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A commentary on

GARLH Family Proteins Stabilize GABAA Receptors at Synapses

by Yamasaki, T., Hoyos-Ramirez, E., Martenson, J. S., Morimoto-Tomita, M., and Tomita, S. (2017).
Neuron 93, 1138–1152.e6. doi: 10.1016/j.neuron.2017.02.023

GABAergic inhibition at symmetric synapses balances excitation, modulates the spike timing
of various neurons, controls oscillatory network activities, and manages emerging properties
in diverse neuronal circuits, which establish the basis for cognitive functions and behaviors
(Klausberger and Somogyi, 2008; Buzsáki and Wang, 2012). To perform these diverse functions
some interneurons form synapses exclusively on the dendrites of other neurons while others
target the soma (Maccaferri, 2005; Freund and Katona, 2007). Therefore, it is reasonable to think
that GABAergic synapses are heterogeneous, composed by recruiting various subunits of GABAA

receptors and their interacting proteins to form macromolecular complexes at the inhibitory
synapses (Mann and Paulsen, 2007). Different types of GABAergic neurons also undergo dynamic
changes during the early developmental period as well as in synaptic size and morphology, and
these interneurons form or eliminate inhibitory synapses (Vogels et al., 2013; Antonelli et al.,
2014; Flores and Méndez, 2014; Zacchi et al., 2014; Lu et al., 2017). Altered expressions and/or
dysfunctions of several key interacting proteins of GABAA receptors have been associated with
schizophrenia, autism, epilepsy, mood disorders, Alzheimer’s disease, and other neurological
disorders caused by mutations, copy number variations, and single nucleotide polymorphisms (Ko
et al., 2015).

Recently several studies reported growing numbers of proteins involved in inhibitory synapses
(Kang et al., 2014; Loh et al., 2016; Nakamura et al., 2016; Uezu et al., 2016; Yamasaki et al.,
2017). These molecules include ion channels, GPCRs, transporters, cytoskeletal proteins, adhesion
proteins, signaling molecules including kinases and phosphatases, and ubiquitination-related
proteins. Although it seems redundant to search for interacting proteins using different but closely
related “bait” proteins, beside GABAAR subunits and their core binding proteins (e.g., gephyrin
and neuroligin-2), proteins found at GABAergic synapses from these studies are distinct ones
that lead us to speculate about their functional implications. First, by using transgenic mice with
His6-FLAG-YFP tagging to Neuroligin-2, 76 proteins were identified as neuroligin-2 interacting
proteins (Kang et al., 2014). Second, by using HRP-tagging to Neuroligin-2 and SLITRK3, 44
inhibitory synapse-specific proteins (vs. excitatory synapse-specific ones) including two synaptic
orphan molecules (CSMD1/3 and CDH20) and MDGA2, were identified (Loh et al., 2016). Third,
by using the Bio-ID tagging to gephyrin, 181 proteins were identified at the inhibitory postsynaptic
density, which include ARHGEF9/Collybistin, Mena and Evl, IQSEC3, Px-RICS and two related
proteins with unknown functions, InSyn1 and InSyn2 (Uezu et al., 2016). Interestingly, gephyrin,
collybistin, and InSyn1 serve as three independent hub proteins that interact with different proteins

http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org/Molecular_Neuroscience/editorialboard
http://www.frontiersin.org/Molecular_Neuroscience/editorialboard
http://www.frontiersin.org/Molecular_Neuroscience/editorialboard
http://www.frontiersin.org/Molecular_Neuroscience/editorialboard
https://doi.org/10.3389/fnmol.2017.00169
http://crossmark.crossref.org/dialog/?doi=10.3389/fnmol.2017.00169&domain=pdf&date_stamp=2017-05-29
http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:chois007@gmail.com
https://doi.org/10.3389/fnmol.2017.00169
http://journal.frontiersin.org/article/10.3389/fnmol.2017.00169/full
http://loop.frontiersin.org/people/3934/overview
https://doi.org/10.1016/j.neuron.2017.02.023


Cho GARLH4 Stabilizes GABAARs at Synapses

at the inhibitory synapses (Uezu et al., 2016). Fourth, by using
GFP and Myc epitope tagging of the α2 subunit of GABAA

receptors in transgenic mice, 174 proteins were identified
as interacting proteins including cullin1, ephexin, KTDP12,
mitofusin2, mGluR5, PAK7, and RAP5A (Nakamura et al., 2016).

Now, Yamasaki et al. used mass spectrometry to identify the
GARLH protein family, GARLH4 (GABAA receptor regulatory
Lhfpl4) and GARLH3, as putative auxiliary subunits of
GABAARs (Yamasaki et al., 2017). The search for these proteins
of GABAARs was motivated on the report that the amplitude,
but not the frequency, of miniature inhibitory postsynaptic
currents (mIPSCs) was modestly decreased when gephyrin, a
well-known GABAAR associated protein, was eliminated in
neurons (Lévi et al., 2004). Therefore, it is speculated that
gephyrin-independent, novel GABAAR-interacting proteins can
be functioning at inhibitory synapses. GARLH4, in addition
to the GABAAR γ2 subunit and neuroligin-2, is shown to
be required to reconstitute the large GABAAR complex (720
kDa). Although direct interaction between GARLH4 and the
GABAAR γ2 subunit is yet to be shown, Yamasaki et al.,
showed that GARLH4 stabilizes γ2-containing GABAA receptors
at inhibitory synapses and connects γ2 subunit and neuroligin-
2. By using a transgenic mouse line (Gabra6-Cre), where
gabrg2 was specifically deleted in cerebellar granule cells, it was
found that levels of GARLH4 and neuroligin-2 were reduced.
This indicates that γ2-containing GABAA receptors stabilize
GARLH4 protein expression in the cerebellum. In addition,
the specific shRNA-mediated silencing of GARLH4 reduced
clustering of γ2 GABAAR subunit, gephyrin, and neuroligin-
2. In cultured hippocampal neurons, silencing of GARLH4
reduced the frequency, but not the amplitude, of mIPSC without
affecting its decay kinetics compared to the one of mIPSCs of
control neurons. In experiments using sgRNA-mediated deletion
of GARLH4 in Cas9 knockin mice, the frequency, but not
the amplitude of mIPSCs is decreased in acute hippocampal
slice preparations as seen with cultured neurons. However,
GARLH4 did not modulate the surface expression or sensitivity
of agonists (GABA and THIP) and antagonist (picrotoxin)
of α1β2γ2 GABAARs heterogeneously expressed in Xenopus
oocytes. It is yet to be examined if the effects of allosteric

modulators (e.g., benzodiazepines and neurosteroids) or other
various combinations of GABAAR subunits (e.g., α1β3γ2 or
α6β2γ2) are influenced in the presence of GARLH4.

GARLH4 and GARLH3 are likely to be four transmembrane
proteins with both termini facing the cytosol. Therefore, there
are possibilities of post-translational modification(s) or activity-
dependent protein-protein interaction(s) of these two molecules.
In addition, both have a putative ubiquitination residue (K9)
at the N-terminal cytoplasmic domain (www.phosphositeplus.
org). Since GARLH4 stabilizes GABAA receptors at the synapse,
it will be intriguing to see if and/or how GARLH4 plays a
role in the activity-dependent plasticity of GABAergic synapses
(Antonelli et al., 2014). GARLH4 and GARLH3 are particularly
interesting because unlikemost other GABAAR binding proteins,
their expressions are region-specific (GARLH3-cerebellum and
GARLH4- cerebellum and hippocampus). Thus, it might be
suitable to elucidate the functions of these molecules by knocking

out these molecules in a tissue specific manner. In addition,
since GARLH3 has been implicated in primary glioblastoma, it
may be interesting to see if and/or how GARLH3 displays the
unknown contribution of inhibitory synapses to glioma or its de
novo expression in glioma occurs without affecting GABAergic
synaptic transmission (Milinkovic et al., 2013). Lastly, how
does this GARLH4-GABAA-R association play a role early
during development, in neurons with elevated [Cl−]i (e.g., DRG
neurons), or in diseased states when GABAergic activation is
excitatory (e.g., epilepsy)? Now we have taken another exciting
step in dissecting the specific roles of each molecule at the
particular inhibitory synapses between unique combinations of
neurons.
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