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of Franche-Comté, Bourgogne Franche-Comté University Bourgogne Franche-Comté (UBFC), Besançon, France, 2 Laboratory
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The protein kinase B or Akt is a central regulator of survival, metabolism, growth and
proliferation of the cells and is known to be targeted by various viral pathogens, including
HIV-1. The central role of Akt makes it a critical player in HIV-1 pathogenesis, notably by
affecting viral entry, latency and reactivation, cell survival, viral spread and immune
response to the infection. Several HIV proteins activate the PI3K/Akt pathway, to fuel
the progression of the infection. Targeting Akt could help control HIV-1 entry, viral latency/
replication, cell survival of infected cells, HIV spread from cell-to-cell, and the immune
microenvironment which could ultimately allow to curtail the size of the HIV reservoir.
Beside the “shock and kill” and “block and lock” strategies, the use of Akt inhibitors in
combination with latency inducing agents, could favor the clearance of infected cells and
be part of new therapeutic strategies with the goal to “block and clear” HIV.
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INTRODUCTION

The protein kinase B or Akt is a central regulator of survival, metabolism, growth and proliferation
of the cells (Malim and Emerman, 2008) and is known to be targeted by various viral pathogens,
including HIV-1 (Diehl and Schaal, 2013). The phosphoinositide 3-kinase (PI3K) is the effector
upstream of Akt and is responsible for the signal transduction that follows the activation of some
transmembrane receptors (So and Fruman, 2012). Several isoforms, notably class I isoforms a, b, g
and d, have been identified and differentially associated with the regulation of metabolism,
angiogenesis, or immunity (Bilanges et al., 2019). As such, it is a key molecule in the B and T
cells development, activation and differentiation. The mammalian target of rapamycin (mTOR) is a
downstream effector of Akt and it is involved in both T cells and B cells activation and
differentiation (Limon and Fruman, 2012; Waickman and Powell, 2012). Thus, the PI3K/Akt
pathway is involved in several key cellular processes that are involved in the progression of HIV-1
pathogenesis (Fayard et al., 2010). HIV infection is characterized by a latency phase and the
presence of long-lived cellular reservoirs, from which viral reactivation occurs. The establishment of
these viral reservoirs requires the regulation of cellular pathways activation to induce transcriptional
silencing of the viral genome, and the enhancement of cell survival, notably by reducing the stress-
induced apoptosis. Akt is involved in the regulation of cell survival, notably in response to viral
entry, to enhance the survival of infected cells, allowing the establishment of viral reservoirs. Akt is
also involved in the regulation of the HIV-1 transcription by regulating several cellular factors,
including the transcription factor NF-kB. The Akt pathway has also been shown to be a key host
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factor for HIV replication (Zhou et al., 2008). Given its
predominant cellular and viral regulatory function, the
knowledge of HIV interactions with the PI3K/Akt pathway
could help target key points in the pathogenesis progression to
counter it.
CRITICAL ROLE FOR AKT IN HIV-1
PATHOGENESIS

PI3K/Akt Pathway Activation Favors Virus
Entry Through Cofilin
The first step in HIV pathogenesis is the virus entry into the cells,
for which Akt regulatory functions are altered. Static cortical
actin is restricting HIV entry in T cells, and this restriction is
lifted through the activation of cofilin. Cofilin activation has been
shown to enhance the latent infection of resting T cells, and actin
activity appears to be crucial for HIV-1 latent infection of resting
T cells (Wang et al., 2012). The PI3K/Akt pathway activates
cofilin through the phosphatase Slingshot-1L (SSH-1L), favoring
plasma membrane protrusion and viral entry (Nishita et al.,
2004)(Figure 1). HIV-1 gp120 protein binding to CXCR4
induces PI3K activity and LIM domain kinase transient
activation, which will in turn deactivate cofilin, inducing actin
polymerization (François and Klotman, 2003; Vorster et al.,
2011). PI3K activation by gp120 will result in the downstream
activation of two antagonist pathways (LIM and SSH) that will
regulate cofilin activity. The impact of cofilin and actin
remodeling on the viral entry was shown in the process of
spinoculation, widely used to enhance in vitro viral infection.
The increase in cofilin activity triggered by the spin promotes
cytoskeletal dynamics that increase viral entry (Guo et al., 2011).
The contribution of cofilin activation to HIV infection has been
observed in clinical settings too, where infected patients
presented higher levels of active cofilin (Wu et al., 2008).
gp120 has also been shown to inhibit SDF-1a-induced
chemotaxis. This inhibition appears to be mediated by cofilin
activation (Trushin et al., 2010). Another viral protein is
implicated in the modulation of cell motility and cytoskeleton
remodeling. HIV-1 Nef is a key factor that induces cofilin
inactivation, leading to a dysregulation of the actin remodeling
in T cells (Stolp et al., 2009). Nef has been shown to bind to PI3K
and Akt, contributing to the hijacking of cellular regulatory
pathways by the HIV, to favor the infection (Wolf et al., 2001;
Kumar et al., 2016b).

Akt Favors HIV-1 Latency and Reactivation
In resting CD4+ T cells, HIV-1 latency can be established
without cell activation. The nuclear localization and integration
of HIV-1 is associated with exposure to various chemokines and
the rapid activation of cofilin. These processes both involve the
Akt pathway (Cameron et al., 2010). HIV-1 protein Nef activates
the PI3K/Akt pathway and downregulates the inhibitor protein
PTEN. This Akt activation, coupled with the induction of miR-
718, results in the alteration of the phosphorylation pattern of
serine rich proteins involved in the regulation of translation. An
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
alternative splicing pattern of HIV-1 mRNAs is favored as a
result of this dysregulation, leading to a reduction of viral
replication (Diehl and Schaal, 2013). The PI3K/Akt pathway
modulation of splicing seems essential for the establishment of
latency (Figure 1).

HIV-1 reactivation is mediated by the positive transcription
elongation factor b (P-TEFb), which is under control of
regulatory protein complexes, including a HEXIM1/7SK
snRNA complex and CTIP2 (Cherrier et al., 2013). P-TEFb
expression has been shown to be under the control of both
PI3K/Akt and ERK1/2 pathways for the reactivation of latent
HIV (Mbonye et al., 2021). The phosphorylation of HEXIMI1
induces the release of transcription inhibition and is subsequent
to the activation of the PI3K/Akt pathway (Contreras et al.,
2007). The transactivation of the long terminal repeats (LTR) of
the HIV-1 genome is also triggered by HIV-1 proteins, namely
Tat. This activation is mediated through the PI3K/Akt pathway,
alongside p65 and IKK phosphorylation (Zhang et al., 2011a).
Tat additionally stabilizes Mdm2 through its phosphorylation by
Akt, which enhances the transactivation of the LTR (Raja et al.,
2017). Tat interacts with other regulatory proteins of the LTR
activity, including EZH2. EZH2 inhibition of the transcription is
lifted by its phosphorylation which is mediated by Akt (Zhang
et al., 2015). The viral protein Nef induces the activation of T
cells, and therefore activates the production of cytokines,
including IL-2. This effect is mediated through the activation
of NF-kB as a result of the direct interaction between Nef and
Akt (Kumar et al., 2016a). HIV-1 reactivation is also induced by
extracellular vesicles, notably exosomes, from uninfected cells,
regardless of treatment. This extracellular activation is driven via
the PI3K/Akt pathway (Barclay et al., 2020)

Akt Activation Enhances Cell Survival
The HIV Envelope (Env) glycoprotein binding to CD4 cell
surface receptors induces Akt activation, suppressing p38 MAP
kinase activation, promoting cell survival (Li and Pauza, 2013)
(Figure 1). It also increases the expression of PD-1, Fas and FasL
by binding to CCR5 receptors, inducing cell death. This increase
in apoptosis is countered by Akt activation, which reduces the
p38 activation of caspases. The viral protein Nef induces the
activation of PI3K directly at the plasma membrane, which in
turn targets the pro-apoptotic factor Bad, blocking apoptosis in T
cells (Wolf et al., 2001). In addition, the viral protein Tat also
enhances Akt activation, resulting in an anti-apoptotic effect
(Borgatti et al., 1997).

Autophagy appears to be an important target in HIV
infection, mainly during viral replication. mTOR, an effector
downstream of Akt, regulates autophagy and could be targeted
by HIV-1 (Dinkins et al., 2015). In dendritic cells, the Env viral
protein induces mTOR activation, and in macrophages Nef has
been shown to inhibit autophagy by binding to Beclin-1 to
possibly increase mTOR activation (Campbell et al., 2015). The
activation of mTOR by HIV-1 appears to be associated with
PI3K/Akt activation. The hijacking of the PI3K/Akt/mTOR
pathway by HIV-1 enhances the cell survival by inhibition of
autophagy (Le Sage et al., 2016). Autophagy activation upon viral
infection is responsible for an important anti-HIV effect, by the
February 2022 | Volume 12 | Article 827717
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targeted degradation of Tat, thus inhibiting HIV replication
(Sagnier et al., 2014). The inhibition of autophagy at later
stages, notably through the PI3K/Akt activation, could be an
important player in the reactivation from latency (Daussy
et al., 2015).

Akt Favors Viral Spread
Cellular adherence has been shown to induce protection from
apoptosis, by activation of PI3K/Akt. This cell surface contact
induced activation of PI3K/Akt pathway is also present in cell-
to-cell contact in T cells, which is the main mode of viral
transmission in vivo (Watton and Downward, 1999; Titanji
et al., 2013). Akt activation, by regulating cell motility, could
favor the viral spread by cell-to-cell contact (Figure 1). It is
important to note that cell motility is tightly linked to actin
remodeling and therefore under the influence of cofilin, which is
a key point in the pathogenesis, as described above (Stolp
et al., 2009).

The HIV-1 envelope glycoprotein gp120 has been shown to
stimulate the production of several cytokines, including TNF-
alpha, in macrophages. This stimulation has been determined to
be under the control of PI3K and the downstream kinase MAPK,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
as well as associated with p38 and ERK-1/2 (Lee et al., 2005). This
proinflammatory cytokines production help stimulate bystander
cells, increasing the size of the HIV reservoir (Pasquereau
et al., 2018).

The endosomal sorting complex required for transport
(ESCRT) is a cellular machinery associated with ubiquitination
and is needed by the HIV to achieve virion maturation and
release. The viral protein Gag directly binds to the ESCRT-I
subunit TSG101, in order to undergo ubiquitination (Sette et al.,
2013). TSG101 has been shown to directly interact, in a
constitutive manner, with Akt, which induces an increase in
viral budding and virion release. The disruption of this
interaction is associated with the CXCR4-mediated Akt
activation (Verma and Marchese, 2013).

Akt Activation Decreases the Immune
Control of Infection
The control of HIV infection by the immune system involves
several cell populations, that are targeted by the virus to
allow evasion.

CTL cells activation is regulated through the expression of
PD-1 on the cell surface, where it will bind to its ligands, PD-L1/2,
FIGURE 1 | The PI3K/AKT pathway is involved in HIV-1 pathogenesis. The PI3K/Akt pathway plays a central role in HIV-1 pathogenesis by regulating several
molecular axes both at cellular and viral levels. The PI3K/Akt pathway is activated by several viral proteins. It is involved in the regulation of the immune control of
infection and cell survival. The activation of the PI3K/Akt pathway by viral proteins induces an increase in cell survival and an inhibition of the immune response to the
infection. The PI3K/Akt axis interferes with HIV latency and reactivation, favors viral entry and participates in the increased viral spread.
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expressed on the surface of APCs. This interaction will induce the
deactivation of CTLs. In infected cells, HIV-1 induces the increase
of PD-1 expression in CTLs, as well as the expression of PD-L1 in
APCs. This ligand upregulation is under the influence of the
PI3K/Akt pathway activation, by both transcriptional and post-
translational mechanisms (Muthumani et al., 2011; Chen et al.,
2016) (Figure 1). In turn, the PD-1 engagement induces the
inhibition of Akt activation, mediated by TCR dephosphorylation,
suggesting a regulatory role in the maintenance of latency
reservoir (Kulpa et al., 2013).

Regulatory T cells (Tregs) activation is associated with
increased Foxp3 expression, which appears to determine the
differentiation between effector or regulator cells. The Foxp3
expression in CD4 T cells following TCR triggering is regulated
by the PI3K/Akt pathway (Etemire et al., 2013). The constitutive
PI3K activity that results from TCR signaling will result in the
overexpression of Foxp3, leading to an increase in regulatory T
cells activation (Sauer et al., 2008). This regulatory T cells
activation during acute infection help establish a high level of
HIV-1 replication, by modulating the anti-HIV immune response.
During latency however, the lower activation of Tregs participates
in the establishment of the viral reservoirs (Holmes et al., 2008).

It has been demonstrated ex vivo that NK cells inhibit HIV-1
replication in both T cells and macrophages, suggesting an
important regulatory role in the HIV-1 infection in vivo
(Fehniger et al., 1998). NK cells activation is modulated by
numerous cytokines, including interleukin-15 (IL-15). The IL-
15 response of NK cells is mediated by the PI3K/Akt pathway
(Ali et al., 2015). Studies have shown that, during the acute HIV
infection, IL-15 is produced and affects the viremia, by acting not
only on NK cells, but on T cells too (Mueller and Katsikis, 2010).

In the central nervous system, HIV-1 induces a dysregulation
of inflammation in astrocytes and microglia, responsible for
HIV-associated neurocognitive disorders (HAND) (Hong and
Banks, 2015). HIV-1 Tat notably induces pro-inflammatory
cytokines production, via several signaling pathways including
PI3K/Akt (Zhou et al., 2019).

AKT Activation Favors Macrophage
Survival and HIV-1 Replication
In macrophages, there appears to be a dynamic role for Akt
activation during the viral life cycle. In the early infection stages,
Akt activation induces FOXO3a inactivation, leading to cell
death resistance (Cui et al., 2008; Zhang et al., 2011b). This
allows for viral replication and accumulation within the cell. This
increase viral replication will in turn induce the downregulation
of the PI3K/Akt pathway, therefore lifting the restriction on
FOXO3a which is involved with other factors such as TRAIL or
Fas in cell death (Cui et al., 2009). The extended life span of HIV-
1 infected macrophages, mediated by the PI3K/Akt activation,
make them important viral reservoir during HIV latency. The
activation of Akt in macrophages regulates macrophages
activation, by downregulating the proinflammatory responses
to induce a polarization shift towards anti-inflammatory
responses (Vergadi et al., 2017). This shift in macrophage
activation could participate in the establishment of viral latency.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
AKT TARGETING AS A THERAPY TO
COUNTER HIV INFECTION

Due to its critical role in HIV pathogenesis, targeting PI3K/Akt
pathway could control HIV-1 entry, viral latency/replication, cell
survival of infected cells, HIV spread from cell-to-cell, and the
immune microenvironment which could ultimately allow to
curtail the size of the HIV reservoir. PI3K and Akt inhibitors
have been developed, notably as anticancer drugs, and these
drugs could be repurposed to counter HIV infection. A list of
inhibitors can be found in Table 1. Extensive reviews of these
drugs, including their targets and development status, have been
published by others (Wang et al., 2015; Martorana et al., 2021).

Inhibition of HIV Entry and
Preintegration Steps
Inhibitors of PI3K were shown to inhibit infection of CD4 T cells
after integration occurred but prior to gene expression. The
gp120-induced PI3K activity and downstream effectors
activation can be block by specific PI3K inhibitors, as well as
blocking antibodies directed against CCR5 and CXCR4 (François
and Klotman, 2003). Inhibitors of PI3K were shown to block cell-
to-cell fusion by gp120-CD4 interaction, specifically by
inhibition of PI3K/PTEN pathway (Hamada et al., 2019). This
could be used to inhibit the viral replication in T cells.

Modulation of HIV-1 Reactivation/Latency
The hyperactivation of T cells favors the reactivation of HIV-1
from latently infected cells, through the activation of Akt.
Contrary to the effect of Akt activation in resting T cells, the
high levels of cellular activation and of Akt activation induce the
overexpression and activation of transcription factors associated
with HIV reactivation, notably NF-kB and P-TEFb. This Akt
activation can be reduced by protease inhibitors (PI), leading to a
limitation of HIV-1 reactivation from latently infected cells
(Kumar et al., 2016a; Kumar et al., 2016b; Pasquereau et al.,
2018). In addition, inhibition of the viral gene expression could
also be achieved by targeting the Tat protein. An inhibitor of Tat
transcriptional activity, BPRHIV001, has been shown to block
viral gene expression, by acting on the p300 protein, a regulator
of Tat function. This inhibitor induced a reduction in the
phosphorylation of Akt, which is known to be associated with
p300 protein stability (Lin et al., 2011). The association of Tat
inhibitors with Akt targeting drugs could provide new
therapeutic strategies to block the viral replication. mTOR
activation, downstream of Akt, is associated with the reduction
of autophagy. The use of PI3K inhibitors and mTOR inhibitors,
such as rapamycin, is associated with an increase in autophagy,
through the relocalization of TFEB (Campbell et al., 2015). Drugs
targeting the mTOR pathway and the upstream PI3K/Akt
pathway could be used to counter the HIV-1 induced
inhibition of autophagy, and therefore alter the viral
replication (Donia et al., 2010). Additionally, serum starvation
has been show to induce HIV reactivation in in vitromodels, and
therapeutic approaches derived from it could complement the
other strategies (Raja et al., 2018).
February 2022 | Volume 12 | Article 827717
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The proinflammatory cytokine production, including TNF-
alpha and IL-6, is increased in HIV-1 infection, through NF-kB
activation. The use of protease inhibitors has been shown to
reduce NF-kB activation, as well as Akt activation, resulting in a
decrease in proinflammatory cytokine production and a limit in
HIV-1 transcription (Equils et al., 2004; Kumar et al., 2016b;
Pasquereau et al., 2018). gp120-induced TNF-alpha production
was shown to be blocked by PI3K inhibitors. This inhibition also
induces a block of p28 and ERK1/2 activation and appears to be
mediated by CCR5. This could allow the targeting of viral-
induced proinflammatory cytokine production in macrophages,
to slow HIV pathogenesis (Abbas et al., 2015; Pasquereau
et al., 2018).

Blockade of Cell Survival and
Induction of Apoptosis
Proteases inhibitors were shown to inhibit caspases and
proteasomes activity, resulting in an altered response to
apoptosis stimuli (Pajonk et al., 2002; Badley, 2005). The
reduction of Akt activation exhibited by PI treatment could
also help in the reduction of anti-apoptotic signals induced by
Nef and Tat. Direct inhibition of Nef induced Akt activation has
been previously reported in T cells (Kumar et al., 2016b).
Apoptosis-inducing treatments have been used for cancer
treatment. These drugs, which includes Akt inhibitors, could
help achieve viral clearance, by promoting apoptosis in infected
cells, notably macrophages (Lucas et al., 2010). The induction of
apoptosis could be mediated by TRAIL or by an increase in
autophagy, both under the dependence of Akt activation (Huang
et al., 2006; Campbell et al., 2020).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Limitation of the Viral Spread and
Modulation of the Immune Environment
Virion maturation is needed for the spread of infection, and has
been shown to be associated with Akt activation. Protease inhibitors
present an inhibitory effect on virion maturation, by blocking the
enzymes responsible for the Gag-Pol polyprotein cleavage (Kaplan
et al., 1993). This results in the block of maturation. Additionally, PI
have been shown to reduce Akt activation, and therefore they could
inhibit the subsequent ESCRT activation, which is required for
maturation (Sette et al., 2013). Current classes of inhibitors used in
cART were assessed for their potential to block cell-to-cell transfer
of HIV-1. Protease inhibitors were found to be more potent than
reverse transcriptase inhibitors to prevent cell-to-cell transfer in T
cells. PIs were also found to be effective against cell-free diffusion,
which is the other main mode of HIV-1 spread (Titanji et al., 2013).

NK cells implication in the regulation of HIV-1 replication is
mediated by IL15. It has been shown in vitro that the use of an
IL-15 superagonist could result in an increase effectiveness of the
NK anti-HIV response in acute infection. NK cells activation in
vivo could be an interesting new therapeutic goal to treat acute
infection (Seay et al., 2015). Additionally, activated dendritic cells
have been shown to improve the latent HIV purge resulting from
TCR stimulation. The DCs activate the PI3K/Akt pathway in the
targeted cells (van Montfort et al., 2019).
PERSPECTIVES AND CONCLUSION

Akt plays a central role in cellular metabolism and particularly in
cell survival. It is also a major player in HIV pathogenesis,
TABLE 1 | PI3K and Akt inhibitors currently available or under development.

Class Name Target Use Status

PI3K
inhibitors

Alpelisib Class I PI3K Anticancer drug Available
Serabelisib Class I PI3K Anticancer drug Phase II (NCT04073680)
A66 Class I PI3K Anticancer drug Preclinical
GSK2636771 PI3Kb Anticancer drug Phase II (NCT04439188 and NCT04439149)
AZD8186 Class I PI3K Anticancer drug Phase II (NCT04001569)
AZD6482 Class I PI3K Antiplatelet effect Phase I (NCT00688714)
Idelalisib PI3Ka and

PI3Kb
Anticancer drug Phase II (NCT03133221 and NCT02135133)

Acalisib Class I PI3K Anticancer drug Phase I (NCT01705847)
IC-87114 Class I PI3K Anticancer drug Preclinical
Copanlisib Class I PI3K Anticancer drug Available
Taselisib Class I PI3K Anticancer drug Discontinued after Phase III
Duvelisib PI3Kd and

PI3Kg
Anticancer drug Available

SAR405 Class I PI3K Autophagy inhibitor Preclinical
Akt
inhibitors

Miransertib Akt1/2/3 PROS and Proteus
syndrome

Phase II (NCT04316546 and NCT04980872)

BAY1125976 Akt1/2 Anticancer drug Phase I (NCT01915576)
MK-2206 Akt1/2/3 Anticancer drug Phase II (NCT01258998, NCT01277757, NCT01307631, NCT01349933, NCT01283035 and

NCT01604772)
TAS 117 Akt1/2/3 Anticancer drug Phase II (NCT03017521 and NCT04770246)
Afuresertib Akt1/2/3 Anticancer drug Phase II (NCT04374630)
Capivasertib Akt1/2/3 Anticancer drug Phase III (NCT04305496, NCT03997123, NCT04493853 and NCT04862663)
Ipatasertib Akt1/2/3 Anticancer drug Phase III (NCT04650581, NCT04177108, NCT03072238, NCT03337724 and NCT04060862)
Uprosertib Akt1/2/3 Anticancer drug Phase II (NCT01902173, NCT01989598 and NCT01979523)
GSK690693 Akt1/2/3 Anticancer drug Discontinued after Phase I
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participating in latency establishment and reactivation. Several
steps of the HIV pathogenesis that involve Akt can be targeted by
treatments. The use of PI3K/Akt inhibitors can help modulate
the latency/reactivation of the virus and cell survival, as part of
new therapeutic approaches and thereby complete the
conventional “shock and kill” and “block and lock” strategies
(Figure 2) (Herbein, 2020). In the “shock and kill” strategy, viral
reactivation from latency is induced by latency reversing agents
(LRAs) while infected cells are killed by cellular immunity.
Known LRAs notably include PKC agonists, MAPK agonists,
CCR5 agonists, HDACs inhibitors, HMT inhibitors and DNMT
inhibitors (Ait-Ammar et al., 2020). To note, the Akt activator
Disulfiram has been tested as an LRA. In the “block and lock”
strategy, inhibition of viral reactivation prevents viral rebound by
durable silencing of latent provirus. Both these strategies have
been reviewed extensively, notably by Darcis et al. (Darcis et al.,
2017). The use of Akt inhibitors could increase the clearance of
infected cells. In fact, the pro-apoptotic effect of Akt inhibitors, as
shown in cancer treatment could help clear the infected cells.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
However, this effect could be limited by the anti-reactivation
effect of Akt inhibition if used in a “shock and kill” strategy. In
addition, the different viral reservoirs are not impacted in the
same way, with macrophages having a higher resistance to
apoptosis than lymphocytes for example (Ait-Ammar et al.,
2020). The penetration of latency reversing agents and Akt
inhibitors into tissue reservoirs, especially in the central
nervous system, is likely to be more limited (Wallet et al.,
2019). The reduction in the viral reservoir induced by Akt
inhibitors could be part of a “block and lock” strategy.
Associated with reactivation inhibitors, notably Tat inhibitors,
it could prevent any reactivation from the latent reservoir with
the benefit of reducing the survival of infected cells by lifting the
inhibition of apoptosis. This new paradigm could be named a
“block and clear” strategy (Figure 2C). The inhibition of Akt
could additionally reduce the cellular activation, notably in
macrophages, further reducing the latent HIV reactivation and
the viral spread to new reservoirs. PI3K/Akt inhibitors may also
limit HIV entry into T-cells by blocking cofilin activation.
A B

C

FIGURE 2 | Targeting PI3K/AKT pathway to control HIV infection/reservoirs. (A) Shock and kill. The shock and kill strategy shows some limitations due to a lack of
clearance of the HIV reservoir. (B) Block and lock. Latency inducing agents could prevent the reactivation from the latent reservoir, but the limited immune clearance
of infected cells reduces the efficiency of this strategy based on the functional cure. (C) Block and clear. Beside the “shock and kill” and “block and lock” strategies,
the use of Akt inhibitors in combination with latency inducing agents, could limit the cellular activation, favor the apoptosis of infected cells and their clearance and be
part of new therapeutic strategies.
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Finally, the inhibition of the anti-apoptotic effects of Akt could
help increase the clearance of infected cells by NK cells and
CTLs. Overall, Akt is a major player of HIV pathogenesis,
notably by its central regulatory role in lymphoid and myeloid
cells. Targeting the PI3K/Akt pathway in the treatment of HIV
could help overcome several problems with current therapeutic
strategies that prevent the achievement of a functional cure in
HIV infected patients. Beside the “shock and kill” and “block and
lock” strategies, the use of Akt inhibitors in combination with
latency inducing agents, could favor the clearance of infected
cells and be part of new therapeutic strategies with the goal to
“block and clear” HIV.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
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