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ABSTRACT Cystic fibrosis (CF) is a fatal genetic disease characterized by chronic lung
infections due to aberrant mucus production and the inability to clear invading patho-
gens. The traditional view that CF infections are caused by a single pathogen has been
replaced by the realization that the CF lung usually is colonized by a complex commu-
nity of bacteria, fungi, and viruses. To help unravel the complex interplay between the
CF lung environment and the infecting microbial community, we developed a commu-
nity metabolic model comprised of the 17 most abundant bacterial taxa, which account
for �95% of reads across samples, from three published studies in which 75 sputum
samples from 46 adult CF patients were analyzed by 16S rRNA gene sequencing. The
community model was able to correctly predict high abundances of the “rare” patho-
gens Enterobacteriaceae, Burkholderia, and Achromobacter in three patients whose poly-
microbial infections were dominated by these pathogens. With these three pathogens
removed, the model correctly predicted that the remaining 43 patients would be domi-
nated by Pseudomonas and/or Streptococcus. This dominance was predicted to be driven
by relatively high monoculture growth rates of Pseudomonas and Streptococcus as well
as their ability to efficiently consume amino acids, organic acids, and alcohols secreted
by other community members. Sample-by-sample heterogeneity of community compo-
sition could be qualitatively captured through random variation of the simulated
metabolic environment, suggesting that experimental studies directly linking CF
lung metabolomics and 16S sequencing could provide important insights into dis-
ease progression and treatment efficacy.

IMPORTANCE Cystic fibrosis (CF) is a genetic disease in which chronic airway infections
and lung inflammation result in respiratory failure. CF airway infections are usually
caused by bacterial communities that are difficult to eradicate with available antibiotics.
Using species abundance data for clinically stable adult CF patients assimilated from
three published studies, we developed a metabolic model of CF airway communities to
better understand the interactions between bacterial species and between the bacterial
community and the lung environment. Our model predicted that clinically observed CF
pathogens could establish dominance over other community members across a range
of lung nutrient conditions. Heterogeneity of species abundances across 75 patient sam-
ples could be predicted by assuming that sample-to-sample heterogeneity was attribut-
able to random variations in the CF nutrient environment. Our model predictions pro-
vide new insights into the metabolic determinants of pathogen dominance in the CF
lung and could facilitate the development of improved treatment strategies.

KEYWORDS community metabolism, cystic fibrosis, metabolic modeling, metabolite
cross-feeding

Cystic fibrosis (CF) is a genetic disease which results in excessive mucus production
that reduces lung function and impedes the release of pancreatic enzymes (1, 2).

While digestive problems are highly prevalent among CF patients (3), approximately 80
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to 95% of CF deaths are attributable to respiratory failure due to chronic airway
infections and associated inflammation (1). The Cystic Fibrosis Foundation (CFF) esti-
mates that approximately 70,000 CF patients are living worldwide and about 1,000 new
CF cases are diagnosed in the United States each year (www.cff.org). Following Koch’s
postulate (4), the traditional view of CF lung infections has been that specific airway
pathogens are responsible for monomicrobial infections (5). CF bacterial pathogens
that have been identified from patient sputum samples and commonly studied in vitro
using pure culture include Pseudomonas aeruginosa, Haemophilus influenzae, Staphylo-
coccus aureus, and Burkholderia cepacia complex, including antibiotic-resistant strains
such as methicillin-resistant S. aureus (MRSA) and multidrug-resistant P. aeruginosa
(MDRPA) (1), as well as less common species such as Achromobacter xylosoxidans,
Stenotrophomonas maltophilia, and pathogenic Escherichia coli strains (6).

With the advent of culture-independent techniques such as 16S rRNA gene ampli-
con library sequencing, sputum and bronchoscopy samples from CF patients can be
analyzed systematically with respect to the diversity and abundance of bacterial taxa
present (7, 8). Numerous studies have shown that CF airway infections are rarely
monomicrobial, but rather the CF lung harbors a complex community of bacteria that
originate from the mouth, skin, intestine, and the environment (7–10). 16S sequencing
can reliably delineate community members down to the genus level, showing that the
most common genera in adult CF patient samples are Streptococcus, Pseudomonas,
Prevotella, Veillonella, Neisseria, Porphyromonas, and Catonella (7). While the identities
and relative abundances of the genera present can be determined by 16S rRNA gene
sequencing, different analysis techniques are required to understand the interactions
between the multiple bacterial taxa and the CF lung environment, the role of the
individual microbes in shaping community composition and behavior, and the impact
of community composition on the efficacy of antibiotic treatment regimens. While
microbiota cooccurrence networks have provided important insights into interactions
between bacterial taxa colonizing the CF lung (11, 12), these methods require species
abundance data as inputs and therefore are not fully predictive.

In silico metabolic modeling has emerged as a powerful approach for analyzing
complex microbial communities by integrating genome-scale reconstructions of single-
species metabolism within mathematical descriptions of metabolically interacting com-
munities (13, 14). Modeled species interactions typically include competition for host-
derived nutrients and cross-feeding of secreted by-products such as organic acids,
alcohols, and amino acids between species (15, 16). Due to challenges in developing
manually curated reconstructions of poorly studied species, including those present in
the CF lung, most in silico community models have been restricted to �5 microbial
species (17–19) and fail to adequately cover the diversity of in vivo communities. This
limitation can be overcome in bacterial communities by using semicurated reconstruc-
tions developed through computational pipelines such as the ModelSeed (20), AGORA
(21), and other methods (22). Given the availability of suitable single-strain metabolic
reconstructions, a number of alternative methods have been developed for mathemat-
ical formulation and numerical solution of microbial community models (23–26). The
recently developed SteadyCom method is particularly notable due to its formulation
that ensures proper balancing of metabolites across the species and scalability to large
communities (27). A properly formulated community model can yield information that
is difficult to ascertain experimentally, including the effects of the host environment on
community growth, species abundances, and cross-fed metabolite secretion and up-
take rates.

In this paper, we utilized 16S rRNA gene amplicon library sequencing data from
three published studies (28–30) to develop a 17-species bacterial community model for
predicting species abundances in CF airway communities (Fig. 1). The 16S rRNA gene
sequence data covers 75 distinct sputum samples from 46 adult CF patients and
captures the heterogeneity of CF polymicrobial infections with respect to taxonomic
diversity and the prevalence of pathogens, including Pseudomonas, Streptococcus,
Burkholderia, Achromobacter, and Enterobacteriaceae. The in silico community model
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was used to predict when each pathogen may dominate the polymicrobial infection by
using the 16S rRNA gene sequence data to restrict which pathogens were present in
the simulated community. By randomly varying the availability of host-derived nutri-
ents, the model was used to simulate sample-by-sample heterogeneity of community
compositions across patients and to understand how metabolite cross-feeding
enhanced pathogen abundances. To our knowledge, this study represents the first
attempt to metabolically model the CF airway bacterial community rather than model
the individual metabolism of common CF pathogens (31–36). Furthermore, our ap-
proach of directly predicting species abundances rather than using measured abun-
dances as model input data to constrain predictions distinguished our study from other
community modeling efforts driven by 16S rRNA gene sequence data (16, 37–39).

RESULTS
Few taxonomic groups dominate the CF airway community samples. Principal-

component analysis (PCA) was performed on the normalized read data of the 75
samples to evaluate sample heterogeneity. The first three principal components (PCs)
captured 77.8% of the data variance, with the first PC capturing 57.3% of variance and
most heavily weighting the most abundant genera Pseudomonas, Streptococcus, and
Prevotella as expected (see Table S1 in the supplemental material). A considerable
degree of heterogeneity was evident from a plot of the 75 samples in the coordinates
defined by the first three PCs (Fig. 2A). Most striking were the outlier samples from
three patients infected with Enterobacteriaceae (samples 25 to 27), Burkholderia (sam-
ples 19 to 21), or Achromobacter (samples 31 and 32) compared to the patients lacking
these three organisms (i.e., the remaining 67 samples).

FIG 1 Overview of the community metabolic modeling framework driven by patient microbiota composition data. (A) 16S rRNA gene sequence data for 46
patients averaged across 75 distinct samples for the 72 highest-ranked taxonomic groups (typically genera). (B) 16S rRNA gene sequence data for the 17
highest-ranked taxonomic groups normalized to sum to unity and then averaged across the 75 samples. The error bars represent the variances of the
normalized read data. (C) AGORA strain models (21) are selected for 17 species that represent each taxonomic group. (D) Definition of the nutrient environment
through specification of the community uptake rate of each extracellular metabolite. (E) Species abundances predicted from a SteadyCom (27) simulation with
nominal community uptake rates compared to normalized reads for a random patient sample. (F) Average species abundances predicted from an ensemble
of SteadyCom simulations with randomized community uptake rates compared to normalized reads averaged across the patient samples.
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Because each pathogen infected only a single patient among the 46 included
patients, we generated a smaller data set of 67 samples by removing these 8 samples.
When PCA was performed on this reduced data set, the first three PCs explained 92.6%
of the data variance (Table S2), suggesting substantially reduced heterogeneity com-
pared to the full data set. These three PCs heavily weighted only the four taxonomic
groups Pseudomonas, Streptococcus, Prevotella, and Haemophilus, with the first PC
representing high Pseudomonas and low Streptococcus, the second PC component
representing high Streptococcus and moderate Pseudomonas, and the third PC repre-
senting high Haemophilus, low Pseudomonas, and low Streptococcus. Considerable
heterogeneity was evident when the 67 samples were plotted using the first two PCs
accounting for 84.2% of the variance (Fig. 2B). Here the first PC represented high
Pseudomonas, low Streptococcus, moderate Prevotella, and moderate Haemophilus, and
the second PC represented low Pseudomonas, high Streptococcus, low Prevotella, and
low Haemophilus.

Based on these results, we focused our community modeling efforts on predicting
the infrequent dominance of the pathogens Enterobacteriaceae, Burkholderia, and
Achromobacter and the heterogeneity in the abundances of Pseudomonas, Streptococ-
cus, Prevotella, and Haemophilus across the remaining samples. Pseudomonas, Strepto-
coccus, and Prevotella have been found by directly sampling the lung of CF patients via
bronchoalveolar lavage (40), while Haemophilus is a widely accepted CF pathogen (7).
The other 10 genera (Table 1) were maintained in the model to simulate competition/
cooperation with the more dominant species and to determine if the relatively low
abundances of these genera could be predicted.

The community model can reproduce dominance of CF pathogens. We simu-
lated the growth of each species individually to compare their monoculture growth

FIG 2 PCA performed on the normalized read data. (A) PCA performed for all 75 samples with the normalized reads for each taxonomic group plotted using
the first three principal components (PCs) that explained 57.3%, 12.3%, and 8.2%, respectively, of the data variance. Samples containing Enterobacteriaceae
(samples 25 to 27), Burkholderia (samples 19 to 21), and Achromobacter (samples 31 and 32) appeared as outliers. (B) PCA performed for 67 samples when the
8 samples containing Enterobacteriaceae, Burkholderia, and Achromobacter were removed. The normalized reads for each taxonomic group were plotted using
the first two PCs, which explained 72.6% and 11.7%, respectively, of the data variance.
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rates with the nominal community nutrient uptake rates (Table S3). Interestingly, the
three highest growth rates belonged to the rare pathogens Escherichia, Burkholderia,
and Achromobacter, while the next three highest growth rates belonged to the com-
mon pathogens Pseudomonas, Streptococcus, and Staphylococcus (Fig. 3A; species
numbered as in Table 1). These predictions were consistent with our modeling results
for the gut microbiome (41), where opportunistic pathogens consistently had higher
growth rates than commensal species. The other two species, Prevotella and Haemo-
philus, commonly observed in the 75 patient samples were predicted to have much

TABLE 1 CF genera analyzeda

Species no. Species strain name Avg reads Sample reads >1% (%)

1 Pseudomonas aeruginosa NCGM2.S1 0.447 85.3
2 Streptococcus sanguinis SK36 0.213 88.0
3 Prevotella melaninogenica ATCC 25845 0.098 74.7
4 Escherichia coli strain K-12 substrain MG1655 0.029 4.0
5 Haemophilus influenzae R2846 0.028 22.7
6 Burkholderia cepacia GG4 0.026 4.0
7 Rothia mucilaginosa DY-18 0.026 48.0
8 Fusobacterium nucleatum subsp. nucleatum ATCC 25586 0.023 26.7
9 Staphylococcus aureus subsp. aureus USA300 FPR3757 0.023 34.7
10 Veillonella atypica ACS-049-V-Sch6 0.016 48.0
11 Achromobacter xylosoxidans NBRC 15126 0.014 2.7
12 Gemella haemolysans ATCC 10379 0.015 30.7
13 Granulicatella adiacens ATCC 49175 0.012 36.0
14 Neisseria flavescens SK114 0.008 18.7
15 Actinomyces naeslundii strain Howell 279 0.009 21.3
16 Porphyromonas endodontalis ATCC 35406 0.006 20.0
17 Ralstonia sp. 5 7 47FAA 0.004 6.7
aShown is a list of the 17 species/strains included in the CF airway community model, the normalized fractional reads for the associated genera averaged across the
75 samples, and the percentage of samples in which the normalized reads exceeded 1%.

FIG 3 Single-species and community simulations performed with the nominal nutrient uptake rates in Table S3. (A) Single-species growth rates with
the species numbered according to Table 1. (B) Comparison of predicted species abundances to the average of the normalized reads for the single
patient infected with Enterobacteriaceae/Escherichia (samples 25 to 27). (C) Comparison of predicted species abundances to the average of the
normalized reads for the single patient infected with Burkholderia (samples 19 to 21). (D) Comparison of predicted species abundances to the average
of the normalized reads for the single patient infected with Achromobacter (samples 31 and 32). (E) Comparison of predicted species abundances to the
average of the normalized reads for the 43 patients not infected with Enterobacteriaceae/Escherichia, Burkholderia, or Achromobacter (samples 1 to 18,
22 to 24, 28 to 30, and 33 to 75).
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lower in silico growth rates. The three species representing Fusobacterium, Granulica-
tella, and Porphyromonas did not grow individually due to their inability to meet the
defined ATP maintenance demand, although they could grow when strategically
combined with other modeled species. For example, Fusobacterium, Granulicatella, and
Porphyromonas were predicted to grow in coculture with Ralstonia, Prevotella, and
Actinomyces, respectively. The species abundances predicted for a specified nutrient
condition depended on both the monoculture growth rates and the ability of each
species to efficiently utilize secreted metabolites to enhance its growth rate. These
emergent cross-feeding relationships allowed otherwise slower-growing species to
coexist with species that exhibited high monoculture growth rates.

We conducted simulations using the nominal nutrient uptake rates (Table S3) to
determine if the community model could capture dominance of each rare pathogen in
the absence of the other two rare pathogens. Each simulation was performed by
constraining the abundances of the other two pathogens to zero, effectively producing
reduced communities of 15 species. The predicted abundances from each simulation
were compared to the normalized reads averaged over the patient samples which
contained the associated pathogen: Enterobacteriaceae/Escherichia (samples 25 to 27)
(Fig. 3B), Burkholderia (samples 19 to 21) (Fig. 3C), or Achromobacter (samples 31 and 32)
(Fig. 3D). For each simulated case, the model correctly predicted dominance of the
associated pathogen. For the Burkholderia- and Achromobacter-infected patients, the
abundances of the dominant pathogen as well as less prevalent species were well
predicted.

We performed simulations for the remaining 43 patients by reducing the commu-
nity to 14 species by constraining the abundances of all three rare pathogens to zero.
The model-predicted abundances were compared to the normalized reads averaged
over the 67 samples remaining when the 8 rare pathogen-containing samples were
removed (Fig. 3E). The model correctly predicted that Pseudomonas, Streptococcus, and
Prevotella would dominate the community, although the Prevotella abundance was
overpredicted at the expense of Streptococcus as well as several less abundant genera.
The only other genus present in the simulated community was Staphylococcus, while
the averaged reads showed a greater amount of diversity. Compared to the averaged
data, individual samples showed less diversity, which is more consistent with model
predictions as discussed below.

The community model can reproduce pathogen heterogeneity across airway
samples. The CF airway communities exhibited a substantial degree of sample-to-
sample heterogeneity when rare pathogens were present (Fig. 2A) or absent (Fig. 2B).
We performed simulations to assess the extent to which sample-to-sample differences
in taxonomic group reads could be explained by heterogeneity in the metabolic
environment of the CF lung. More specifically, we randomized the community nutrient
uptake rates around their nominal values (Materials and Methods; also see Table S3)
to mimic heterogeneous lung environments shown to occur across CF patients (42,
43) and in longitudinal samples from a single patient (44). An objective of our future
research will be to model sample-by-sample variability in individual patients as a
function of disease state (e.g., clinically stable, pulmonary exacerbation, and anti-
biotic treatment). In this study, each simulation with a set of randomized uptake
rates was termed a “simulated sample,” and we tested the hypothesis that the
experimental samples could be interpreted as having been drawn from the much larger
set of simulated samples we generated. Due to the relatively small number of
Enterobacteriaceae/Escherichia-, Burkholderia-, and Achromobacter-containing samples,
we performed only 100 randomized community simulations for each of these patho-
gens. In contrast, 1,000 randomized simulations were performed for communities
without these three rare pathogens since the associated patient sample size was
comparatively large. The single model simulation that best represented a particular
patient sample was determined by the minimum least-squares error between the
normalized measured reads and the predicted abundances across all simulations. For
the 8 rare pathogen-containing samples, we plotted the measured reads and predicted
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abundances of the best-fit models for the five most common genera (Pseudomonas,
Streptococcus, Prevotella, Haemophilus, and Staphylococcus) and the pathogen of inter-
est (Fig. 4; Table S4). For the remaining 67 samples, we plotted the measured reads and
predicted abundances of the best-fit models for the five most common genera plus the
next most abundant genus according to measured reads (Fig. 5; Table S5).

Randomized nutrient simulations were able to generate model predictions that
reproduced the major features of the 3 Enterobacteriaceae/Escherichia-containing
samples (Fig. 4A), including the high-Enterobacteriaceae/Escherichia reads and the
presence of the other main community members (Pseudomonas, Streptococcus, and
Prevotella). The Streptococcus reads were predicted relatively accurately, while
Pseudomonas reads were underpredicted and Prevotella reads were overpredicted.
As measured by the least-squares error, improved predictions were obtained for the 3
Burkholderia-containing samples (Fig. 4B). The Burkholderia reads were accurately re-
produced, and Streptococcus was correctly predicted to be the second most abundant
genus, suggesting a synergism between these two genera. This prediction has exper-
imental support from in vitro experiments showing that mucin-degrading anaerobes
such as streptococci promote the growth of CF pathogens such as Burkholderia
cenocepacia when mucins are provided as the sole carbon source (45). The two
Achromobacter-containing samples were well predicted in terms of Achromobacter
reads and Pseudomonas being the other dominant genus (Fig. 4C). These predictions
are consistent with an in vitro study showing that Achromobacter sp. enhanced the
ability of multiple P. aeruginosa strains to form biofilms (46). Furthermore, a clinical
study with 53 patients having positive cultures for A. xylosoxidans showed that all 6
patients who were chronically infected by A. xylosoxidans were coinfected with P.
aeruginosa (47). Complete comparisons of the normalized measured reads and model
predicted abundances for the 8 samples with the rare pathogens are presented in

FIG 4 Taxonomic reads for patient samples containing rare pathogens compared to species abundances predicted from community models with randomized
nutrient uptake rates. The genera Pseudomonas, Streptococcus, Prevotella, Haemophilus, and Staphylococcus and the indicated rare pathogen (Enterobacteri-
aceae/Escherichia, Burkholderia, or Achromobacter) are shown for each case. (A) Individual models that best fit the 3 Enterobacteriaceae/Escherichia-containing
samples, 25 to 27, selected from an ensemble of 100 15-species models without Burkholderia or Achromobacter. (B) Individual models that best fit the 3
Burkholderia-containing samples, 19 to 21, selected from an ensemble of 100 15-species models without Enterobacteriaceae/Escherichia or Achromobacter. (C)
Individual models that best fit the 2 Achromobacter-containing samples, 31 and 32, selected from an ensemble of 100 15-species models without
Enterobacteriaceae/Escherichia or Burkholderia. Each abundance for a patient sample is shown in the first, dark-colored bar, and each abundance predicted by
the corresponding model is shown in the second, light-colored bar.
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Table S4, which shows that the model generally produced less diverse communities as
measured by the richness (number of species with abundances exceeding 1%) and the
equitability (the inverse Simpson metric [48]).

The lack of patient samples containing Enterobacteriaceae/Escherichia, Burkholderia,
and Achromobacter limited our ability to analyze heterogeneity of communities with
these pathogens. In contrast, the 67 samples remaining when the 8 samples containing
these three pathogens were removed offered a much larger data set for heterogeneity
analysis. Each of these 67 samples was matched to one of the 1,000 randomized model
simulations according to the smallest least-squares error between the normalized reads
of the sample and the predicted abundances of the model (Table S5). Representative
results are shown for patient samples with relatively small (0.004 to 0.087, Fig. 5A),
moderate (0.089 to 0.116, Fig. 5B), and large (0.123 to 0.574, Fig. 5C) error values.
Samples which were most accurately reproduced generally contained high Pseudomo-
nas reads (84% � 15%) with the remainder of the community consisting of Strepto-
coccus and Prevotella (Fig. 5A). These 22 samples were best matched by 11 distinct
models, suggesting that patient samples dominated by Pseudomonas contained a
higher degree of heterogeneity than the simulated samples.

The 22 samples which produced moderate prediction errors were characterized by
lower and more variable Pseudomonas reads (48% � 28%) as well as more variable
distributions of Streptococcus and Prevotella reads (Fig. 5B). The ensemble of random-
ized models could capture the relative amounts of these three genera but often
predicted the presence of Staphylococcus not observed in the patient samples. This
discrepancy could be attributable to the unmodeled ability of Pseudomonas to secrete
diffusible toxins which inhibit Staphylococcus respiration and render Staphylococcus less
metabolically competitive in partially aerobic environments (49) such as the CF lung.
Interestingly, the model ensemble could reproduce the relatively high Ralstonia reads

FIG 5 Taxonomic reads for patient samples without rare pathogens compared to species abundances predicted from community models with randomized
nutrient uptake rates. The genera Pseudomonas, Streptococcus, Prevotella, Haemophilus, and Staphylococcus and the next most abundant genera are shown for
each case. Individual models that best fit the 67 patient samples were selected from an ensemble of 1,000 14-species models without Enterobacteriaceae/
Escherichia, Burkholderia, or Achromobacter. (A) Three representative samples for which the least-squares error measures were within the smallest third of all
samples. (B) Three representative samples for which the least-squares error measures were within the middle third of all samples. (C) Three representative
samples for which the least-squares error measures were within the largest third of all samples. Each abundance for a patient sample is shown in the first,
dark-colored bar, and each abundance predicted by the corresponding model is shown in the second, light-colored bar.
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in sample 1 while also predicting no Ralstonia in samples 15 and 69. The 23 samples
which produced the largest prediction errors were characterized by much lower
Pseudomonas reads (13%), higher reads of Streptococcus and Prevotella (34% and 19%,
respectively; e.g., samples 26 and 74 in Fig. 5C), and higher representation of less
common genera. These samples also produced higher Haemophilus reads, primarily
due to two Haemophilus-dominated samples (e.g., sample 39 in Fig. 5C). While the
model ensemble generally was able to reproduce the observed Streptococcus and
Prevotella reads in these samples, the models tended to overpredict Pseudomonas and
Staphylococcus at the expense of the less common genera. In particular, the ensemble
underpredicted the abundances of Rothia, Fusobacterium, and Gemella while the
average reads of these three genera across the 23 samples summed to 16% This
discrepancy could suggest that these 23 samples were obtained from patients with
less advanced CF lung disease, which correlates to higher diversity communities in
vivo (30, 50).

To gain further insights into the ability of the community model to mimic sample-
to-sample heterogeneity in the absence of rare pathogens, we compared read data and
abundance predictions in the PC space calculated from the 67 patient samples. Each of
the 1,000 model simulations was mapped into the two-dimensional space defined by
the first two PCs (Fig. 2B), which explained 84.2% of normalized read data variance
(Table S2). The model ensemble was able to reproduce most of the observed variability
as reflected by the cloud of model simulations overlapping 56 of the 67 patient samples
(Fig. 6A). The patient and simulated samples covered the same range of the first PC,
which was heavily weighted by Pseudomonas, Streptococcus, and Prevotella (Table S2).
Importantly, this consistency shows that heterogeneity across these three dominant
genera could be predicted from variations in the CF lung metabolic environment, as we
hypothesized.

FIG 6 Principal-component analysis (PCA) of taxonomic reads for patient samples without rare pathogens and species abundances predicted from 14-species
community models with randomized nutrient uptake rates. (A) Representation of the 67 patient samples (blue crosses labeled with sample number) in the
two-dimensional space defined by the first two principal components (PCs) obtained when PCA is performed on the normalized reads of these patient samples.
Predicted species abundances (red circles) from an ensemble of 1,000 models transformed into the PC space of the normalized read data. (B) Enlarged view
of the lower left portion of the PCA plot in panel A. (C) Average genus reads obtained for 12 samples (samples 5, 6, 10, 39, 42, 43, 49, 57, 61, 68, 70, and 74)
in panel B with elevated Prevotella representation compared to the average abundances predicted from the best-fit models for these samples with the species
number as in Table 1.

Metabolic Modeling of CF Airway Communities

March/April 2019 Volume 4 Issue 2 e00026-19 msystems.asm.org 9

https://msystems.asm.org


The model ensemble also could reproduce variations in the second PC, which was
heavily weighted by the three dominant genera and Haemophilus, for sufficiently large
values of the first PC, which corresponded to relatively high Pseudomonas and low
Streptococcus and Prevotella. In contrast, the model ensemble did not cover the patient
samples in the lower left quadrant of the PC plot (Fig. 6B). These samples were
characterized by unusual combinations of relatively high Prevotella, Haemophilus,
Rothia, and/or Fusobacterium that the model could not reproduce in its present form.
Of these 12 poorly modeled samples, Prevotella was highly represented in 8 samples.
When the normalized reads of these 8 samples and their associated best-fit abundances
were averaged, the models overpredicted Pseudomonas, Streptococcus, and Staphylo-
coccus at the expense of the less common genera (Fig. 6C).

The community model predicts that pathogen dominance is driven by metab-
olite cross-feeding. To investigate putative metabolic mechanisms by which patho-
gens may establish dominance in the CF lung, we used model predictions to quantify
rates of metabolite cross-feeding between species. For each rare pathogen (Escherichia,
Burkholderia, and Achromobacter), 100 simulations performed with randomized com-
munity uptake rates were used to calculate average exchange rates of the five most
significantly cross-fed metabolites between Pseudomonas, Streptococcus, and the pathogen
of interest. The overall metabolite exchange rate from one species to another species
was calculated by determining the minimum uptake or secretion rate for each ex-
changed metabolite and then summing these minimum rates over all exchanged
metabolites.

Escherichia was predicted to consume the organic acids acetate, formate, and L-lactate
produced by Streptococcus, while Streptococcus benefitted from the amino acids serine
and threonine secreted by Escherichia (Fig. 7A and D). Due to the existence of
alternative optima with respect to the secretion products (51), L-lactate secretion was

FIG 7 Predicted metabolite cross-feeding relationships for 15-species communities containing Escherichia, Burkholderia, or
Achromobacter. Negative rates denote metabolite uptake, and positive rates denote metabolite secretion. The overall
metabolite exchange rate from one species to another species was calculated by determining the minimum uptake or
secretion rate for each exchanged metabolite and then summing these minimum rates over all exchanged metabolites. The
arrow thickness is proportional to the overall metabolite exchange rate between the two species. (A) Average exchange rates
of the five highest cross-fed metabolites between the three most abundant species for 100 model ensemble simulations
containing Escherichia. (B) Average exchange rates of the five highest cross-fed metabolites between the three most abundant
species for 100 model ensemble simulations containing Burkholderia. (C) Average exchange rates of the five highest cross-fed
metabolites between the three most abundant species for 100 model ensemble simulations containing Achromobacter. (D)
Schematic representation of overall metabolite exchange rates for Escherichia-containing communities corresponding to panel
A. Pseudomonas was omitted due to its low exchange rates compared to the other two species. (E) Schematic representation
of overall metabolite exchange rates for Burkholderia-containing communities corresponding to panel B. (F) Schematic
representation of overall metabolite exchange rates for Achromobacter-containing communities corresponding to panel C.
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not predicted in Streptococcus monoculture even through the metabolic reconstruction
supported L-lactate production (21) (www.vmh.life). While Streptococcus strains are well
known to product L-lactate as the primary product via homolactic fermentation (52, 53),
we chose not to manually curate the metabolic reconstruction since in silico L-lactate
synthesis was induced by the presence of other community members such as Esche-
richia. Pseudomonas was minimally involved in metabolite exchange due to its low
average abundance (�1%) across the 100 simulations. Hence, our model suggested
that organic acid cross-feeding could play a role in Enterobacteriaceae propagation in
the CF lung.

More complex cross-feeding relationships were predicted for Burkholderia-containing com-
munities that supported average Pseudomonas and Streptococcus abundances both
exceeding 10%. The highest exchange rates were predicted for formate and acetate
produced by Streptococcus and consumed by Burkholderia (Fig. 7B and E). The two
species also exchanged amino acids, with Streptococcus providing alanine to Burkhold-
eria and Burkholderia producing aspartate and serine for Streptococcus. Burkholderia
provided the same two amino acids to Pseudomonas while receiving a small exchange
of acetate in return. Pseudomonas also consumed formate secreted by Streptococcus.
These model predictions suggested that acetate, formate, and alanine produced by
Streptococcus via heterolactic fermentation (52) could promote Burkholderia growth in
vivo. Indeed, in vitro experiments have shown that mucin-degrading anaerobes such as
streptococci may promote the growth of CF pathogens such as B. cenocepacia by
secreting acetate (45).

Compared to the other two pathogens, Achromobacter was predicted to be less
efficient at cross-feeding, having only low uptake rates of alanine, L-lactate, and
threonine secreted by the other two species. In contrast, Pseudomonas was predicted
to benefit from relatively high uptake rates of formate produced by Streptococcus and
succinate produced by Achromobacter. Collectively, these model predictions could help
explain the enhanced ability of Burkholderia to dominate the simulated CF airway
communities compared to Achromobacter (Fig. 4) despite the single-species growth
rates of the two species being similar (Fig. 3).

Similar cross-feeding analyses were performed for 1,000 simulations with random-
ized nutrient uptake rates in 14-species communities lacking Escherichia, Burkholderia,
and Achromobacter. To investigate the possibility of differential cross-feeding patterns,
the simulations were split into 500 cases with the highest Pseudomonas abundances
and 500 cases with the lowest Pseudomonas abundances (Fig. 8A). For each set of 500
simulations, the average exchange rates of the five most significantly cross-fed metab-
olites between the four most abundant species (Pseudomonas, Streptococcus, Prevotella,
and Staphylococcus) were calculated. The overall metabolite exchange rate between
any two species were calculated from the individual metabolite uptake and secretion
rates as before.

When Pseudomonas abundances were predicted to be relatively high (average of
61%), community interactions were dominated by Pseudomonas consumption of for-
mate, ethanol, acetate, and aspartate secreted by the other three species (Fig. 8B).
Formate cross-feeding was predicted to be particularly important, which was consistent
with an in vitro study showing that expression of the P. aeruginosa fdnH gene (encoding
a formate dehydrogenase) was elevated in synthetic sputum medium compared to
glucose minimal medium (54). Similarly, the expression of P. aeruginosa adhA (encoding
an alcohol dehydrogenase) was elevated in patient-derived CF sputum compared to in
vitro rich medium (55). Since P. aeruginosa strains have the capability to take up both
formate and ethanol (56, 57), these in vitro studies suggest that this cross-feeding
mechanism could occur in CF airway communities. Staphylococcus was the major
source of exchanged formate and ethanol (Fig. 8D), a prediction consistent with studies
showing that P. aeruginosa benefits from the presence of S. aureus (49, 58). Both alanine
and aspartate have been shown to serve as preferred carbon sources for P. aeruginosa
in a minimal medium supplemented with lyophilized CF sputum (54). However, the
ensemble model did not predict exchange of L-lactate between P. aeruginosa and S.
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aureus, which differs from coculture experiments that mimic the CF lung environment
(49). Strong interactions between P. aeruginosa and various streptococci also have been
reported (30), although the importance of metabolite cross-feeding in mediating these
interactions remains incompletely understood (59). Finally, in the model Pseudomonas
supplied small amounts of D-lactate for Prevotella and Staphylococcus consumption, a
prediction consistent with an in vitro study showing P. aeruginosa anaerobic production
of the LldA enzyme catalyzing D-lactate synthesis (60).

When Pseudomonas abundances were predicted to be relatively low (average of
32%), metabolite cross-feeding remained dominated by Pseudomonas consumption of
secreted by-products and amino acids (Fig. 8C). Pseudomonas was predicted to have
high consumption rates of formate produced by all three other species and L-lactate
synthesized only by Streptococcus, consistent with the ability of Streptococcus salivarius
(61) and P. aeruginosa (49) to synthesize and consume L-lactate, respectively. Higher
exchange rates between Streptococcus and Staphylococcus were predicted when Pseu-
domonas abundances were relatively low (Fig. 8E). The two species cross-fed alanine
and L-lactate produced by Streptococcus and aspartate and ethanol secreted by Staph-
ylococcus. Our predicted cross-feeding relationships in Pseudomonas- and Streptococcus-
dominated communities could provide insights into CF disease progression, as high
abundances of Streptococcus relative to Pseudomonas have been shown to correlate
with higher-diversity airway communities and improved CF clinical stability (30).
Younger CF patients also are known to have more diverse airway communities (62), so
such interpretations would need to be made with care.

DISCUSSION

The airways of cystic fibrosis (CF) patients are commonly infected by complex
communities of interacting bacteria, fungi, and viruses which complicate disease
assessment and treatment. The unique bacterial communities resident in individual

FIG 8 Predicted metabolite cross-feeding relationships for 14-species communities without Escherichia, Burkholderia, and Achromobacter. One
thousand model ensemble simulations were performed and split into 500 cases with relatively high Pseudomonas abundances and 500 cases with
relatively low Pseudomonas abundances. (A) Average abundances of the five most highly represented species for the high- and low-Pseudomonas-
abundance cases. (B) Average exchange rates of the five highest cross-fed metabolites between the four most abundant species for high-
Pseudomonas-abundance cases. (C) Average exchange rates of the five highest cross-fed metabolites between the four most abundant species
for low-Pseudomonas-abundance cases. (D) Schematic representation of overall metabolite exchange rates for high-Pseudomonas-abundance
cases corresponding to panel B. (E) Schematic representation of overall metabolite exchange rates for low-Pseudomonas-abundance cases
corresponding to panel C.
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patients can be longitudinally resolved to the genus level by applying 16S rRNA gene
amplicon library sequencing to sputum and bronchoscopy samples (8). While 16S rRNA
gene sequencing technology provides an unprecedented capability to identify bacterial
pathogens in the CF lung, other analyses are required to understand how community
members interact and how these interactions impede or promote disease progression.
Metabolomics represents a powerful tool to interrogate the complex metabolic envi-
ronment of the CF lung (63), but the number and depth of studies published to date
have been limited. Metabolic modeling is a complementary tool for probing complex
microbial communities and their interactions mediated through competition for host-
derived nutrients and cross-feeding of secreted metabolites (13). Community metabolic
models can provide information difficult to obtain by purely experimental means, such
as the combined impact of nutrient environment and metabolic interactions on com-
munity composition. Metabolic models also can predict the rates of metabolite ex-
change between species and identify cross-feeding relationships difficult to delineate
through metabolomic analyses.

We used 16S rRNA gene sequence data from three published studies (28–30) to
construct and test a metabolic model for prediction of airway community compositions
in adult CF patients. The assembled data set consisted of 75 distinct samples from 46
patients who were judged to be stable or recovered from treatment in the original
studies. Principal-component analysis performed on 16S read data showed consider-
able heterogeneity of community composition across the 75 samples, including three
patients infected with Enterobacteriaceae, Burkholderia, and Achromobacter pathogens.
Interestingly, each of these three patients was infected by only one of these “rare”
pathogens, a characteristic we used to simplify our metabolic model simulations. The
remaining 67 samples from 43 patients were largely dominated by Pseudomonas
and/or Streptococcus but still exhibited substantial composition heterogeneity, which
provided a sufficiently rich data set to explore sample-to-sample variability.

The community metabolic model was constructed by ranking the identified taxa
according to their total reads across the 75 samples and representing each taxonomic
group with a single genome-scale metabolic reconstruction obtained from the AGORA
database (www.vmh.life) (21). To limit model complexity, only the 17 top-ranked taxa
(16 genera and 1 combined family/genus) were included. The resulting in silico com-
munity contained the most common CF pathogens (Pseudomonas aeruginosa, Haemo-
philus influenzae, and Staphylococcus aureus), “rare” pathogens (Escherichia coli, Burk-
holderia cepacia, and Achromobacter xylosoxidans), and 11 other species commonly
observed in the CF sputum samples (e.g., Prevotella melaninogenica, Rothia mucilagi-
nosa, Fusobacterium nucleatum). The 17 modeled taxa provided substantial coverage of
the read data with an average coverage of 95.6% � 3.9% across the 75 samples.
Because our in silico objective of growth rate maximization tends to produce low-
diversity communities dominated by �5 species (41), the relatively low diversity of
these adult CF lung samples made them particularly well suited for analysis through
metabolic modeling compared to considerably more diverse bacterial communities
found elsewhere in the human body (e.g., the intestinal tract [41, 64] and chronic
wounds [65]).

The community metabolic model required specification of host-derived nutrients
that mimicked the CF lung environment in terms of the nutrients available, their
allowed uptake rates across the community, and their allowed uptake rates by indi-
vidual species. Given that the 17-species model contained 271 community uptake rates
and a total of 2,378 species-specific uptake rates, a model tuning method was devel-
oped to manage the daunting complexity. A putative list of host-derived nutrients
was compiled by starting with the synthetic sputum medium SCFM2 (66) and
adding other nutrients either required for monoculture growth of at least one
modeled species, measured in metabolomic analyses of CF sputum samples, or
identified through in silico analyses. The resulting 81 nutrients were separated into 14
distinct groups (see Table S3 in the supplemental material) to facilitate tuning of
nominal community uptake rates to qualitatively match average read data for the rare
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pathogen samples and the Pseudomonas/Streptococcus-dominated samples. This tun-
ing process proved to be the bottleneck of model development even under the
simplifying assumption that the species uptake rates were not limiting. A more stream-
lined and experimentally driven tuning process would be facilitated by the availability
of matched 16S and metabolomics data for large sets of CF sputum samples.

Despite the challenges associated with defining physiologically relevant nutrient
uptake rates, the community model was able to predict species abundance in quali-
tative agreement with average read data for Enterobacteriaceae-, Burkholderia-,
Achromobacter-, and Pseudomonas/Streptococcus-dominated samples. The modeling
effort was simplified by omitting the other two rare pathogens when simulating the 3
Enterobacteriaceae-, 3 Burkholderia-, and 2 Achromobacter-containing samples and
omitting all three rare pathogens when simulating the other 67 samples, as justified
through analysis of the 16S rRNA gene sequence data. The 15-species models used to
simulate the rare-pathogen-containing samples were able to reproduce dominance of
the associated pathogen and, to a lesser extent, the abundances of less prevalent
species. However, satisfactory prediction of the 2 Achromobacter-containing samples
required the addition of four carbon sources (arabinose, fumarate, galactonate, and
xylose) which have not been measured in the CF lung to our knowledge. While there
is some experimental evidence to support their inclusion, the need to add these four
metabolites to elevate in silico Achromobacter growth could point to limitations of the
modeled nutrients and their defined uptake rates.

The 14-species model used to simulate the rare-pathogen-free samples predicted
that Pseudomonas and Streptococcus would be the dominant genera and that Prevotella
and Staphylococcus also would be present in the community. These predictions pro-
vided qualitative agreement with the 16S rRNA gene sequence read data averaged
across the 67 samples, although the predicted abundance of Prevotella was compara-
tively high and the predicted diversity was comparatively low. Given the uncertainty
associated with identifying host-derived nutrients and translating these available nu-
trients into appropriate community uptake rates, we considered our predictions to
provide satisfactory in silico recapitulation of measured community compositions
across the set of four dominant CF pathogens.

A hallmark of CF lung infections is poorly understood differences in bacterial
community compositions between patients and in longitudinal samples collected from
a single patient (42). We performed simulations to test the hypothesis that these
differences might be partially attributable to sample-to-sample variations in the nutri-
ent environment in the CF lung. Nutrient variability was simulated by randomizing the
community uptake rates around their nominal values found through manual model
tuning. We performed 100 model ensemble simulations for each 15-species community
containing a rare pathogen to determine if the associated patient samples could be
well fitted by a simulated sample. Using comparative plots of the measured reads and
predicted abundances, we found that the model ensembles could satisfactorily repro-
duce the community compositions of the 8 rare-pathogen-containing samples. The
best-fit models tended to provide good predictions of rare pathogen reads due to their
relatively large values (average of 65% across the 8 samples), while the accuracy of read
predictions for less prevalent species was more variable.

Due to the availability of a much larger data set of 67 patient samples, the
rare-pathogen-free model consisting of 14 species afforded an opportunity to investi-
gate sample-to-sample heterogeneity in more depth. We performed 1,000 model
ensemble simulations with randomized nutrient uptake rates to find best-fit models.
Patient samples with relatively high Pseudomonas reads tended to be well fit because
the model predicted Pseudomonas dominance over a wide range of nutrient conditions.
Less accurate but still satisfactory fits were obtained for patient samples with moderate
Pseudomonas and relatively high Streptococcus reads. The model ensemble proved
somewhat deficient in fitting samples with high reads of Prevotella or of the less
common genera Haemophilus, Rothia, and Fusobacterium. This deficiency could be
attributable to the in silico lung environment not containing key nutrients and/or not
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specifying sufficiently high uptake rates of supplied nutrients to support high abun-
dances of these genera.

The quality of sample fits also was correlated with the sample diversity, with the best
fits having the lowest average diversity (inverse Simpson index of 0.10), moderate fits
having an intermediate average diversity (inverse Simpson index of 0.18), and poor fits
having the highest average diversity (inverse Simpson index of 0.23). For these three
sets of samples, the best-fit models had average diversities of 0.10, 0.16, and 0.20,
respectively. We believe that the lower predicted diversities were attributable to the
modeling assumption that the CF lung community maximizes its collective growth rate.
Using a community metabolic model of the human gut microbiota (41), we have shown
that increased bacterial diversity (typically associated with health) can be achieved by
simulating suboptimal growth rates under the hypothesis that disease progression
correlates with a collective movement toward maximal growth. Therefore, the assump-
tion of maximal community growth may inherently limit our ability to accurately
reproduce more diverse samples and rather simulate conditions associated with dis-
ease, such as dominance of a single pathogen.

By optimizing cross-feeding of secreted metabolites, the community model was able
to predict the coexistence of multiple species at the maximal community growth rate
rather than just predicting a monoculture of the single species with the highest
monoculture growth rate. Because the SteadyCom method (27) used to formulate and
solve the community model does not allow direct incorporation of mechanisms by
which one species could inhibit the growth of another species other than by nutrient
competition, the predicted community growth rate always was higher than the highest
individual growth rate of the coexisting species. Consequently, the formulated model
was incapable was capturing more complex interactions such as Pseudomonas secre-
tion of diffusible toxins that inhibit the growth of other CF pathogens (67).

Despite this limitation, the community model could be analyzed to understand the
putative role of metabolite cross-feeding in shaping community composition. The
model predicted that the rare pathogens Escherichia and Burkholderia were particularly
efficient cross-feeders, using acetate, formate, and other secreted metabolites to es-
tablish dominance over less harmful bacteria. In contrast, the model predicted Achro-
mobacter to be substantially less adept at exploiting secreted metabolites for growth
enhancement. While we were able to simulate Achromobacter dominance through
addition of four carbon sources possibly present in the CF lung, the model suggested
that other nonmodeled mechanisms may be involved in promoting Achromobacter
expansion. One possibility is that Achromobacter utilizes its ability to form multispecies
biofilms (46, 68) to establish favorable metabolic niches for enhanced growth.

In the absence of the three rare pathogens, the model predicted that Pseudomonas
would be the primary beneficiary of cross-fed metabolites, including acetate, alanine,
and L-lactate from Streptococcus and aspartate, ethanol, and formate from Staphylo-
coccus. Similar cross-feeding relationships have been observed in an in vitro coculture
system in which P. aeruginosa consumed alanine and lactate secreted by R. mucilagi-
nosa (69). The predicted cross-feeding behavior was an emergent property of the
community model that could not be predicted from monoculture simulations and is
consistent with published experimental data presented above. For example, the single-
species models predicted that acetate, CO2, and formate would be the primary secreted
by-products, yet the community model also cross-fed ethanol, D-lactate, L-lactate, and
succinate, which were not predicted to be secreted in any monoculture simulation. We
hypothesized that model ensemble simulations with relatively high and low Pseudomo-
nas abundances would show differential cross-feeding patterns. While some of the
specific cross-fed metabolites changed between the two cases, cross-feeding from
Streptococcus and Staphylococcus to Pseudomonas remained the dominant feature of
the simulated communities. In our assimilated data set of 75 patient samples, Pseu-
domonas reads were above 10% in 55 samples and above 50% in 35 samples. Our
model predictions provide putative metabolic mechanisms that may help explain why
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Pseudomonas so efficiently colonizes the adult CF lung and why Pseudomonas com-
monly establishes dominance over other species once colonized.

Our community metabolic model generated several predictions that could be tested
experimentally with an appropriately designed in vitro community. For example, a
5-species in vitro system consisting of Pseudomonas aeruginosa, Streptococcus sanguinis,
Prevotella melaninogenica, Haemophilus influenzae, and Staphylococcus aureus would
provide substantial coverage of our 16S rRNA gene sequencing data, as the five genera
accounted for an average of 87% of normalized reads across the 67 rare-pathogen-free
samples and greater than 75% of normalized reads in 56 of these samples. Specific
model predictions that could be tested in vitro include the variability of community
compositions by changing nutrient levels in a synthetic CF medium and the cross-
feeding of specific metabolites by genetically altering the secretion and/or uptake
capabilities of these metabolites in the relevant species. The availability of such in vitro
data linking the nutrient environment, cross-feeding mechanisms, and community
composition would allow direct testing of a simplified 5-species model and facilitate
the development of improved community models for the analysis of CF sputum
samples.

MATERIALS AND METHODS
Patient data. CF airway community composition data were obtained from three published studies

in which patient sputum samples were subjected to 16S rRNA gene amplicon library sequencing (28–30).
The first study (28) included 30 samples from 10 clinically stable adults ranging in age from 20 to 50 years
with an average age of 35 years, the second study (29) included 23 samples from 14 adults in clinically
defined baseline and recovery stages ranging in age from 18 to 69 years with an average age of 34 years,
and the third study (30) included 22 samples from 22 clinically stable adults ranging in age from 19 to
52 years with an average age of 28 years. Thus, in total, the assimilated data set contained 75 distinct
samples from 46 patients who were clinically stable or recovered from treatment for an exacerbation
event. Additional samples from these three studies corresponding to exacerbation or antibiotic treat-
ment were not included in the modeled data set to avoid the complications of predicting these events.
The top 72 taxonomic groups (typically genera) accounted for over 99.8% of total reads across the 75
samples (Fig. 1A; also see Table S6 in the supplemental material). To limit complexity, the community
metabolic model described below was limited to 17 taxonomic groups that accounted for 95.6% of total
reads (Fig. 1B; Table S4). Reads from the family Enterobacteriaceae and the genus Escherichia were
combined and represented as a single genus. To allow direct comparison with the species abundances
predicted by the model, the reads for each sample were normalized over the 17 modeled genera to sum
to unity (Table S5).

Community metabolic model. For simplicity, each genus was represented by a single species
commonly observed in CF airway communities (1, 6–9, 70), although we note that genera such as
Streptococcus (30) can have considerably diversity with respect to species representation. As mentioned
above, the combined Enterobacteriaceae/Escherichia taxonomic group was represented by the single
species Escherichia coli. A genome-scale metabolic reconstruction for each species (Fig. 1C) was obtained
from a large database of AGORA models (21) (www.vmh.life). Table 1 lists the representative strain used
for each genus, the normalized reads fractionally associated with each genus averaged across the 75
samples (also shown in Fig. 1B), and the number of samples for which the normalized reads exceeded
1%. The community model accounted for 13,845 genes, 19,034 metabolites, and 22,412 reactions within
the 17 species as well as 271 uptake and secretion reactions for the extracellular space shared by the
species.

The genera Pseudomonas, Streptococcus, and Prevotella dominated most communities, in terms of
both average reads for individual samples and the number of samples in which they exceeded 1%.
Interestingly, Enterobacteriaceae/Escherichia, Burkholderia, and Achromobacter exceeded 0.1% in only
single patients represented by 3, 3, and 2 samples, respectively. Moreover, no patients were infected by
more than one of these “rare” pathogens, as the maximum reads of the other two pathogens never
exceeded 0.1% in these 8 samples. Therefore, for modeling purposes the 75 samples were partitioned
into 3 Enterobacteriaceae/Escherichia-containing samples with Burkholderia and Achromobacter absent, 3
Burkholderia-containing samples with Enterobacteriaceae/Escherichia and Achromobacter absent, 2
Achromobacter-containing samples with Enterobacteriaceae/Escherichia and Burkholderia absent, and 67
samples with all three rare pathogens absent.

Model tuning and simulation. The nutrient environment in the CF lung is complex and expected
to vary between patients as well as between longitudinal samples for individual patients depending on
disease state. While metabolomic analyses have been performed on CF sputum and bronchoscopy
samples (42, 63, 70, 71), these studies were insufficient to define supplied nutrients for the metabolic
model due to their limited metabolite coverage. Furthermore, we found that based on our model, the
synthetic sputum medium SCFM2 used in previous in vitro CF microbiota studies (66, 72) would not
support growth of any of the 17 modeled species due to the lack of ions (Co2�, Cu2�, Mn2�, and Zn2�),
amino acids (asparagine and glutamine), and other metabolites (see below) essential for growth. While
the medium likely would contain trace amounts of the missing ions, the requirement of these other
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metabolites for growth suggests limitations for the AGORA metabolic models with respect to biosyn-
thetic pathways leading to biomass formation. Given the semicurated nature of the AGORA models (21),
such discrepancies were expected and had to be addressed by adding the missing essential metabolites
to the modeled medium. A final complication was that the community model required specification of
nutrient uptake rates, which were unknown even if medium component concentrations were specified
due to the lack of species-dependent uptake kinetics for each nutrient. Because such uptake information
is rarely available even for highly studied model organisms such as Escherichia coli (73), a simplified
approach was used to define nutrient uptake rates for the community model.

Supplied nutrients in the community model were defined by starting with the SCFM2 medium and
adding the four ions and two amino acids listed above. We found that each species required additional
metabolites in the medium to support biomass formation. These 29 additional metabolites were
identified and added to the modeled medium such that all 17 species were capable of monoculture
growth (see Table S3). For example, the P. aeruginosa model required addition of uracil and menaqui-
none 7, while in vitro experiments have shown that these metabolites are synthesized de novo and not
required in the medium (66). Next, we added four carbon sources (fructose, maltose, maltotriose, and
pyruvate) and 8 other metabolites (adenosine, cytidine, glycerol, guanosine, hexadecanoate, inosine,
octadecenoate, and uridine) measured in the CF lung (71) and the terminal electron acceptor O2 to
simulate aerobic respiration. Finally, we added four additional carbon sources (arabinose, fumarate,
galactonate, and xylose) that increased in silico Achromobacter growth such that Achromobacter would
be competitive with other species when it was present in the community. While these carbon sources
were identified in silico, there is experimental evidence to support their inclusion in the simulated CF lung
environment. Fumarate has been shown to be elevated in sputum samples from young CF patients (74).
Arabinose and xylose are constituents of extracellular polymer substance (EPS) produced by common
human pathogens, including the modeled genera Pseudomonas, Staphylococcus, and Escherichia (75),
suggesting their possible presence in the CF lung. Pathogenic Achromobacter strains isolated from CF
patients have been shown to grow on galactonate as a sole carbon source (76), supporting the
hypothesis that Achromobacter has evolved to utilize galactonate available in the CF lung.

The community uptake rates of the 86 supplied nutrients were tuned by trial and error to produce species
abundances in approximate agreement with the average reads listed in Table 1, which were derived from
actual patient samples. To reduce the number of adjustable rates, the nutrients were grouped together and
a single uptake rate was used for each group. These 14 groups (Table S3) were defined as follows: group
1, 16 common metals and ions; group 2, 29 essential growth metabolites; group 3, 8 CF lung metabolites;
group 4, 19 amino acids; group 5, the amino acids alanine and valine, which have been reported to be
elevated in the CF lung compared to other amino acids (71); groups 6 to 11, each of the 6 carbon sources
available in the CF lung; group 12, O2; group 13, NO3; and group 14, 4 Achromobacter-related carbon
sources. The 86 nutrients and their nominal community uptake rates determined through this tuning
procedure are listed in Table S4 and depicted graphically in Fig. 1D.

Because these nutrient uptakes rates were derived for the entire patient population and not an
individual patient sample, a different strategy was used to simulate sample-to-sample heterogeneity
based on the hypothesis that differences in nutrient availability could account for heterogeneity in
measured reads. Individual patient samples were simulated by randomly perturbing the community
uptake rate for each of the 14 nutrient groups listed above between 33% and 300% of its nominal value.
Uniformly distributed random numbers were generated for each group such that the numbers of cases
with the uptake rates in the ranges 33% to 100% and 100% to 300% were statistically equal. The bounds
used for the uptake rate of each metabolite also are listed in Table S3. The CF lung is known to exhibit
sharp O2 gradients such that some regions are hypoxic or even anoxic (77, 78). The community model
accounted for the effects of the average O2 level through the randomized uptake rates. At the nominal
oxygen uptake rate of 5 mmol/g dry weight (gDW)/h in Table S3, the 17 species had an average growth
rate of 0.140 h�1. At the low oxygen uptake value of 1.67 mmol/gDW/h, the 17 species had an average
growth rate of 0.096 h�1. Given that the maximum O2 uptake rate of E. coli has been reported as
20 mmol/gDW/h (79), the range of O2 uptake rates in Table S4 spans from highly to moderately hypoxic
lung environments.

Community simulations. We used the SteadyCom method (27) to perform steady-state community
simulations as detailed in our previous study on the human gut microbiota (41). SteadyCom performs
community flux balance analysis by computing the relative abundance of each species for maximal
community growth while ensuring that all metabolites are properly balanced within each species and
across the community. This simulation method is based on several simplifying assumptions, including
that each sputum sample was obtained from a spatially homogeneous region of the CF lung, that all
modeled species have an equal opportunity to colonize the airway, and that all propagating species have
the same growth rate at steady state. Therefore, the community model was not capable of predicting
sequential colonization by various species (45) or different growth rates of propagating species (80). Each
species model used a non-growth-associated ATP maintenance (ATPM) value of 5 mmol/gDW/h, which
is within the range reported for curated bacterial reconstructions. Cross-feeding of all 21 amino acids and
8 common metabolic by-products (acetate, CO2, ethanol, formate, H2, D-lactate, L-lactate, and succinate)
was promoted by increasing the maximum nutrient uptake rates of these nutrients in each species model
to 2.5 and 5 mmol/gDW/h, respectively. The nominal nutrient uptake rates produced a single community
not directly comparable to any single patient sample (Fig. 1E), while each set of randomized uptake rates
produced a unique community that was interpreted as a prediction of an individual patient sample
(Fig. 1F). Outputs of each SteadyCom simulation included the community growth rate, the abundance
of each species, and species-dependent uptake and secretion rates of each extracellular metabolite. The
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overall difference between the normalized reads and the predicted species abundances for a single
patient sample was quantified with the least-squares error measure,

� � �
i�1

n

�pi � p^i�2

where pi is the normalized reads for species i (Table S8), p^i is the predicted abundance of species i, and
n � 17 is the number of species in the community model. Least-squares errors are a common measure
of the differences between two vectors. The error measure is relative in the sense that smaller values are
preferred, but the specific value that delineates “good” and “poor” model fits is problem dependent.

Data availability. All data used for metabolic model development and testing are provided in the
supplemental material.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSystems.00026-19.
TABLE S1, XLSX file, 0.01 MB.
TABLE S2, XLSX file, 0.01 MB.
TABLE S3, XLSX file, 0.02 MB.
TABLE S4, XLSX file, 0.01 MB.
TABLE S5, XLSX file, 0.01 MB.
TABLE S6, XLSX file, 0.1 MB.
TABLE S7, XLSX file, 0.03 MB.
TABLE S8, XLSX file, 0.1 MB.

ACKNOWLEDGMENTS
We acknowledge the NIH grants U01-EB019416 (M.A.H. and P.P.), R37 AI83256-06

(G.A.O.), and T32-AI007519 (G.O.) for partial support of this research. This work was
supported in part by a Fellowship from the University of Massachusetts to Poonam
Phalak as part of the Biotechnology Training Program (National Research Service Award
T32-GM108556).

REFERENCES
1. Lyczak JB, Cannon CL, Pier GB. 2002. Lung infections associated with

cystic fibrosis. Clin Microbiol Rev 15:194 –222. https://doi.org/10.1128/
CMR.15.2.194-222.2002.

2. Tang AC, Turvey SE, Alves MP, Regamey N, Tümmler B, Hartl D. 2014.
Current concepts: host-pathogen interactions in cystic fibrosis airways
disease. Eur Respir Rev 23:320 –332. https://doi.org/10.1183/09059180
.00006113.

3. Bronstein M, Sokol R, Abman S, Chatfield B, Hammond K, Hambidge K,
Stall C, Accurso F. 1992. Pancreatic insufficiency, growth, and nutrition in
infants identified by newborn screening as having cystic fibrosis. J
Pediatr 120:533–540. https://doi.org/10.1016/S0022-3476(05)82478-3.

4. Orrskog S, Medin E, Tsolova S, Semenza JC. 2013. Causal inference
regarding infectious aetiology of chronic conditions: a systematic re-
view. PLoS One 8:e68861. https://doi.org/10.1371/journal.pone.0068861.

5. Govan J, Nelson J. 1993. Microbiology of cystic fibrosis lung infections:
themes and issues. J R Soc Med 86:11.

6. LiPuma JJ. 2010. The changing microbial epidemiology in cystic fibrosis.
Clin Microbiol Rev 23:299 –323. https://doi.org/10.1128/CMR.00068-09.

7. Filkins LM, O’Toole GA. 2015. Cystic fibrosis lung infections: polymicro-
bial, complex, and hard to treat. PLoS Pathog 11:e1005258. https://doi
.org/10.1371/journal.ppat.1005258.

8. Lynch SV, Bruce KD. 2013. The cystic fibrosis airway microbiome. Cold
Spring Harb Perspect Med 3:a009738. https://doi.org/10.1101/cshperspect
.a009738.

9. Van Der Gast CJ, Walker AW, Stressmann FA, Rogers GB, Scott P, Daniels
TW, Carroll MP, Parkhill J, Bruce KD. 2011. Partitioning core and satellite
taxa from within cystic fibrosis lung bacterial communities. ISME J 5:780.
https://doi.org/10.1038/ismej.2010.175.

10. O’Toole GA. 2018. Cystic fibrosis airway microbiome: overturning the
old, opening the way for the new. J Bacteriol 200:e00561-17. https://doi
.org/10.1128/JB.00561-17.

11. Layeghifard M, Li H, Wang PW, Donaldson SL, Coburn B, Clark ST, Caballero
JD, Zhang Y, Tullis DE, Yau YCW, Waters V, Hwang DM, Guttman DS. 2019.
Microbiome networks and change-point analysis reveal key community

changes associated with cystic fibrosis pulmonary exacerbations. NPJ
Biofilms Microbiomes 5:4. https://doi.org/10.1038/s41522-018-0077-y.

12. Quinn RA, Whiteson K, Lim YW, Zhao J, Conrad D, LiPuma JJ, Rohwer F,
Widder S. 2016. Ecological networking of cystic fibrosis lung infections.
NPJ Biofilms Microbiomes 2:4. https://doi.org/10.1038/s41522-016
-0002-1.

13. Perez-Garcia O, Lear G, Singhal N. 2016. Metabolic network modeling of
microbial interactions in natural and engineered environmental systems.
Front Microbiol 7:673. https://doi.org/10.3389/fmicb.2016.00673.

14. Hanemaaijer M, Röling WF, Olivier BG, Khandelwal RA, Teusink B, Brug-
geman FJ. 2015. Systems modeling approaches for microbial community
studies: from metagenomics to inference of the community structure.
Front Microbiol 6:213. https://doi.org/10.3389/fmicb.2015.00213.

15. Freilich S, Zarecki R, Eilam O, Segal ES, Henry CS, Kupiec M, Gophna U,
Sharan R, Ruppin E. 2011. Competitive and cooperative metabolic inter-
actions in bacterial communities. Nat Commun 2:589. https://doi.org/10
.1038/ncomms1597.

16. Shoaie S, Karlsson F, Mardinoglu A, Nookaew I, Bordel S, Nielsen J. 2013.
Understanding the interactions between bacteria in the human gut
through metabolic modeling. Sci Rep 3:2532. https://doi.org/10.1038/
srep02532.

17. Heinken A, Thiele I. 2015. Anoxic conditions promote species-specific
mutualism between gut microbes in silico. Appl Environ Microbiol 81:
4049 – 4061. https://doi.org/10.1128/AEM.00101-15.

18. Levy R, Borenstein E. 2013. Metabolic modeling of species interaction in
the human microbiome elucidates community-level assembly rules. Proc
Natl Acad Sci U S A 110:12804 –12809. https://doi.org/10.1073/pnas
.1300926110.

19. Pinto F, Medina DA, Pérez-Correa JR, Garrido D. 2017. Modeling meta-
bolic interactions in a consortium of the infant gut microbiome. Front
Microbiol 8:2507. https://doi.org/10.3389/fmicb.2017.02507.

20. Cuevas DA, Edirisinghe J, Henry CS, Overbeek R, O’Connell TG, Edwards
RA. 2016. From DNA to FBA: how to build your own genome-scale

Henson et al.

March/April 2019 Volume 4 Issue 2 e00026-19 msystems.asm.org 18

https://doi.org/10.1128/mSystems.00026-19
https://doi.org/10.1128/mSystems.00026-19
https://doi.org/10.1128/CMR.15.2.194-222.2002
https://doi.org/10.1128/CMR.15.2.194-222.2002
https://doi.org/10.1183/09059180.00006113
https://doi.org/10.1183/09059180.00006113
https://doi.org/10.1016/S0022-3476(05)82478-3
https://doi.org/10.1371/journal.pone.0068861
https://doi.org/10.1128/CMR.00068-09
https://doi.org/10.1371/journal.ppat.1005258
https://doi.org/10.1371/journal.ppat.1005258
https://doi.org/10.1101/cshperspect.a009738
https://doi.org/10.1101/cshperspect.a009738
https://doi.org/10.1038/ismej.2010.175
https://doi.org/10.1128/JB.00561-17
https://doi.org/10.1128/JB.00561-17
https://doi.org/10.1038/s41522-018-0077-y
https://doi.org/10.1038/s41522-016-0002-1
https://doi.org/10.1038/s41522-016-0002-1
https://doi.org/10.3389/fmicb.2016.00673
https://doi.org/10.3389/fmicb.2015.00213
https://doi.org/10.1038/ncomms1597
https://doi.org/10.1038/ncomms1597
https://doi.org/10.1038/srep02532
https://doi.org/10.1038/srep02532
https://doi.org/10.1128/AEM.00101-15
https://doi.org/10.1073/pnas.1300926110
https://doi.org/10.1073/pnas.1300926110
https://doi.org/10.3389/fmicb.2017.02507
https://msystems.asm.org


metabolic model. Front Microbiol 7:907. https://doi.org/10.3389/fmicb
.2016.00907.

21. Magnúsdóttir S, Heinken A, Kutt L, Ravcheev DA, Bauer E, Noronha A,
Greenhalgh K, Jäger C, Baginska J, Wilmes P, Fleming RMT, Thiele I. 2016.
Generation of genome-scale metabolic reconstructions for 773 mem-
bers of the human gut microbiota. Nat Biotechnol 35:81. https://doi.org/
10.1038/nbt.3703.

22. Faria JP, Rocha M, Rocha I, Henry CS. 2018. Methods for automated
genome-scale metabolic model reconstruction. Biochem Soc Trans 46:
931–936. https://doi.org/10.1042/BST20170246.

23. Khandelwal RA, Olivier BG, Röling WF, Teusink B, Bruggeman FJ. 2013.
Community flux balance analysis for microbial consortia at balanced
growth. PLoS One 8:e64567. https://doi.org/10.1371/journal.pone.0064567.

24. Zomorrodi AR, Maranas CD. 2012. OptCom: a multi-level optimization
framework for the metabolic modeling and analysis of microbial com-
munities. PLoS Comput Biol 8:e1002363. https://doi.org/10.1371/journal
.pcbi.1002363.

25. Heinken A, Thiele I. 2015. Systematic prediction of health-relevant human-
microbial co-metabolism through a computational framework. Gut Mi-
crobes 6:120–130. https://doi.org/10.1080/19490976.2015.1023494.

26. Shoaie S, Ghaffari P, Kovatcheva-Datchary P, Mardinoglu A, Sen P,
Pujos-Guillot E, de Wouters T, Juste C, Rizkalla S, Chilloux J, Hoyles L,
Nicholson JK, Dore J, Dumas ME, Clement K, Bäckhed F, Nielsen J. 2015.
Quantifying diet-induced metabolic changes of the human gut micro-
biome. Cell Metabolism 22:320 –331. https://doi.org/10.1016/j.cmet.2015
.07.001.

27. Chan SHJ, Simons MN, Maranas CD. 2017. SteadyCom: predicting micro-
bial abundances while ensuring community stability. PLoS Comput Biol
13:e1005539. https://doi.org/10.1371/journal.pcbi.1005539.

28. Hampton TH, Green DM, Cutting GR, Morrison HG, Sogin ML, Gifford AH,
Stanton BA, O’Toole GA. 2014. The microbiome in pediatric cystic fibrosis
patients: the role of shared environment suggests a window of inter-
vention. Microbiome 2:14. https://doi.org/10.1186/2049-2618-2-14.

29. Price KE, Hampton TH, Gifford AH, Dolben EL, Hogan DA, Morrison HG,
Sogin ML, O’Toole GA. 2013. Unique microbial communities persist in
individual cystic fibrosis patients throughout a clinical exacerbation.
Microbiome 1:27. https://doi.org/10.1186/2049-2618-1-27.

30. Filkins L, Hampton T, Gifford A, Gross M, Hogan D, Sogin M, Morrison H,
Paster B, O’Toole G. 2012. The prevalence of streptococci and increased
polymicrobial diversity associated with cystic fibrosis patient stability. J
Bacteriol 194:4709 – 4717. https://doi.org/10.1128/JB.00566-12.

31. Bartell JA, Blazier AS, Yen P, Thøgersen JC, Jelsbak L, Goldberg JB, Papin
JA. 2017. Reconstruction of the metabolic network of Pseudomonas
aeruginosa to interrogate virulence factor synthesis. Nat Commun
8:14631. https://doi.org/10.1038/ncomms14631.

32. Oberhardt MA, Goldberg JB, Hogardt M, Papin JA. 2010. Metabolic
network analysis of Pseudomonas aeruginosa during chronic cystic fibro-
sis lung infection. J Bacteriol 192:5534 –5548. https://doi.org/10.1128/JB
.00900-10.

33. Heinemann M, Kümmel A, Ruinatscha R, Panke S. 2005. In silico genome�
scale reconstruction and validation of the Staphylococcus aureus meta-
bolic network. Biotechnol Bioeng 92:850 – 864. https://doi.org/10.1002/
bit.20663.

34. Bosi E, Monk JM, Aziz RK, Fondi M, Nizet V, Palsson BØ. 2016. Compar-
ative genome-scale modelling of Staphylococcus aureus strains identifies
strain-specific metabolic capabilities linked to pathogenicity. Proc
Natl Acad Sci U S A 113:E3801–E38E9. https://doi.org/10.1073/pnas
.1523199113.

35. Fang K, Zhao H, Sun C, Lam CM, Chang S, Zhang K, Panda G, Godinho M,
dos Santos VAM, Wang J. 2011. Exploring the metabolic network of the
epidemic pathogen Burkholderia cenocepacia J2315 via genome-scale
reconstruction. BMC Syst Biol 5:83. https://doi.org/10.1186/1752-0509
-5-83.

36. Bartell JA, Yen P, Varga JJ, Goldberg JB, Papin JA. 2014. Comparative
metabolic systems analysis of pathogenic Burkholderia. J Bacteriol 196:
210 –226. https://doi.org/10.1128/JB.00997-13.

37. Noecker C, Eng A, Srinivasan S, Theriot CM, Young VB, Jansson JK,
Fredricks DN, Borenstein E. 2016. Metabolic model-based integration of
microbiome taxonomic and metabolomic profiles elucidates mechanis-
tic links between ecological and metabolic variation. mSystems
1:e00013-15. https://doi.org/10.1128/mSystems.00013-15.

38. Magnúsdóttir S, Thiele I. 2018. Modeling metabolism of the human gut
microbiome. Curr Opin Biotechnol 51:90 –96. https://doi.org/10.1016/j
.copbio.2017.12.005.

39. Heinken A, Ravcheev DA, Baldini F, Heirendt L, Fleming RM, Thiele I.
2017. Personalized modeling of the human gut microbiome reveals
distinct bile acid deconjugation and biotransformation potential in
healthy and IBD individuals. bioRxiv https://doi.org/10.1101/229138.

40. Hogan DA, Willger SD, Dolben EL, Hampton TH, Stanton BA, Morrison
HG, Sogin ML, Czum J, Ashare A. 2016. Analysis of lung microbiota in
bronchoalveolar lavage, protected brush and sputum samples from
subjects with mild-to-moderate cystic fibrosis lung disease. PLoS One
11:e0149998. https://doi.org/10.1371/journal.pone.0149998.

41. Henson MA, Phalak P. 2018. Suboptimal community growth mediated
through metabolite crossfeeding promotes species diversity in the gut
microbiota. PLoS Comput Biol 14:e1006558. https://doi.org/10.1371/
journal.pcbi.1006558.

42. Quinn RA, Phelan VV, Whiteson KL, Garg N, Bailey BA, Lim YW, Conrad
DJ, Dorrestein PC, Rohwer FL. 2016. Microbial, host and xenobiotic
diversity in the cystic fibrosis sputum metabolome. ISME J 10:1483.
https://doi.org/10.1038/ismej.2015.207.

43. Nobakht BF, Aliannejad R, Rezaei-Tavirani M, Taheri S, Oskouie AA. 2015.
The metabolomics of airway diseases, including COPD, asthma and
cystic fibrosis. Biomarkers 20:5–16. https://doi.org/10.3109/1354750X
.2014.983167.

44. Quinn RA, Lim YW, Mak TD, Whiteson K, Furlan M, Conrad D, Rohwer F,
Dorrestein P. 2016. Metabolomics of pulmonary exacerbations reveals
the personalized nature of cystic fibrosis disease. PeerJ 4:e2174. https://
doi.org/10.7717/peerj.2174.

45. Flynn JM, Niccum D, Dunitz JM, Hunter RC. 2016. Evidence and role for
bacterial mucin degradation in cystic fibrosis airway disease. PLoS Pat-
hog 12:e1005846. https://doi.org/10.1371/journal.ppat.1005846.

46. Abdouchakour F, Dupont C, Grau D, Aujoulat F, Mournetas P, Marchan-
din H, Parer S, Gibert P, Valcarcel J, Jumas-Bilak E. 2015. Pseudomonas
aeruginosa and Achromobacter sp. clonal selection leads to successive
waves of contamination of water in dental care units. Appl Environ
Microbiol 81:7509 –7524. https://doi.org/10.1128/AEM.01279-15.

47. Lambiase A, Catania MR, del Pezzo M, Rossano F, Terlizzi V, Sepe A, Raia
V. 2011. Achromobacter xylosoxidans respiratory tract infection in cystic
fibrosis patients. Eur J Clin Microbiol Infect Dis 30:973–980. https://doi
.org/10.1007/s10096-011-1182-5.

48. Li K, Bihan M, Yooseph S, Methe BA. 2012. Analyses of the microbial
diversity across the human microbiome. PLoS One 7:e32118. https://doi
.org/10.1371/journal.pone.0032118.

49. Filkins LM, Graber JA, Olson DG, Dolben EL, Lynd LR, Bhuju S, O’Toole
GA. 2015. Co-culture of Staphylococcus aureus with Pseudomonas aerugi-
nosa drives S. aureus towards fermentative metabolism and reduced
viability in a cystic fibrosis model. J Bacteriol 197:2252–2264. https://doi
.org/10.1128/JB.00059-15.

50. Cox MJ, Allgaier M, Taylor B, Baek MS, Huang YJ, Daly RA, Karaoz U,
Andersen GL, Brown R, Fujimura KE, Wu B, Tran D, Koff J, Kleinhenz ME,
Nielson D, Brodie EL, Lynch SV. 2010. Airway microbiota and pathogen
abundance in age-stratified cystic fibrosis patients. PLoS One 5:e11044.
https://doi.org/10.1371/journal.pone.0011044.

51. Mahadevan R, Schilling C. 2003. The effects of alternate optimal solu-
tions in constraint-based genome-scale metabolic models. Metab Eng
5:264 –276. https://doi.org/10.1016/j.ymben.2003.09.002.

52. Thomas TD, Ellwood DC, Longyear VMC. 1979. Change from homo-to
heterolactic fermentation by Streptococcus lactis resulting from glucose
limitation in anaerobic chemostat cultures. J Bacteriol 138:109 –117.

53. Keevil C, Marsh P, Ellwood D. 1984. Regulation of glucose metabolism in
oral streptococci through independent pathways of glucose 6-phosphate
and glucose 1-phosphate formation. J Bacteriol 157:560–567.

54. Palmer KL, Mashburn LM, Singh PK, Whiteley M. 2005. Cystic fibrosis
sputum supports growth and cues key aspects of Pseudomonas aerugi-
nosa physiology. J Bacteriol 187:5267–5277. https://doi.org/10.1128/JB
.187.15.5267-5277.2005.

55. Rossi E, Falcone M, Molin S, Johansen HK. 2018. High-resolution in situ
transcriptomics of Pseudomonas aeruginosa unveils genotype indepen-
dent patho-phenotypes in cystic fibrosis lungs. Nat Commun 9:3459.
https://doi.org/10.1038/s41467-018-05944-5.

56. Lysenko O. 1961. Pseudomonas—an attempt at a general classification.
J Gen Microbiol 25:379 –408. https://doi.org/10.1099/00221287-25-3
-379.

57. Sonnleitner E, Valentini M, Wenner N, el Zahar Haichar F, Haas D,
Lapouge K. 2012. Novel targets of the CbrAB/Crc carbon catabolite
control system revealed by transcript abundance in Pseudomonas

Metabolic Modeling of CF Airway Communities

March/April 2019 Volume 4 Issue 2 e00026-19 msystems.asm.org 19

https://doi.org/10.3389/fmicb.2016.00907
https://doi.org/10.3389/fmicb.2016.00907
https://doi.org/10.1038/nbt.3703
https://doi.org/10.1038/nbt.3703
https://doi.org/10.1042/BST20170246
https://doi.org/10.1371/journal.pone.0064567
https://doi.org/10.1371/journal.pcbi.1002363
https://doi.org/10.1371/journal.pcbi.1002363
https://doi.org/10.1080/19490976.2015.1023494
https://doi.org/10.1016/j.cmet.2015.07.001
https://doi.org/10.1016/j.cmet.2015.07.001
https://doi.org/10.1371/journal.pcbi.1005539
https://doi.org/10.1186/2049-2618-2-14
https://doi.org/10.1186/2049-2618-1-27
https://doi.org/10.1128/JB.00566-12
https://doi.org/10.1038/ncomms14631
https://doi.org/10.1128/JB.00900-10
https://doi.org/10.1128/JB.00900-10
https://doi.org/10.1002/bit.20663
https://doi.org/10.1002/bit.20663
https://doi.org/10.1073/pnas.1523199113
https://doi.org/10.1073/pnas.1523199113
https://doi.org/10.1186/1752-0509-5-83
https://doi.org/10.1186/1752-0509-5-83
https://doi.org/10.1128/JB.00997-13
https://doi.org/10.1128/mSystems.00013-15
https://doi.org/10.1016/j.copbio.2017.12.005
https://doi.org/10.1016/j.copbio.2017.12.005
https://doi.org/10.1101/229138
https://doi.org/10.1371/journal.pone.0149998
https://doi.org/10.1371/journal.pcbi.1006558
https://doi.org/10.1371/journal.pcbi.1006558
https://doi.org/10.1038/ismej.2015.207
https://doi.org/10.3109/1354750X.2014.983167
https://doi.org/10.3109/1354750X.2014.983167
https://doi.org/10.7717/peerj.2174
https://doi.org/10.7717/peerj.2174
https://doi.org/10.1371/journal.ppat.1005846
https://doi.org/10.1128/AEM.01279-15
https://doi.org/10.1007/s10096-011-1182-5
https://doi.org/10.1007/s10096-011-1182-5
https://doi.org/10.1371/journal.pone.0032118
https://doi.org/10.1371/journal.pone.0032118
https://doi.org/10.1128/JB.00059-15
https://doi.org/10.1128/JB.00059-15
https://doi.org/10.1371/journal.pone.0011044
https://doi.org/10.1016/j.ymben.2003.09.002
https://doi.org/10.1128/JB.187.15.5267-5277.2005
https://doi.org/10.1128/JB.187.15.5267-5277.2005
https://doi.org/10.1038/s41467-018-05944-5
https://doi.org/10.1099/00221287-25-3-379
https://doi.org/10.1099/00221287-25-3-379
https://msystems.asm.org


aeruginosa. PLoS One 7:e44637. https://doi.org/10.1371/journal.pone
.0044637.

58. Korgaonkar A, Trivedi U, Rumbaugh KP, Whiteley M. 2013. Community
surveillance enhances Pseudomonas aeruginosa virulence during poly-
microbial infection. Proc Natl Acad Sci U S A 110:1059 –1064. https://doi
.org/10.1073/pnas.1214550110.

59. Whiteson KL, Meinardi S, Lim YW, Schmieder R, Maughan H, Quinn R,
Blake DR, Conrad D, Rohwer F. 2014. Breath gas metabolites and bac-
terial metagenomes from cystic fibrosis airways indicate active pH neu-
tral 2, 3-butanedione fermentation. ISME J 8:1247. https://doi.org/10
.1038/ismej.2013.229.

60. Lin Y-C, Cornell WC, Jo J, Price-Whelan A, Dietrich LE. 2018. The Pseu-
domonas aeruginosa complement of lactate dehydrogenases enables
use of D- and L-lactate and metabolic cross-feeding. mBio 9:e00961-18.
https://doi.org/10.1128/mBio.00961-18.

61. Scoffield JA, Wu H. 2015. Oral streptococci and nitrite-mediated inter-
ference of Pseudomonas aeruginosa. Infect Immun 83:101–107. https://
doi.org/10.1128/IAI.02396-14.

62. Klepac�Ceraj V, Lemon KP, Martin TR, Allgaier M, Kembel SW, Knapp AA,
Lory S, Brodie EL, Lynch SV, Bohannan BJ. 2010. Relationship between
cystic fibrosis respiratory tract bacterial communities and age, genotype,
antibiotics and Pseudomonas aeruginosa. Environ Microbiol 12:
1293–1303. https://doi.org/10.1111/j.1462-2920.2010.02173.x.

63. Muhlebach MS, Sha W. 2015. Lessons learned from metabolomics in
cystic fibrosis. Mol Cell Pediatr 2:9. https://doi.org/10.1186/s40348-015
-0020-8.

64. Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima
JR, Prifti E, Nielsen T, Juncker AS, Manichanh C, Chen B, Zhang W,
Levenez F, Wang J, Xu X, Xiao L, Liang S, Zhang D, Zhang Z, Chen W,
Zhao H, Al-Aama JY, Edris S, Yang H, Wang J, Hansen T, Nielsen HB,
Brunak S, Kristiansen K, Guarner F, Pedersen O, Doré J, Ehrlich SD, Bork
P, Wang J. 2014. An integrated catalog of reference genes in the human
gut microbiome. Nat Biotechnol 32:834. https://doi.org/10.1038/nbt
.2942.

65. Wolcott RD, Hanson JD, Rees EJ, Koenig LD, Phillips CD, Wolcott RA, Cox
SB, White JS. 2016. Analysis of the chronic wound microbiota of 2,963
patients by 16S rDNA pyrosequencing. Wound Repair Regen 24:
163–174. https://doi.org/10.1111/wrr.12370.

66. Palmer KL, Aye LM, Whiteley M. 2007. Nutritional cues control Pseudomo-
nas aeruginosa multicellular behavior in cystic fibrosis sputum. J Bacte-
riol 189:8079 – 8087. https://doi.org/10.1128/JB.01138-07.

67. O’Brien S, Fothergill JL. 2017. The role of multispecies social interactions
in shaping Pseudomonas aeruginosa pathogenicity in the cystic fibrosis
lung. FEMS Microbiol Lett 364:fnx128. https://doi.org/10.1093/femsle/
fnx128.

68. Firmida MC, Marques EA, Leão RS, Pereira RHV, Rodrigues ERA, Al-
bano RM, Folescu TW, Bernardo V, Daltro P, Capone D, Lopes AJ.
2017. Achromobacter xylosoxidans infection in cystic fibrosis siblings
with different outcomes. Respir Med Case Rep 20:98 –103. https://doi
.org/10.1016/j.rmcr.2017.01.005.

69. Gao B, Gallagher T, Zhang Y, Elbadawi-Sidhu M, Lai Z, Fiehn O, Whiteson
KL. 2018. Tracking polymicrobial metabolism in cystic fibrosis airways:
Pseudomonas aeruginosa metabolism and physiology are influenced by
Rothia mucilaginosa-derived metabolites. mSphere 3:e00151-18. https://
doi.org/10.1128/mSphere.00151-18.

70. Quinn RA, Lim YW, Maughan H, Conrad D, Rohwer F, Whiteson KL. 2014.
Biogeochemical forces shape the composition and physiology of poly-
microbial communities in the cystic fibrosis lung. mBio 5:e00956-13.
https://doi.org/10.1128/mBio.00956-13.

71. Twomey KB, Alston M, An S-Q, O’Connell OJ, McCarthy Y, Swarbreck D,
Febrer M, Dow JM, Plant BJ, Ryan RP. 2013. Microbiota and metabolite
profiling reveal specific alterations in bacterial community structure and
environment in the cystic fibrosis airway during exacerbation. PLoS One
8:e82432. https://doi.org/10.1371/journal.pone.0082432.

72. Turner KH, Wessel AK, Palmer GC, Murray JL, Whiteley M. 2015. Essential
genome of Pseudomonas aeruginosa in cystic fibrosis sputum. Proc
Natl Acad Sci U S A 112:4110 – 4115. https://doi.org/10.1073/pnas
.1419677112.

73. Meadows AL, Karnik R, Lam H, Forestell S, Snedecor B. 2010. Application
of dynamic flux balance analysis to an industrial Escherichia coli fermen-
tation. Metab Eng 12:150 –160. https://doi.org/10.1016/j.ymben.2009.07
.006.

74. Esther CR, Turkovic L, Rosenow T, Muhlebach MS, Boucher RC, Ranga-
nathan S, Stick SM. 2016. Metabolomic biomarkers predictive of early
structural lung disease in cystic fibrosis. Eur Respir J 48:1612–1621.
https://doi.org/10.1183/13993003.00524-2016.

75. Bales PM, Renke EM, May SL, Shen Y, Nelson DC. 2013. Purification and
characterization of biofilm-associated EPS exopolysaccharides from ES-
KAPE organisms and other pathogens. PLoS One 8:e67950. https://doi
.org/10.1371/journal.pone.0067950.

76. Li X, Hu Y, Gong J, Zhang L, Wang G. 2013. Comparative genome
characterization of Achromobacter members reveals potential genetic
determinants facilitating the adaptation to a pathogenic lifestyle. Appl
Microbiol Biotechnol 97:6413– 6425. https://doi.org/10.1007/s00253-013
-5018-3.

77. Cowley ES, Kopf SH, LaRiviere A, Ziebis W, Newman DK. 2015. Pediatric
cystic fibrosis sputum can be chemically dynamic, anoxic, and extremely
reduced due to hydrogen sulfide formation. mBio 6:e00767-15. https://
doi.org/10.1128/mBio.00767-15.

78. Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A, Meyer KC, Birrer P,
Bellon G, Berger J, Weiss T, Botzenhart K, Yankaskas JR, Randell S,
Boucher RC, Döring G. 2002. Effects of reduced mucus oxygen concen-
tration in airway Pseudomonas infections of cystic fibrosis patients. J Clin
Invest 109:317–325. https://doi.org/10.1172/JCI0213870.

79. Carlson R, Srienc F. 2004. Fundamental Escherichia coli biochemical
pathways for biomass and energy production: identification of reactions.
Biotechnol Bioeng 85:1–19. https://doi.org/10.1002/bit.10812.

80. Pienkowska K, Wiehlmann L, Tümmler B. 2019. Metagenome—inferred
bacterial replication rates in cystic fibrosis airways. J Cyst Fibros https://
doi.org/10.1016/j.jcf.2019.01.003.

Henson et al.

March/April 2019 Volume 4 Issue 2 e00026-19 msystems.asm.org 20

https://doi.org/10.1371/journal.pone.0044637
https://doi.org/10.1371/journal.pone.0044637
https://doi.org/10.1073/pnas.1214550110
https://doi.org/10.1073/pnas.1214550110
https://doi.org/10.1038/ismej.2013.229
https://doi.org/10.1038/ismej.2013.229
https://doi.org/10.1128/mBio.00961-18
https://doi.org/10.1128/IAI.02396-14
https://doi.org/10.1128/IAI.02396-14
https://doi.org/10.1111/j.1462-2920.2010.02173.x
https://doi.org/10.1186/s40348-015-0020-8
https://doi.org/10.1186/s40348-015-0020-8
https://doi.org/10.1038/nbt.2942
https://doi.org/10.1038/nbt.2942
https://doi.org/10.1111/wrr.12370
https://doi.org/10.1128/JB.01138-07
https://doi.org/10.1093/femsle/fnx128
https://doi.org/10.1093/femsle/fnx128
https://doi.org/10.1016/j.rmcr.2017.01.005
https://doi.org/10.1016/j.rmcr.2017.01.005
https://doi.org/10.1128/mSphere.00151-18
https://doi.org/10.1128/mSphere.00151-18
https://doi.org/10.1128/mBio.00956-13
https://doi.org/10.1371/journal.pone.0082432
https://doi.org/10.1073/pnas.1419677112
https://doi.org/10.1073/pnas.1419677112
https://doi.org/10.1016/j.ymben.2009.07.006
https://doi.org/10.1016/j.ymben.2009.07.006
https://doi.org/10.1183/13993003.00524-2016
https://doi.org/10.1371/journal.pone.0067950
https://doi.org/10.1371/journal.pone.0067950
https://doi.org/10.1007/s00253-013-5018-3
https://doi.org/10.1007/s00253-013-5018-3
https://doi.org/10.1128/mBio.00767-15
https://doi.org/10.1128/mBio.00767-15
https://doi.org/10.1172/JCI0213870
https://doi.org/10.1002/bit.10812
https://doi.org/10.1016/j.jcf.2019.01.003
https://doi.org/10.1016/j.jcf.2019.01.003
https://msystems.asm.org

	RESULTS
	Few taxonomic groups dominate the CF airway community samples. 
	The community model can reproduce dominance of CF pathogens. 
	The community model can reproduce pathogen heterogeneity across airway samples. 
	The community model predicts that pathogen dominance is driven by metabolite cross-feeding. 

	DISCUSSION
	MATERIALS AND METHODS
	Patient data. 
	Community metabolic model. 
	Model tuning and simulation. 
	Community simulations. 
	Data availability. 

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

