highly conservative cellular process and
consists of several well-characterized stages: The formation of the phagophore, initiation
of the encapsulation of the element to degrade (nucleation) carried out mainly by VPS34
and Beclin-1 complex [183], and fusion with the lysosome, which results in the degradation
of the engulfed components [184].

Autophagy can be classified according to the cargo to degrade, being the most studied
and characterized autophagy of mitochondria or mitophagy. This system is one of the main
quality control mechanisms of mitochondria by degrading damaged mitochondria [185]. By
the canonical pathway, when a mitochondrion is depolarized, it facilitates the recruitment of
PINK1 to the outer mitochondrial membrane, being accumulated [186]. The accumulation
of PINK1 induces the recruitment of Parkin, which will ubiquitinate different proteins,
such as mitofusins [187]. This ubiquitination causes the elimination of these proteins,
through proteasome, as well as the formation of the autophagosome around the damaged
mitochondria, through p62. This protein can directly interact with the lipidated form of the
LC3B, which is the link between the autophagosome and damaged mitochondria [188].

3.2. Autophagy in Pancreatic β Cells: A Double-Edged Sword

In the pancreatic β cell, although in the short term, the inhibition of autophagy may
exert a beneficial effect by stimulating insulin secretion, in the long term, an endoplasmic
reticulum (ER) stress could be generated, causing cell death [189]. In this regard, inhibition
of autophagy makes the pancreatic β cells more susceptible to ER stress damage [190]. In
murine models, the loss of autophagy generates an impairment in glucose-induced insulin
secretion; a decreased in β cell mass and hyperglycemia in pancreatic β cells [191], as well
as an increase in both ER stress and insulin resistance, in the liver [192]. On the other hand,
autophagy is the main mechanism by which human islet amyloid polypeptide (hIAPP) is
degraded, a polypeptide whose accumulation in β cells produces cellular toxicity [193,194].
Recently, the use of autophagy inducers has been shown to improve the metabolic profile
of hIAPP-overexpressing mice, by reducing the accumulation of oligomers of IAPP [195].

Interestingly, the overexpression of hIAPP in pancreatic β cells disrupts lysosomal
membrane integrity and altered lysosome-dependent degradation [196]. In accordance
with this, the overexpression of hIAPP diminishes both the viability and survival of
pancreatic β cells both in vitro [197] and in patients with prediabetes or T2DM [198]. The
latter is important, since the accumulation of damaged mitochondria prevents the correct
intracellular Ca2+ traffic, altering insulin secretion in β cells or insulin signaling in target
tissues [199]. This is because the networks of interactions between the membranes of the
mitochondria and those of the ER, called mitochondria-associated ER membranes (MAMs),
are altered [200], where different proteins of the insulin signaling pathway have been
located as mTORC1 [201] and PTEN [202].

In recent years, different investigations have been analyzed the possible beneficial
effects that autophagy activation has on the development of T2DM in murine models.
Rapamycin administration, an inhibitor of the mTORC1 pathway, causes functional failure
in the islets [203]. While in insulin target tissues (muscle, liver, and adipose tissues), the
response to insulin improves, in β cells, an impairment in glucose tolerance has been
observed, by chronic activation of autophagy, inducing an increase in insulin granules
degradation [189,204]. On the other hand, it has been seen that the administration of an
inducer of autophagy through the AMPK-ULK1 pathway, improves both glucose tolerance
and insulin sensitivity in high fat diet (HFD)-fed mice [205].
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4. Endoplasmic Reticulum (ER) Stress

The ER is a membrane network localized in the endoplasm [206]. Nuclear ER presents
an outer, and an inner membrane with a lumen between them joined at the nuclear pores
involved in protein synthesis, maturation, and trafficking [207]. Once there, proteins are
folded by chaperones [208] and suffer from posttranslational modifications, such as gly-
cosylation or disulfide bond formation [209,210]. After maturation, only correctly folded
proteins are exported to Golgi apparatus, being the unfolded or misfolded proteins pro-
cessed by ER-associated degradation (ERAD) machinery [211], and finally degraded by the
proteasome [212]. Other important functions of the ER are the storage of calcium, regulated
by the sarco/endoplasmic reticulum calcium ATPase (SERCA) pump, among other compo-
nents [213], and the contribution to lipids biosynthesis like ceramides, phospholipids, or
cholesterol [214].

4.1. The ER Stress Response

ER stress is a condition where misfolded proteins cannot reach their native folding
state, due to an increase in the workload or an inefficient degradation through the ubiquitin-
proteasome system, and then aggregate in the ER lumen [215]. The mammalian ER stress
response has four mechanisms regulated by different pathways:

4.1.1. PERK Pathway

The protein kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK) is a type
I transmembrane protein that senses the accumulation of unfolded proteins in the ER
lumen [216]. When the UPR is activated, BiP protein releases from PERK, and PERK
response depends upon the changes in chaperone level, specifically GRP-78 [217]. Both
proteins associate in a complex that leads to PERK autophosphorylation, and then PERK
inactivates the eukaryotic initiation factor 2 α (EIF2α), essential for protein synthesis [218].
Attenuation of EIF2α also triggers the translation of ATF4, a transcription factor involved
in amino acid metabolism or the resistance to oxidative stress, essential for the stress
response [219].

4.1.2. IRE1 Pathway

IRE1 is a transmembrane protein with a dual activity. During ER stress, IRE1 is
activated and promotes the splicing and expression of X-box binding protein 1 (XBP1)
mRNA, increasing ERAD components, ER heat shock proteins, and lipid biosynthesis.
Later, due to its RNAse activity, IRE1 introduction into the ER lumen is reduced [220].

4.1.3. ATF6 Pathway

ATF6 is a type II transmembrane protein responsible for the sensing of unfolded
proteins. In response to the accumulation of unfolded proteins and the ER stress, BiP
dissociates from ATF6, and then it is transported to the Golgi apparatus, where it is cleaved
and the cytoplasmic portion obtained translocates into the nucleus. Thus, ATF6 activates
the transcription of ER chaperone genes [214,221].

4.1.4. Apoptosis-Inducing Pathways

If the previously mentioned pathways cannot suppress the toxic effect of ER stress, cell
death pathways are triggered; the most known are described below. C/EBP homologous
protein (CHOP) is a transcription factor induced by the activation of ATF4 and ATF6, which
leads to the expression of proapoptotic factors, such as ER oxidorreductin (ERO1) or growth
arrest and DNA damage 34 (GADD34) [222]. Meanwhile, IRE1 forms a complex with tumor
necrosis factor receptor-associated factor 2 (TRAF2) and apoptosis signal-regulating kinase
1 (ASK1), which phosphorylates JNK and triggers cell death. It is also known that caspases
apoptotic cascade is also involved in ER stress [223].
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4.2. ER Stress in Type 2 Diabetes Mellitus

During ER stress, the activation of the IRE1 pathway is essential for the synthesis
and maturation of insulin, but hyperactivated IRE1 results in β-cell death through the
initiation of JNK and caspases cascade [224,225]. The PERK-EIF2α-CHOP axis acts as
a switch between a correct function of pancreatic β-cell and its survival ability. The
inactivation of PERK has demonstrated a loss of insulin secretion and failure of the pan-
creas [218,226]. Meanwhile, ATF6 suppresses glucose formation via gluconeogenesis
through CREB-regulated transcription coactivator 2 (CRTC2) in the liver [227].

Interestingly, it has been demonstrated that MAMs are essential in regulating ER
stress and autophagy. Ca2+ flux into mitochondria through the MAM tethering complex
increases ROS generation, which further promotes Ca2+ flux to the matrix by oxidizing
the mitochondrial Ca2+ uniporter, resulting in an accumulation of redox species at the
mitochondria-ER interface [215]. Consequently, this environment triggers UPR machinery
and antioxidant mechanisms that contribute to the disruption of MAM in several tissues,
increasing insulin resistance [228]. The main regulators in the control of insulin secretion
by pancreatic β cells are depicted in Figure 2.
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Figure 2. Mechanisms involved in insulin and hIAPP cosecretion in pancreatic β-cell. The most
important physiological stimulus of insulin secretion is glucose. Glucose is transported inside the
cell thanks to GLUT2, entering the Krebs Cycle and glycolysis. These processes produced a higher
ATP/ADP rate that inhibits ATP-dependent K+ channels, depolarizing the membrane. Changes
in the potential of membrane open Ca2+ channels, introducing Ca2+ into the cell and promoting
the release of the insulin into blood flow after glucose intake. Not only this pathway releases this
hormone, but also an increment of AMPc via apetite’s hormones signaling and the activation of PKC,
due to the adrenergic response. What is more important is that amylin or hIAPP is cosecreted in
these insulin granules after its maturation in ER.

Moreover, the high amount of FFAs secreted, due to insulin resistance processes
in several tissues, activate all the mechanisms of the UPR and advanced glycation end
products (AGEs) also directly or indirectly induce an ER stress response [229].

5. Neurotransmitters

Neurotransmitters are a set of biomolecules of different nature synthesized inside
neurons that allow communication from one neuron to another, from a neuron to a muscle
cell, or from a neuron to a gland, also called neurotransmission or synaptic transmission.
Once the neurotransmitter is synthesized inside the neuron, it is stored in vesicles that are
released by exocytosis at the synaptic terminal. These neurotransmitters travel to the target
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cell, where they are recognized by membrane receptors, triggering two different types
of responses: Ion channel opening (altering the polarity of the membrane) or the release
of intracellular messengers. The signal ends when the neurotransmitter is degraded by
enzymes or reabsorbed by the presynaptic neuron [230].

5.1. GABA Alterations in DM2

γ-Aminobutyric acid (GABA) is an aminoacidic neurotransmitter that acts as an
inhibitor of the central nervous system in mammals [231]. High levels of GABA have been
found both in diabetic rats [232] and in patients with T2DM [233], in which they observed
less cognitive performance. The authors hypothesized that this effect of GABA could be
due to its role as a negative inhibitory function on dopamine release in the mesocortical
dopamine pathway, which partly projects to prefrontal cortex. In this regard, it has also
been observed that in patients with T2DM, there is a higher concentration of GABA
in the medial prefrontal cortex, which causes a decreased memory for face-occupation
associations [234], which highlights the negative effect that high concentrations of GABA
have on the brain of patients with T2DM. Despite this, the cause for which there is more
GABA in T2DM patients remains unclear, although it is thought that in part, it may be
because in these patients, there are alterations within the GABA–glutamate–glutamine
cycle [233]. However, more studies should be carried out to clarify this question.

5.2. Effects of Dopamine on Insulin Secretion

Dopamine is a neurotransmitter that is included in catecholamines, and unlike GABA,
it can send both activating and inhibitory signals depending on the type of cell receptor
they activate. Dopamine has been shown to have a regulatory effect on glucose-induced
insulin secretion in β cells through dopaminergic D2 receptors, whose deletion in mice
causes a decrease in pancreatic β cell mass, decreased β cell replication, impairment of
insulin response to glucose, high fasting glucose levels, and glucose intolerance [235].
Interestingly, at low concentrations, dopamine has an activating effect on insulin secretion,
while at high concentrations has inhibitory effects, which highlights the regulatory role
of this neurotransmitter in insulin secretion capacity [236]. Moreover, in the diabetic
situation, an increased turnover of dopamine to norepinephrine in the pancreatic islets
have been previously reported [237], being very important, since high concentrations of
norepinephrine have an inhibitory effect on the secretion of insulin in the β cells, preventing
the uptake of dopamine [238].

6. Human Amylin Misfolding and T2DM

As previously mentioned, the main player in T2DM development is the survival of
pancreatic β-cell, which mainly relies on the capacity to counteract the huge demand for
insulin secretion to maintain glucose homeostasis. But in this compensatory effect, there
is an ambiguous effect, due to pancreatic β-cells also increase production of amylin, a
hormone cosecreted with insulin. Amylin (or islet amyloid polypeptide, hIAPP) is a 37 aa
peptide mainly implicated in food intake regulation and short-term satiation, exerting its
action upon pancreatic β-cells and several brain areas [239]; recently, it has been described
to cooperate with leptin action, favoring neurogenesis [240] and participating on hedonic
control of eating [241]. It is secreted inside insulin granules, and its maturation and folding
process occurs within endoplasmic reticulum (ER), being this a critical step. First insights
unraveled hIAPP as the main component of islet amyloid extracellular deposits in response
to hyperglycemia [242], but there are described many mechanisms involved in hIAPP-
mediated intracellular toxicity in pancreatic β-cells, particularly those affecting the cellular
protein turnover.

6.1. hIAPP and ER Stress in Pancreatic β-Cells

The continuous hyperglycemia forces pancreatic β-cells to increase insulin production
until excessive rates for ER capacity. Both transient and chronic hyperglycemia (>16.7 mM
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glucose plasmatic levels) trigger in pancreatic β-cells ER stress, leading to failure in the
protein maturation process and consequently misfolded both insulin and hIAPP accu-
mulation in the ER lumen [218,243]. More precisely, misfolded pro-hIAPP and hIAPP
accumulation may trigger a sustained ER stress, and therefore, the associated apoptosis,
when this overload leads to an excessive activation of PERK, the consequent perinuclear ex-
pression and nuclear translocation of CHOP plus its inhibitory activity upon anti-apoptotic
Bcl-2, as well as an increased alternative-splicing of XBP1 [244–246]. hIAPP toxic effects
on pancreatic β-cells have been inhibited by chemical chaperones or other molecules via
ER stress alleviation [247–249]. It has also been described that not only hIAPP, but also
merely high glucose levels or palmitate might induce ER stress and mediate pancreatic
β-cell apoptosis, mainly by increasing ROS levels in ER, and therefore, compromising the
correct folding process, which feeds a dangerous vicious cycle [250]. Under these condi-
tions of accumulating misfolded hIAPP, increasing oxidative stress in ER environment,
and even hypothetic ER membrane damage by hIAPP toxic oligomers, there could be a
Ca2+ influx from ER to mitochondria, endangering mitochondrial integrity, due to indirect
ROS-mediated oxidative stress [251].

Autophagy as Defense Against hIAPP Aggregates

Autophagy, as previously described, is a vital process in cell survival, even though
more important when harmful elements (such as toxic protein oligomers) are present
in the cytoplasm. Therefore, autophagy is essential to maintain pancreatic β-cell home-
ostasis [190,252]. This process takes even more relevance regarding the toxicity of hIAPP
aggregates. Higher rates of LC3B-II and p62 accumulation in the cytoplasm of pancreatic
β-cells expressing hIAPP have been described specific p62 silencing by shRNA has shown
to increase caspase-3 cleavage exacerbating hIAPP toxicity [196]. In addition, Atg7 deficient
mice presented increased apoptosis and less β-survival [194]. Recent studies demonstrate
that overexpression of hIAPP in INS1E cells leads to an mTORC1 hyperactivation and
impaired autophagy [197]. Furthermore, there is an additional hypothesis about the ability
of misfolded proteins, such as α-synuclein or hIAPP, to damage lysosomal membranes,
disrupting the autophagy flux and triggering apoptosis [253]. Thus, evidence point to
the role of hIAPP oligomers in disrupting their own clearance by autophagy, enhancing
their toxic potential. It has been observed that autophagy-inducing compounds, such as
rapamycin and resveratrol, could modulate hIAPP aggregates level by autophagy activa-
tion [193,254]. A new detoxifying system has been described by our laboratory; it has been
proved that hIAPP aggregates could be included in MVB and be secreted by exosomes in
order to counteract pancreatic β-cells cytoplasmic hIAPP aggregates accumulation and cell
death [255].

6.2. hIAPP Damage on Mitochondria

Special regard should be made in terms of mitochondria. As it has been previously
described, mitochondrial homeostasis is vital in pancreatic β-cells, due to their energetic
requirements and the consequent mitochondrial abundance in this cell population. For
maintaining a healthy mitochondrial pool, continuous mitochondrial turnover should
function properly, so mitophagy and its molecular mechanisms are critical in the pancreatic
β-cell. The toxic properties of hIAPP, for example, in terms of membrane disruption by
its interaction with negative charges of membrane lipids, would mediate mitochondrial
dysfunction and apoptosis induction of these cells [256]. In addition, loss of mitochondrial
membrane potential (∆Ψm), ATP production and mitochondrial mass, and subsequent
caspases activation is detected in INS1-E cells exposed to hIAPP [257,258]. Mitochondrial
functionality also depends on a good balance between mitochondrial dynamics, fusion,
and fission, as has been explained before. The fission state of mitochondria leads them to
mitophagy, through specific protein machinery that labels damaged mitochondria to be
degraded by autophagy. It has been demonstrated that INS1E cells overexpressing hIAPP
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show in a basal situation fissioned mitochondria and a defective elimination by mitophagy,
accumulating dysfunctional mitochondria in the cytoplasm [197].

6.3. The Inflammatory Response to hIAPP Aggregates in T2DM

The immune system also has a role in the hIAPP-mediated pancreatic β-cell failure.
It has been described as a complex signaling network regulating the immune response
to hIAPP aggregates accumulation in pancreatic β-cell. The cytokine IL-1β is described
as the main mediator of inflammation upon pancreatic β-cells, and several studies have
described how the protein machinery needed for IL-1βmaturation and secretion, called
inflammasome, is activated in T2DM [259]. The inflammasome is composed of a nucleating
pattern recognition receptor (PRR), which is mostly the protein of the Nod-like receptor
family (NLR), NLRP3. In addition, an adaptor protein (the apoptosis-associated speck-
like protein containing a CARD, ASC) and caspase-1 activity are needed to complete the
inflammasome activation.

There are two necessary steps to finally activate IL-1β and induce inflammation; the
first one is known as priming, consisting in the production of enough mRNA levels of
NLRP3 and pro-IL-1β, and is triggered by the “signal 1”, composed by a heterogeneous
group of events known as danger-associated molecular patterns (DAMPs). In the case
of T2DM, this signal might be minimal-oxidized LDL (mmLDL), free fatty acids (FFAs),
reactive oxygen species (ROS), lysosomal dysfunction, or even altered cytoplasmatic ionic
flux by membrane disruption. It has been described as “signal 2”, which is necessary to
fully activate the inflammasome, misfolded proteins known as causative factors of most
important neurodegenerative diseases [260].

A lot of studies have been developed to unravel the role of hIAPP and islet amyloid
deposits in inflammasome activation and inflammation on T2DM. It has been demonstrated
that hIAPP aggregation triggers NLRP3-mediated inflammasome activation, caspase-1-
mediated IL-1β release, and macrophage and dendritic cells recruitment to islets both
in vivo, in hIAPP-transgenic mice islets [259,261–265] or human islets [266], and in vitro
models [267]. In addition, most of these publications indicate that not hIAPP fibrils,
but hIAPP oligomers are responsible for inflammasome activation, and even it has been
evidenced that hIAPP could activate NLRP3 in a ROS-independent manner, although this
molecular mechanism needs more research [268]. Interestingly, recent studies highlighted
hIAPP, and its receptors could mediate microglia inflammasome activation in Alzheimer’s
disease (AD) mice [269,270], and these receptors could even mediate neuroinflammation
mediated by amyloid β peptide (Aβ) in vitro [271].

Therefore, T2DM is a disease whose pathophysiological features affect many molecu-
lar aspects of metabolic pathways and inflammatory response. In association with obesity,
its non-stop growing incidence has encouraged many studies about not only new thera-
peutic strategies, but also to emphasize the potential influence of T2DM on other disease
development. A special mention is required to be made about neurodegeneration; more
than 34 million people around the world are affected by two of the most prevalent neu-
rodegenerative disorders, AD [272] and Parkinson’s disease (PD) [273]. From several years
ago, there are many studies pointing to epidemiological evidence of a higher risk of AD in
prediabetic or type 2 diabetic patients [274–277]. Thus, molecular and pathophysiological
links between both diseases are being researched to establish possible diagnostic and
therapeutic common strategies.

7. Molecular Pathophysiology of Alzheimer’s Disease

AD is considered the major cause of dementia worldwide, although it is more preva-
lent among western and developed countries [278]. It is typically classified into familial
AD (fAD) or sporadic AD (sAD), depending on the pathological etiology. fAD is associated
with the presence of some autosomal-dominant mutation in key genes, such as amyloid
β precursor protein (AβPP), the γ-secretase catalytic components presenilin-1 (PSEN1)
and presenilin-2 (PSEN2), or apolipoprotein E (apoE-ε4); this AD type only represents the
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~2% of cases [279]. In sAD, almost 98% of cases have a more complex etiology, combining
genetic predisposition, epigenetic events, and environmental factors. Most sAD patients
are elderly people with many other comorbidities that may cooperate with sAD events and
affect the course of the disease [280]. Among these comorbidities, obesity, cardiovascular
pathologies, such as stroke and T2DM, are thought to be the most prone to cooperate or
aggravate sAD development. Understanding the molecular pathways implicated in AD
and T2DM and how they could be related may establish more efficient diagnostic protocols
for type 2 diabetic patients and is unraveling new therapeutic targets to avoid neuronal
and pancreatic β-cell death.

AD Pathologic Characteristics: The Role of Amyloid β and tau

AD is characterized by cooperative key players in its course: Aβ neuronal plaques,
tau neurofibrillary tangles, and neuroinflammation [281]. The most known and prominent
feature of AD is the Aβ plaques derived from the alternative processing of amyloid
precursor protein (APP). APP is a transmembrane protein ubiquitously found in the central
nervous system (CNS); there are different species of Aβ according to the amino acid
(aa) composition, being the most abundant in the brain are the 40 and 42 aa (Aβ40 and
Aβ42) [282].

The APP protein is processed by two different and mutually excluding pathways: The
secretory pathway and the amyloidogenic pathway. The secretory pathway is begun by
C-secretase-mediated APP cleaving, being released a soluble N-terminal fragment (sAPPα)
and a C-terminal fragment (C83); the latter is then cleaved by γ-secretase to origin a smaller
C-terminal fragment (C3).

These secretase activities have been attributed to the ADAM (a disintegrin and met-
alloprotease family) proteins—more precisely, α-secretase activity seems to be related to
ADAM-7 and ADAM-10 [283]. The amyloidogenic pathway starts with the β-secretase
(also known as a β-site amyloid precursor protein (APP)-cleaving enzyme 1, BACE1)-
mediated cleavage of APP, releasing a smaller N-terminal fragment (sAPPβ) and a longer
C-terminal containing the full amyloidogenic aminoacidic sequence (C99). Next, cleavage
by γ-secretase will origin the amyloid β (Aβ) peptides.

These peptides are extremely amyloidogenic, and these monomers form rapidly
oligomers, prefibrillar aggregates, and finally, fibrils that will form β-amyloid plaques;
it has been demonstrated that Aβ42 is the most prone to aggregation, so it is the most
neurotoxic peptide [284]. Initially, extracellular Aβ amyloid plaques and Aβ fibrils were
thought to play the main role in the amyloid pathogenic pathway of AD, but recent
insights have highlighted Aβ oligomers as the most toxic species [285]. Aβ42 oligomers
trigger many deleterious effects on the neuronal environment, which cooperate to enhance
neurotoxicity and neuronal cell death.

Neurofibrillary tangles, the other hallmark of AD, are composed of hyperphosphory-
lated tau protein aggregates. Tau is a microtubule-assembly protein required to the correct
assembly of microtubule proteins and intracellular trafficking, being critical in neurons for
axonal activity maintenance. The toxic potential of tau protein is due to its phosphorylation
status: However, normal tau is a phosphoprotein and required to be phosphorylated to
exert its function.

In AD patients’ brains, tau is found to be hyperphosphorylated ~3-fold more than
normal brain’s tau. A complex balance between tau kinases and phosphatases is required to
maintain this delicate homeostasis, and some of these enzymes are being tested as potential
therapeutic targets. Phosphorylation sites of tau have been widely searched in this process
(more than 40 have been identified), being probably phosphorylated by the combined action
of proline-directed protein kinases (PDPKs) and non-PDPKs. GSK3β and CDK5 have been
pointed as the main kinases acting upon AD-tau phosphorylation sites, but there is evidence
of cooperation among several kinases to regulate tau phosphorylation. Both in vitro
and in vivo, prephosphorylation of tau by PKA promotes additional phosphorylation by
GSK3β; therefore, sustained activation of PKA could be relevant at the initial stages of AD.
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Regarding the other side of the balance, phosphatases that act upon tau might play an
important role in counteracting its hyperphosphorylation. Phosphoprotein phosphatase 2A
(PP2A) is one of the few phosphatases targeting tau protein with a wide tissue distribution
and high specificity in tau regulation. It has even been described that activation of GSK3β
inhibits PP2A activity and inhibition of PP2A activates GSK3β, highlighting the complex
environment of kinases and phosphatases involved in tau regulation. Hyperphosphory-
lation of tau drives to the formation of paired helical fragments (PHFs), which will form
the neurofibrillary tangles. In addition, AD-tau inhibits normal-tau binding to tubulin,
impairing its activity upon microtubules. PHFs have been shown to impede the trafficking
of neurotrophins, and therefore, impair axonal and dendritic transport. In addition, overex-
pression of tau has been demonstrated to affect morphology, cell growth, and especially,
transport of organelles mediated by microtubule-dependent motor proteins. Surprisingly,
there are studies showing that hyperphosphorylation of tau may protect neurons from
apoptosis, but the loss of function triggered by AD-tau creates a propitious situation for
other AD insults to drive to neuronal death [286].

8. The Relation Between T2DM and AD: A Molecular Approach
8.1. Brain Insulin Resistance and Its Impact on AD

Related to T2DM, brain insulin resistance also develops a crucial role in AD patho-
genesis. Insulin and insulin-like growth factor I and II (IGF-I, IGF-II) have an important
role in the brain, as these peptides and their receptor genes are widely expressed in neu-
rons and glia, including neurodegeneration-targeted structures [287]. Insulin is known
to regulate gene expression and trafficking of glucose-transporter 4 (GLUT4), critical for
brain glucose metabolism, and decreased levels of GLUT4 expression have been found in
postmortem AD patients’ brains [288]. Both insulin and IGF have been reported to mediate
neuron and glial growth, metabolism, survival, gene expression and protein synthesis,
neurotransmitter network, and synaptic functionality [289].

Clinical studies have shown a link between brain lower insulin receptor levels and
IGF-I signaling deficiency [288,290,291]. In addition, more precise data have unraveled
molecular mechanisms whereby insulin might influence Aβ aggregates managing; its
action may favor insulin-degrading enzyme (IDE) and ADAM-10, and decrease BACE1,
GSK3β, and APP gene expression, promoting Aβ extracellular release [292]. It has also been
proved that insulin deficiency triggers Aβ42 and amyloid plaques accumulation, increased
tau phosphorylation and neurofibrillary tangles formation and spatial memory impair-
ment [293], and even Aβ inhibits insulin-mediated JNK/TNF-α signaling by promoting
IRS-1 phosphorylation and impairing insulin signaling [294], thus feeding a vicious cycle.
Furthermore, defects on IDE, due to mutations in its gene, drive to decreased enzymatic
clearance of insulin and Aβ, and consequent hyperinsulinemia and Aβ accumulation [295].
Interestingly, proteotoxic accumulation of Aβ aggregates have been shown to interfere
with neuronal insulin signaling cascade by competition with insulin, and even modify
sensibility and surface expression of IR [296,297].

Insulin resistance has also been related to the tau pathology of AD. There are many
preclinical studies relating not only T2DM, but also type 1 diabetes with increased tau
phosphorylation [298–300], and increased levels of tau have been found in CSF of type 2
diabetic patients compared with normal patients [301]. The role of insulin and IGF-I action
upon tau mediated by GSK3β activity has shown to be preferential, since several years
ago [302]. In addition, impaired insulin signaling results in PI3K-Akt and Wnt-β-catenin
pathway decreased activity, and activation of GSK3β, thus promoting tau phosphoryla-
tion [298,303]. The defective insulin signaling also affects other kinases that may contribute
to tau hyperphosphorylation, such as p38 and JNK, probably together with an impaired
PP2A activity [304]; ERK 1/2, another kinase of the insulin signaling pathway, has also been
related to tau phosphorylation under oxidative stress conditions [305]. In conclusion, there
are hallmarks relative to T2DM systemic insulin resistance and brain insulin resistance
characterizing AD’s onset and progression, which point to possible shared pathologic
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mechanisms. Both molecular mechanisms of insulin resistance and their consequences are
summarized in Figure 3.
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8.2. Hyperglycemia and Its Consequences on AD Pathologic Development

In addition to insulin and IGF-I signaling impairment, the hyperglycemic status of
type 2 diabetic patients might mediate specific effects on AD pathogenesis. Hyperglycemia
affects neuronal homeostasis: It has been reported that repeated transient hyperglycemic
episodes, such as it happens in prediabetic or type 2 diabetic patients, could affect KATP
channels, altering neuronal metabolism and increasing Aβ levels [306]. In addition, aging
and dysregulated glucose metabolism drives the uncontrolled and non-enzymatic reactions
between sugars and lipids, free amino groups of proteins and nucleic acids, giving, as a
result, advanced glycation end-product (AGEs).

AGEs are more abundant in AD patients with diabetes than in non-diabetic AD
patients, and they have been proved to impair Aβ42 normal clearance and favor Aβ and
tau glycation, which promote amyloid plaques and neurofibrillary tangles formation [307].
Specifically, glyceraldehyde-AGEs (glycer-AGEs), which have been shown to be the most
extended AGEs, are increased in diabetic patient’s serum and have enhanced toxicity on
neurons [308]. There is evidence showing that AGEs specific receptors (RAGEs), which
are found in neurons, microglia, astrocytes, and vascular endothelial cells, interacts not
only with AGEs, but also with Aβ and mediate inflammatory effects [309]; it is even
described that RAGEs could mediate Aβ transport through blood brain barrier (BBB) or
enhance expression of BACE1, thus promoting Aβ formation [310]. It has been proved
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that AGEs could induce tau hyperphosphorylation through RAGEs-GSK3β signaling
activation [311], and direct AGEs injection in mice brain displayed AD pathological features,
such as decreased memory and increased tau phosphorylation, APP expression, and Aβ42
formation [312,313].

8.3. The Impact of ER Stress in AD

As in T2DM, ER homeostasis is also a critical point in neurodegenerative disorders,
such as AD. The most known role of ER stress in neurodegenerative disorders is related to
proteostasis of protein aggregates featuring AS, PD, or HD, but there is growing evidence
for the implication of ER stress in other neurological pathologies [314]. As it has been
mentioned, ER response to stress is through activating the coordinated pathways of the
unfolded protein response (UPR).

In contrast to T2DM, ER stress is not a direct cause of the pathological cascade of
events characterizing AD, but an important contributor to its development and aggrava-
tion [315]. Apart from its activation upon damaging events of AD (Aβ, p-tau), some UPR
effector proteins have been shown to develop an important role in synaptic plasticity and
maintenance of cognitive function. Contrary to what happens in T2DM, Aβ42 and p-tau
seem to be the major contributors to ER stress. Neuronal cells exposed to Aβ42 have shown
a dramatic ER Ca2+ deregulation and a consequent ER protein misfolding [316], maybe
due to the interaction of Aβ neuronal N-methyl-D-aspartate receptors (NMDARs) [317];
even in some fAD cases, there is evidence for Aβ42 accumulation within ER, triggering
the activation of UPR [318]. Aβ could even bypass ER-mediated UPR rescue by inhibit-
ing proteasome, thus inducing chronic ER stress-mediated apoptosis in cooperation with
JNK activation [319]. Generally, Aβ peptide direct administration or genetic expression
drives to increased levels of eIF2α phosphorylation, Bip, CHOP, GADD34, and cleaved-
caspase 12 genetic expression [320]. PERK, one of the UPR early effectors, could induce
BACE1 accumulation through its protein synthesis inhibitory effect; mRNA of BACE1
contains some upstream open reading frames that trigger its higher translation upon eIF2α
phosphorylation [321].

More precise experiments have been conducted, and they have shown that Aβ
oligomers injected directly in hippocampus trigger-specific PERK activation, induce ATF4
expression in axon and CHOP-mediated neuronal apoptosis [322]. To confirm its role in
AD progression, lack of PERK and diminished eIF2 phosphorylation reduced Aβ levels
and impedes defects in memory [323]. The downstream effector of UPR, XBP1s, also has a
complex role in AD. Its function affects relevant genes in APP processing, such as PS1 and
PS2, APP trafficking mediators, or ADAM-10 [324,325]; there is also evidence that the role
of XBP1s in posttranslational modifications of BACE1 [326].

In addition, decreased levels of the E3 ubiquitin ligase HRD1 are found in AD, being
this key enzyme expression regulated by XBP1s [327]; HRD1 not only has a role in managing
ubiquitinated proteins for its degradation (such as Aβ), but also could target BACE1 or
intervene in APP expression [326,327]. Altogether, this evidence highlights the importance
of the UPR mediator XBP1s in the Aβ pathway of AD. In terms of tau phosphorylation and
neurofibrillary tangles formation, ER stress also seems to have a contributing role. There
has been found a correlation between Bip overexpression and increased activity of GSK3β
and high levels of phosphorylated tau, pointing to possible regulation of GSK3β activity
through Bip under ER stress conditions [328]. PERK activation and consequent eIF2α
phosphorylation in the hippocampus region has been found to colocalize with aberrant tau
phosphorylation [329]. The main player of the other branch of UPR, IRE1α, has also been
related to p-tau and GSK3β stimulation; phosphorylated IRE1α is found in AD’s patients’
brain, and diminished of IRE1α activity displayed abolition of GSK3β activation, so IRE1α
seems to be an essential pathway for its activity [330,331]. XBP1s is also a target key gene
in tau homeostasis, such as tau kinase Cdk5 or the above-mentioned HRD1, which can tag
p-tau to be degraded by the proteasome [324,332].
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8.4. The Relevant Role of Mitochondria on AD Progression

As it happens in T2DM, mitochondria are a basic pillar in neuronal homeostasis and
a priority target in AD. The high energy expenditure displayed by neurons, in addition
to their weakness in facing oxidative stress, point to mitochondria as one of the most
vulnerable organelles in neurons: The oxidative phosphorylation (OxPhos), carried by
electron transport chain (ETC) protein complexes, is the major source of ROS.

Mitochondrial dysfunction and the consequent alteration in its bioenergetic role are
some of the earlier and most important characteristics in AD progression, even before
Aβ or p-tau. Disruption of glycolytic processes, impairment of ETC enzymatic reactions,
increased ROS and defective antioxidant mechanisms are a common hallmark between AD
patients; in fact, defects in glucose metabolism are used as a predictive marker to foresee the
progression of the disease [333,334]. Apart from its role in metabolism and ROS production,
Ca2+ homeostasis exerted by mitochondria together with ER becomes critical in terms of
neurons, and dysregulation of this intracellular ionic balance has severe consequences not
only in cell homeostasis, but also in synaptic mechanisms of neurotransmission [335,336].

It seems that mitochondrial dysfunction occurs before Aβ aggregates, but then this
aggregation will cooperate in mitochondrial failure. Mitochondrial translocase of the outer
membrane (TOMM) and the previously mentioned RAGEs have been shown to mediate
incorporation and aggregation of Aβ in mitochondria; RAGE knockout mice neurons
displayed a protective effect from Aβ by diminished uptake [337,338]. In addition, Aβ
could also disrupt the function of ETC, through its binding to the heme groups found
in complex IV that cooperate as redox centers in OxPhos, thus compromising ATP pro-
duction [339]. Even APP has been demonstrated to affect mitochondrial protein import
machinery, complexing both translocase inner mitochondrial membrane 23 (TIMM23) and
TOMM40 and interrupting cytochrome c function [340,341]. The mitochondrial perme-
ability transition allows ion diffusion from matrix to cytoplasm, and plays an important
role in cytochrome c release and apoptotic factors; a key component of the mitochondrial
permeability transition pore (mPTP), Cyclophilin D (CypD), increase its translocation to
the inner membrane by Aβ action, triggering mPTP opening, increasing ROS production
and affecting mitochondrial calcium buffering capacity [342,343].

These events could feed a vicious cycle, due to the evidence pointing to aberrant
processing of APP and hyperphosphorylation of tau promoted by mitochondrial defective
activity [344,345]. Hyperphosphorylated forms of tau have also been described as harmful
elements for mitochondrial homeostasis. P-tau has shown to affect directly ETC complex
I, therefore triggering increased ROS production, lipid peroxidation, and decreasing the
antioxidant activity of enzymes, such as superoxide dismutase (SOD) [346]. An association
between p-tau and VDAC mitochondrial pore protein is also reported, impairing its func-
tion by blocking it [347]. This evidence points to a bidirectional disrupting relation between
tau and mitochondria in AD. However, not only is mitochondrial functionality compro-
mised in AD, but also mitochondrial dynamics and their recycling through mitophagy
is impaired.

Insights from several studies revealed that excessive mitochondrial fission status over
fusion in AD’s patients’ brains; it has been demonstrated that Aβ could interact with
the fission protein DRP1, promoting the increased free radical production that hyperac-
tivates DRP1 and Fis1-mediated mitochondria fragmentation, and consequently, failed
mitochondrial location to synapses, decreased ATP synaptic production and overall synap-
tic dysfunction [348]. In the same direction, an interaction between p-tau and DRP1 has
been described, enhancing excessive fission [349].

To complete the failure of mitochondrial homeostasis, there is also evidence of defec-
tive mitochondrial biogenesis: Both in AD’s patients’ brain, AD cellular models, and APP
and tau mice models of AD, reduced levels of mRNA encoding critical players in mito-
chondrial biogenesis (such as PGC1α, Nrf-1, Nrf-2, and TFAM) have been found [350–352].
Increased mitochondrial fission is also thought to be promoted by AGEs, maybe through
increased expression of DRP1 and Fis1, as well as downregulate fusion proteins expres-
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sions, such as Mfn1, Mfn2, and Opa1. Regarding mitophagy management in AD, all the
above-mentioned events may drive long-term fissioned mitochondria to elimination, so it
is clear the importance of the correct development of mitochondrial recycling; however,
dysfunctional mitophagy is another common feature found in AD progression. It has
been observed that Parkin-mediated mitophagy is more induced by Aβ aggregates and
aberrant tau than the non-canonical mitophagy pathway [353]. There is evidence that
Parkin is absent in AD neurons cytosol, thus promoting an abnormal accumulation of
PINK1 in the outer mitochondrial membrane (OMM) and the accumulation of defective
mitochondria [354].

Some studies hypothesize that Parkin is aberrantly recruited to mitochondria in asso-
ciation with the ubiquitin-C-terminal hydrolase L1 (UCHL-1) and truncated tau protein,
leading to an excessive mitophagy that compromises synaptic functionality [355]; other in-
sights point to the fact that Parkin is sequestered by pathologic tau in the cytosol, impeding
its recruitment to OMM and compromising correct mitochondrial elimination [356]. Lyso-
some’s disruption observed in AD could also provoke defective mitochondria accumulation
in axons, damaging synaptic processes by interrupting Ca2+ correct influx [357].

8.5. mTOR Hyperactivation and AD

mTOR develops a critical function in neuronal metabolism and is also a widely
studied target in AD. The main function regulated by mTOR to integrate signals for
cellular growth and proliferation, so it becomes even more relevant in terms of neurons.
mTOR plays its main role in neurogenesis through enhancing expression of brain-derived
neurotrophic factor (BDNF), and it has shown to be a key regulator of neuronal functionality,
as the principal mediator of axonal and dendritic growing and regeneration not only
during development, but also in the mature nervous system [358]; through different
signaling encoding, mTOR is capable of counteracting axonal damage both in the central
nervous system (CNS) as in peripheral nervous system (PNS) [359]. Memory consolidation,
memory recall, and synaptic plasticity have demonstrated to be necessarily mediated by
mTOR [360,361]. As is seen in T2DM, mTOR hyperactivation is a pathological situation
that may aggravate or facilitate neurological pathologies [362,363] and neurodegenerative
disorders, such as AD [364,365].

As previously discussed, insulin resistance is a common hallmark of T2DM and AD,
and it is mainly driven by the PI3K/Akt/mTOR signaling pathway [366]; more precisely,
neuronal insulin resistance driven mTOR hyperactivity inhibits IRS1 activity by negative
feedback. It is a consensus that brain insulin resistance in AD is promoted by a chronic
mTOR signaling pathway hyperactivity, pointing to this metabolism master regulator as
a critical target for therapeutic research. There are many studies about mTOR implica-
tion in AD that test its role by the most known inhibitor, rapamycin. Rapamycin has
been shown to mitigate mTOR hyperactivity, even in a diet-induced insulin resistance
scenario [365,367,368]; furthermore, the induction of insulin resistance and mTOR hyperac-
tivation exacerbate cognitive decline and AD pathogenesis [369].

Interestingly, this event is shared by T2DM, and it may be one of the theoretic links be-
tween both pathologies [298,370]. It has been demonstrated that insulin negative regulates
Aβ deposition and tau phosphorylation, so mTOR hyperactivation and consequent insulin
signaling disruption increase the impact of these events [371]. In addition, Aβ has been
shown to decrease not only the expression of neuronal insulin receptors [372], but also
IRS1 phosphorylation on Ser307 [373], thus breaking the linkage between IRS1 and IR. IRS1
phosphorylation status has also been reported to be altered by p-tau [374]. mTOR has also
been shown to partially mediate neuroinflammation in AD. All the impaired metabolism
via mTOR-mediated insulin and IGF-I resistance trigger not only oxidative stress, but also
inflammatory response in neuronal environment. Several models have demonstrated that
mTOR could regulate neuroinflammation, and mTOR chronic hyperactivation is linked to
systemic inflammation [375,376]; however, most of the studies relating mTOR to inflam-
mation have been conducted in acute neuroinflammation models. It has been proved that
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mTOR inhibition could decrease the expression of proinflammatory cytokines TNF-α, IL-
1β, and IL-6, and reduced caspase-3 activation, after brain hemorrhage [377]. mTOR action
upon inflammation is not only limited to neurons: mTOR inhibition drives to reduced mi-
croglial response to cytokines and influence macrophage by preventing M1-inflammatory
polarization and promoting anti-inflammatory M2 type [378,379]. Neuroinflammation has
been linked with neuronal insulin resistance, due to the TNFα-JNK pathway-mediated
IRS1 inhibition. Both hallmarks of AD, Aβ and misfolded tau, have been shown to activate
TNF-α [380].

Altogether, these results show the central role of mTOR in the crosstalk between
brain insulin resistance, neuroinflammation, and AD progression. In addition, mTOR
also develops a crucial function in synaptic plasticity. Synaptic plasticity is the ability of
synapses to strengthen or weaken in response to an increase or decrease in their activity.
Enhancing the number of neurotransmitters released or their postsynaptic receptor expres-
sion are the main actions aimed at adapting the cells’ response to neurotransmission; the
two different processes playing that role are long-term potentiation (LTP) and long-term
depression (LTD).

Both processes need high rates of protein expression, which are thought to be mediated
by mTOR downstream effectors 4EBP and p70S6K [360,381]. NMDA receptor and BDNF up-
regulate mTOR signaling in a critical way for LTP control and stimulation [382,383]. mTOR
has also shown important for metabotropic glutamate receptor (mGluR) in the context of
synaptic plasticity: mGluR-mediated LTD is associated with increased phosphorylation
of p70S6K and S6 [384]. TSC1/TSC2 complex, an mTOR key regulator, also seems to be
essential in the hippocampus for synaptic plasticity [385]. In addition, there has been found
Aβ injection impaired synaptic plasticity in association with mTOR signaling, confirming
the mediating role of this protein complex in Aβ-mediated synaptic dysfunction [381].
Another neurotransmitter homeostasis is also altered in AD pathogenesis: Aβ has shown
to conduct dysfunction and loss of GABAergic inhibitory interneurons [386,387], although
more studies are needed to unravel the molecular mechanisms underlying this alteration.

8.6. Relevance of Autophagy in AD Neuronal Homeostasis

Autophagy, which is under mTOR regulation, has been considered as one of the most
important cellular processes in AD, as well as a promising target in therapeutic strategies.
Autophagy impairment has been demonstrated to be a common hallmark of neurode-
generative disorders (AD, PD, HD, or ALS) characterized by cytoplasmic, extracellular,
or nuclear inclusions and protein aggregates accumulation [388]. The impaired balance
between autophagosome formation and autophagic flux clearance is typically found in
AD, both for autophagosomes accumulation [389] or even excessive autophagic flux [390].
Reduction of beclin-1, an autophagy effector, in an AD mice model has resulted in Aβ
accumulation, neuronal abnormalities, and apoptosis [391]; this supports the finding of
reduced beclin-1 mRNA levels in AD patients’ cortex. Accumulation of Aβ and cognitive
defects were reversed by the use of rapamycin to stimulate autophagy [392].

In addition, in AD has been observed an accumulation of autophagic intermediates
and failed autophagosome maturation, thus impairing Aβ clearance [393]. The formation of
amyloid plaques by extracellular Aβ is also influenced by autophagy [394]. Tau pathologic
phosphorylation and accumulation could also be counteracted by autophagy. There are
studies affirming that rapamycin could revert aberrant tau phosphorylation and prevent
neurofibrillary tangles formation [365,395]; several insights strengthen the hypothesis
about p-tau clearance by autophagy induction [396,397]. Deficiencies in the lysosome
degrading role are also associated with Aβ and tau impaired clearance and pathological
accumulation, since its fusion with autophagosome and proteolysis action is the final step
of the autophagy degrading system [398]. Dysfunctional endosomal-lysosomal trafficking
impedes this fusion and provokes autophagosomes accumulation upon AD’s patients’
brain [389,399].
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Genetic studies have shown that presenilin-1 mutations, due to their role in lysosome
acidification and activation of the lysosomal cathepsin protease, trigger defective lysosomal
turnover of Aβ [400]. In summary, all of these results evidence that autophagy is a critical
process for maintaining neuronal cytoplasmic homeostasis, supported by many studies
using other autophagy enhancers for improving neuronal clearance in AD models [401,402].
Among these compounds, resveratrol has been widely used for AD damage treatment
and may be a future therapeutic candidate [403–405]. Melatonin, a pineal hormone that
regulates body response to circadian rhythms, has also recently been shown to activate
autophagy, and therefore, to play a protective role in neurodegenerative disorders [406].
This autophagic impairment could result in aberrant proteins managing by other recycling
systems, such as the MVB-exosome pathway. Exosomes, as it happens in T2M, are also
a rising field of study in AD. Much evidence points to exosome-mediated clearance of
Aβ aggregates and p-tau; however, as an opposite way as it happens in pancreatic β-
cells, it seems that exosome detoxification of harmful proteins in AD contributes to the
pathological spreading of the disease, as it is proved that exosome secretion inhibition
leads to improving brain degeneration [407–410].

8.7. Inflammation as a Harmful Fuel in AD

As relevant as it is on T2DM pathogenesis, neuroinflammation might play one of the
most determinant roles in AD progression and prognosis. In the case of neuroinflammation,
the innate immunity mediators in the brain are astrocytes and microglia. A lot of evidence
from postmortem brains of AD’s patients show many inflammatory cytokines, chemokines,
and prostaglandins levels increased [411,412]. It seems that astrocytes and microglia are
both able to express PRRs that allows them to initiate an inflammasome signaling cascade
to ultimately activate IL-1β release through caspase-1 activation. In a healthy brain, low
levels of IL-1β are found, probably due to the powerful inflammatory reaction that it can
trigger; however, high levels of IL-1β are usually measured in AD patients’ brains [413].

Several years ago, it was first described NLRP3-mediated inflammasome activation,
as well as IL-1β maturation and secretion, in AD by Aβ. Increased extracellular Aβ
phagocyted by microglia may cause lysosomal disruption and cathepsin B release to the
cytoplasm, triggering the inflammasome activation [414]. Further studies in AD mice
models have confirmed the role of Aβ upon inflammasome signaling cascade initiation, as
the NLRP3 genetic inhibition has demonstrated to protect from Aβ deposition and memory
impairment, in addition, to establish Aβ duality as cause or consequence of inflammasome
activation [415]. Furthermore, amyloid plaques have been reported to be able to secrete
neurotoxic factors and recruit microglia, which in response secrete cytokines amplifying
the inflammatory response throughout surrounding tissues [416]. All these effects have
been shown to lead microglia to adopt a chronic M1 proinflammatory phenotype, which in
turn promotes the Aβ deposition and memory impairment. In contrast, microglia-specific
NLRP3 inhibition leads to an M2 anti-inflammatory phenotype, lower Aβ extracellular
accumulation, and improved synaptic function [416,417]. In addition, elevated levels of
IL-1β are able to induce tau hyperphosphorylation, affecting synaptic plasticity by LTP
inhibition [418,419].

In summary, AD has shown to be a complex multifactorial disease, with critical events
that might cooperate in the early onset of the disease and worsen its progression. It is not
clear the molecular mechanisms that begin neuronal homeostasis disruption and trigger
the pathological cascade characterized by amyloid β and aberrant tau deposition, and
exacerbated neuroinflammation. The hypothesis of AD as a metabolic disorder is strongly
growing, supported on neuronal glucose metabolism disruption impact and brain insulin
resistance influence observed in the development of the disease [371].

9. The Crosstalk Between T2DM and AD: The “Type 3 Diabetes Mellitus”

The strong correlation between T2DM and AD, reflected as two to five times increased
T2DM patient’s probability of developing AD [277,420], is also strengthening this theory,
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establishing common links between both pathologies and pointing to critical processes by
which the diseases may influence each other [421]. As it has been explained, T2DM insulin
resistance is a growing event from the prediabetic status that compromises pancreatic
buffering activity upon hyperglycemia, and this insulin resistance is also extended to
peripheral tissues, such as the brain.

The severe impact of brain insulin resistance not only on neuronal glucose metabolism
(critical for their functionality), but also on the Aβ and tau pathological evolution highlights
how “invasive” and relevant T2DM course could be upon cognitive impairment and AD
onset. The uncontrolled hyperglycemia sustained during T2DM is also a participant in
this cooperative development, since this abnormal status triggers AGEs extended forma-
tion, which helps to aggravate aberrant protein pathology and neuroinflammation of AD.
Furthermore, the extended oxidative stress provoked by hyperglycemia has a especially
damaging impact on the compromised neuronal homeostasis, thus deepening in the cell
failure. If these injuries were not enough, the above-mentioned effects have catastrophic
consequences on mitochondrial function, disrupting its metabolic function, exacerbating
ROS production, and unbalancing Ca2+ delicate homeostasis, which in turn not only af-
fects intracellular milieu, but also strongly compromises synaptic functionality. Effects
of Aβ and tau upon mitochondrial dynamics and mitophagy complete this disastrous
vicious cycle.

The common feature of mTOR hyperactivation in both diseases related to insulin
resistance is another likely candidate for being a molecular link between these pathologies,
causing in pancreatic β-cells and neurons not only dysregulation of insulin IRS-IR signaling
pathway, but also intracellular quality control mediated by autophagy [145,370,422]. In
addition to all these shared events among T2DM and AD, there is consensus about a
pathologic link between both diseases: The well-known amyloidogenic potential of hIAPP
upon pancreatic β-cells and its relevant influence on AD pathophysiology. Since many
years ago, hIAPP has focused the attention of researchers, due to its emerging role on
T2DM pathogenesis [423,424], and the similarities of its aggregation kinetics compared with
neurodegenerative-causing proteins, such as Aβ or even α-synuclein, fed a wide group
of hypotheses about the interaction among these peptides [423]. Recent evidence relates
hIAPP with cognitive decline [425], and it has been found in the brain and cerebrospinal
fluid of both T2DM and AD patients [426]. But the strongest evidence about hIAPP role in
AD is the crossseeding with Aβ. It has been demonstrated that hIAPP is able to assemble
with Aβ in vitro, being aromatic residues of the hIAPP the thought amyloidogenic core;
both peptides do colocalize on brain amyloid deposits [426–428]. Derived from these
results, hIAPP mimics are being investigated as Aβ anti-aggregative strategies [429]. In
addition, there are studies affirming that peripheral-produced hIAPP could bind to its
receptors on BBB’s endothelial cells, enhancing lipoprotein receptor-related protein-1
(LRP1) translocation and promote brain Aβ transport into the bloodstream [270]; this could
trigger insulin signaling impairment by Aβ upon most insulin-sensitive tissues [430].

Even the cooligomerized hIAPP-Aβ complexes exhibit 3-fold more toxicity compared
with single aggregates, not only in neurons, but also in pancreatic β-cells [430,431]. There is
recent evidence that points to a bi-directional effect, since there has been observed cytoplas-
mic Aβ and tau inclusions within pancreatic β-cells in AD, but not T2DM patients [432].
Furthermore, ongoing hyperamylinemia in T2DM has been shown to mediate neurotoxic
effects through its receptor, AMYR, by interacting with the non-selective cation channel
TRPV4 and triggering uncontrolled Ca2+ influx [433,434]; it is thought that Aβmay also
have the same effect, but this is still unraveled. The recent study published by our labo-
ratory [256] opens a new hypothesis about crosstalk between pancreatic β-cells and AD
development via exosome transport of hIAPP aggregates towards brain structures, such as
hippocampus, although more research is needed to clarify this possibility upon T2DM mice
models or human samples. In addition to the cooperative self-aggregation with Aβ, hIAPP
may exacerbate other AD hallmarks aggravating its prognosis: hIAPP aggregates could
increase ER stress (as it has been proved in pancreatic β-cells) already existing in neurons,



Cells 2021, 10, 1236 24 of 42

compromising Ca2+ homeostasis and UPR, and inducing ER stress-mediated apoptosis.
The hIAPP damage upon mitochondrial homeostasis would exacerbate neuron-local ROS
production, contribute to Ca2+ imbalance and decrease oxidative phosphorylation and ATP
production; even mitochondrial dynamics and mitophagy impairment could be caused
upon already damaged AD-mitochondria. Likely, the possibility of inflammatory response
exacerbation mediated by exogenous hIAPP aggregates in the neuronal environment is
one of the most worrying links between T2DM and AD, because of the common inflam-
masome activation occurring in both disorders. The molecular hallmarks involved in the
dysfunction of either pancreatic β cells in T2DM (Figure 4) or neurons in AD (Figure 5)
are shown.
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Figure 4. Hallmarks of pancreatic β cell failure in T2DM. Insulin secretory burden drives ER stress and misfolding of
hIAPP. ER stress induces UPR activation in order to counteract protein aggregation, but chronic UPR activation leads
pancreatic β-cell to apoptosis. ER stress could also promote Ca2+ unbalance among ER-mitochondria, increasing ROS and
oxidative stress. Autophagy is also activated by UPR for hIAPP aggregates elimination, and its failure could promote
hIAPP accumulation and detoxification via MVB-exosome secretion; pancreatic β-cell mTOR hyperactivation (due to insulin
resistance or hIAPP) in turn also impaired autophagy flux. In addition, hyperglycemia and hIAPP direct interaction are
thought to inhibit proteasome aggregates clearance. hIAPP mitochondrial damage could increase ROS production, oxidative
stress, and accumulation of fissioned mitochondria. Hyperglycemia causes the formation of aberrant glycated molecules,
the advanced glycation-end (AGEs), which increase oxidative stress. hIAPP aggregates could also induce NLRP3-induced
inflammasome activation, IL-1β release, and macrophage recruitment.



Cells 2021, 10, 1236 25 of 42
Cells 2021, 10, x FOR PEER REVIEW 26 of 44 
 

 

 
Figure 5. Hallmarks of neuron failure in AD. Neuronal alternative processing of APP through β-
secretase (BACE1) origins intracellular Aβ40-42 aggregates that will origin extracellular amyloid 
plaques. In parallel, microtubule-associated protein tau protein aberrant phosphorylation drives to 
cytoplasmic neurofibrillary tangles formation. Brain insulin resistance reduces GLUT4 glucose 
transporter activity and decreases insulin-degrading enzyme activity (IDE); Aβ aggregates impaired 
insulin and IGF-I signaling cascade. Insulin resistance results in GSK3β activation and tau hyper-
phosphorylation. The hyperglycaemic status also induces AGEs which are known to impair Aβ 
clearance and promote GSK3β-mediated tau phosphorylation. Both proteins can induce ER stress, 
chronic UPR activation, and neuronal apoptosis. Aβ and p-tau are known to disrupt the mitochon-
drial respiratory chain, increase ROS, alter Ca2+ balance and lead mitochondria to an irreversible 
fission status; furthermore, Parkin-mediated mitophagy is impaired in AD by Aβ and p-tau. As it 
happens in T2DM, insulin resistance-mediated mTOR hyperactivation affects insulin signaling, im-
pairs neurogenesis and synaptic plasticity, and impede correct autophagy-mediated Aβ and p-tau 
degradation; both peptides could also affect the lysosomal function and compromise autophago-
somes clearance. Aβ aggregates and p-tau tangles are known to trigger NLRP3-mediated inflam-
masome activation, thus releasing IL-1β and other cytokines, and inducing proinflammatory micro-
glia recruitment. And if that were not enough, hIAPP could aggravate all these events, even worsen 
the situation by the generation of crossseeding heterocomplexes of Aβ-hIAPP aggregates. 

10. Conclusions and Future Directions 
In this review, we have analyzed the main signaling pathways, which connect, T2DM 

and AD at the molecular level. These mechanisms include insulin resistance, generated in 
part by the chronic low-grade inflammation during the progression of T2DM by different 
possible mechanisms (pro-inflammatory cytokines and hIAPP, among others). In addi-
tion, oxidative stress is produced by the generation of AGEs and by mitochondrial dys-
function. Then, mTOR contributes to insulin resistance, inducing ER stress as well. The 
accumulation of fissioned mitochondria is a consequence of altering mitochondrial dy-
namics with the concomitant activation of oxidative stress. 

The accumulation of amylin aggregates disrupting the main mechanisms of cell pro-
teostasis, such as ubiquitin-proteasome system and autophagy, and the potentiation of 
the activation of mTOR, generating a vicious cycle of insulin resistance and autophagy 
inhibition, in a scenario with an accumulation of altered and dysfunctional mitochondria. 
All of these mechanisms are contributing to pancreatic β cell failure and hence, to the ap-
pearance of multiple alterations in multiple tissues, including the brain. As a new mecha-
nism, we have uncovered that when all these events occur in pancreatic β cells, alternative 
mechanisms are activated to eliminate amylin aggregates by non-canonical pathways, 
such as exosome production. 

Our lab has demonstrated that, using an in vitro approach, pancreatic β cells can 
generate exosomes-bearing amylin aggregates, contributing to detoxify β cells from the 

Figure 5. Hallmarks of neuron failure in AD. Neuronal alternative processing of APP through β-secretase (BACE1) origins
intracellular Aβ40-42 aggregates that will origin extracellular amyloid plaques. In parallel, microtubule-associated protein
tau protein aberrant phosphorylation drives to cytoplasmic neurofibrillary tangles formation. Brain insulin resistance
reduces GLUT4 glucose transporter activity and decreases insulin-degrading enzyme activity (IDE); Aβ aggregates impaired
insulin and IGF-I signaling cascade. Insulin resistance results in GSK3β activation and tau hyperphosphorylation. The
hyperglycaemic status also induces AGEs which are known to impair Aβ clearance and promote GSK3β-mediated tau
phosphorylation. Both proteins can induce ER stress, chronic UPR activation, and neuronal apoptosis. Aβ and p-tau
are known to disrupt the mitochondrial respiratory chain, increase ROS, alter Ca2+ balance and lead mitochondria to an
irreversible fission status; furthermore, Parkin-mediated mitophagy is impaired in AD by Aβ and p-tau. As it happens in
T2DM, insulin resistance-mediated mTOR hyperactivation affects insulin signaling, impairs neurogenesis and synaptic
plasticity, and impede correct autophagy-mediated Aβ and p-tau degradation; both peptides could also affect the lysosomal
function and compromise autophagosomes clearance. Aβ aggregates and p-tau tangles are known to trigger NLRP3-
mediated inflammasome activation, thus releasing IL-1β and other cytokines, and inducing proinflammatory microglia
recruitment. And if that were not enough, hIAPP could aggravate all these events, even worsen the situation by the
generation of crossseeding heterocomplexes of Aβ-hIAPP aggregates.

10. Conclusions and Future Directions

In this review, we have analyzed the main signaling pathways, which connect, T2DM
and AD at the molecular level. These mechanisms include insulin resistance, generated in
part by the chronic low-grade inflammation during the progression of T2DM by different
possible mechanisms (pro-inflammatory cytokines and hIAPP, among others). In addition,
oxidative stress is produced by the generation of AGEs and by mitochondrial dysfunction.
Then, mTOR contributes to insulin resistance, inducing ER stress as well. The accumulation
of fissioned mitochondria is a consequence of altering mitochondrial dynamics with the
concomitant activation of oxidative stress.

The accumulation of amylin aggregates disrupting the main mechanisms of cell
proteostasis, such as ubiquitin-proteasome system and autophagy, and the potentiation
of the activation of mTOR, generating a vicious cycle of insulin resistance and autophagy
inhibition, in a scenario with an accumulation of altered and dysfunctional mitochondria.
All of these mechanisms are contributing to pancreatic β cell failure and hence, to the
appearance of multiple alterations in multiple tissues, including the brain. As a new
mechanism, we have uncovered that when all these events occur in pancreatic β cells,
alternative mechanisms are activated to eliminate amylin aggregates by non-canonical
pathways, such as exosome production.

Our lab has demonstrated that, using an in vitro approach, pancreatic β cells can
generate exosomes-bearing amylin aggregates, contributing to detoxify β cells from the
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aggregates but, at the same time, can favor amylin deposition in other regions of the body.
This strategy opens a new avenue of a possible connection between the pancreas and
the brain, contributing to a better understanding of the communication among different
organs and tissues. However, many questions remain unanswered in this field. From our
point of view, the most relevant ones are the following: (1) Is insulin produced by the
brain? (2) Is the BBB damaged in the progression to T2DM? (3) What are the molecular
mechanisms, or the factors involved in the induction of brain insulin resistance in T2DM?
(4) Is enough insulin resistance to produce dementia or the appearance of AD? Hence, the
link between T2DM and AD is nowadays more and more evident, and molecular pathways
characterizing this crosstalk are emerging because of the numerous pathophysiological
similarities and common pathogenic mechanisms between both diseases are being studied.
But there are still many questions to be answered about how T2DM might influence AD
and the derived therapeutic strategies that could be useful for better and more efficient
therapeutic approaches.
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