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Abstract

Growth is a significant factor that results in deformations of tubular organs, and particular

deformations associated with growth enable tubular organs to perform certain physiological

functions. Configuring growth profiles that achieve particular deformation patterns is critical

for analyzing potential pathological conditions and for developing corresponding clinical

treatments for tubular organ dysfunctions. However, deformation-targeted growth is rarely

studied. In this article, the human cervix during pregnancy is studied as an example to show

how cervical thinning and dilation are generated by growth. An advanced hyperelasticity the-

ory called morphoelasticity is employed to model the deformations, and a growth tensor is

used to represent growth in three principle directions. The computational results demon-

strate that both negative radial growth and positive circumferential growth facilitate thinning

and dilation. Modeling such mixed growth represents an advancement beyond commonly

used uniform growth inside tissues to study tubular deformations. The results reveal that

complex growth may occur inside tissues to achieve certain tubular deformations. Integra-

tion of further biochemical and cellular activities that initiate and mediate such complex

growth remains to be explored.

1 Introduction

Deformations of soft-tissue tubular organs (TOs) are common in human bodies. Tubular

organ deformations (TODs) significantly facilitate organ function in the transport of air, fluid,

waste, or other materials through the lumens of TOs; typical TODs include, but are not limited

to, deformations of blood vessels [1, 2], lymph vessels [3, 4], air ways [5, 6], esophagi [7, 8],

human cervices [9, 10], colons [11, 12], and urethrae [13]. Soft tissues are generally considered

as hyperelastic materials [14–17]. Various models have been developed to study TODs [18–23]
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and assist in explaining corresponding deformation-related organ functions in physiopatho-

logical conditions. Biological growth means change of mass for organs, which includes

increase or reduction of mass that leads to changes in tissue volume or tissue density [24].

Growth is particularly recognized as a significant factor initiating TODs that lead to organ spa-

tial structural responses that are adaptive or pathological [18, 25, 26]. When TODs are initiated

partially or fully by growth involving internal volume changes, morphoelasticity is commonly

used to illustrate how growth contributes to the total deformation [27–30]. Induced by growth,

soft-tissue organs deform themselves as part of normal physiological operations [31], and spe-

cific TODs are generated to achieve particular functional needs of the TOs [32]. It is critical to

understand how growth is occurring inside the tissue during deformation to more accurately

analyze potential pathological conditions and to design effective clinical treatments.

For convenience of use, we define positive growth to mean addition of mass that results in

an increase of tissue volume [24], and negative growth to mean resorption of mass that results

in a decrease of tissue volume [33, 34]. It is common to use positive growth in models for

organs such as arteries [35] and airways [36], but negative growth is rarely employed in biome-

chanics to model organ deformation. Furthermore, because of the complexity of tissue compo-

sition, different growth may occur inside TOs in different morphometric dimensions to

generate needed types of deformations [37]. Such processes can result in counter-intuitive out-

comes that more deeply reveal complicated relationships in deformation-targeted growth. To

demonstrate such results, we study a particular organ, the human cervix during pregnancy, as

a case study to illustrate how special deformations are formed by complex internal growth.

The cervix is an important reproductive organ below the uterus that keeps the fetus inside

the uterus during pregnancy [10, 38, 39]. The cervix remains closed during pregnancy but

shows two important deformations including thinning and dilation before the onset of birth

(Fig 1) [9, 40–43]. Thinning means the thickness of the cervical wall is reduced, and dilation

indicates an enlarged luminal transverse area. The cervical stroma is composed of about 80-

85% fibrous connective tissue which is largely responsible for providing the mechanical

strength of the cervix; another 10% of the cervical stroma is formed by smooth muscle; while

the extracellular matrix consists primarily of collagen, proteoglycans, water, hyaluronan,

thrombospondin 2, and elastin [44]. The soft tissue of the cervix is filled with aligned collagen

fibers, which gradually become less oriented or diluted leading to reduced fiber stiffness mak-

ing the cervix softer for smooth birth [45, 46]. The collagen fibers are distributed differently in

different parts of the cervix, and the cervix can be approximately differentiated into three lay-

ers due to different fiber orientation in each layer [47, 48].

Fig 1. Simple illustration of cervical wall thinning and dilation. Initially the cervix lumen is small and the wall is

thick. Gradually the wall becomes thinner and the lumen area increases. Such dimensional changes accommodate the

need for a smooth birth.

https://doi.org/10.1371/journal.pone.0255895.g001
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The cervix remodeling/ripening in pregnancy is an important and complex process to pre-

pare for a smooth birth during parturition. This process is initiated and mediated by many

biochemical and cellular factors associated with changes to the organ during cervical evolution

[45, 47]. For instance, localized regulation of estrogen and progesterone metabolism [49],

metalloproteinases, leukocytes, and glycosaminoglycans (GAGs) have been known to play sig-

nificant roles in initiating the ripening process [50]. Furthermore, leukocytes secrete proteases

that can break down the extracellular collagenous matrix and reorganize it to allow for enough

cervix dilation and thinning [32], while type I collagen messenger RNA is increased causing

collagen synthesis rate to increase. Water increases significantly and dilutes the concentration

of the collagen, and noncollagen and nonelastin proteins also increase [51]. Dermatan sulfate

concentration is observed to decrease before parturition and bears a possible relation with the

expansion of the cervix. Hyaluronic acid (another GAG) concentration increases substantially

during the dilation process, and slightly loosens the cervical collagenous network [52]. Smooth

muscle cells enlarge, and an increase of smooth muscle may play a great role in rearrangement

and orientation of the cervical tissue [51].

In this article, we focus on growth, which is the outcome of all of these biochemical pro-

cesses or regulations, as an input from a perspective of continuum mechanics without examin-

ing the details of these biochemical activities or cellular regulations in the models. The effect of

growth is reflected in variation of the growth parameters. Morphoelasticity [24] is used to

involve growth in the deformation gradient to achieve the cervix deformations. By testing a

range of values of the growth parameters, we summarize how growth in three principle direc-

tions collectively generate cervical thinning and dilation. Our study provides an example of

exploring deformation-targeted complex growth for TOs.

The structure of the article is as follows. In Sec. 2, we set up the models for the three-layered

idealized cylindrical cervix applying morphoelasticity. In Sec. 3, we study how isotropic

growth, and growth in each single direction (radial, circumferential, or axial) and their combi-

nation contribute to thinning and dilation. Cervical softening by reducing the groundmatrix

shear modulus and fiber stiffness is also studied to understand how thinning and dilation can

be realized differently. Lastly, in Sec. 4, we summarize and discuss the models and simulations,

and how the models can be improved to study more realistic cervical conditions in pregnancy.

2 Model setting

The cervix is roughly cylindrical including three layers with an axially oriented lumen in the

middle [47]. For ease of analysis, we idealize the cervix as a regular three-layered cylinder. In

the reference configuration (Fig 2b), the radius R of the lumen and each layer (the innermost

layer, middle layer, or outermost layer) is denoted below

Lumen : 0 < R < R1;

Innermost layer ðLayer 1Þ : R1 < R < R2;

Middle layer ðLayer 2Þ : R2 < R < R3;

Outermost layer ðLayer 3Þ : R3 < R < R4;

8
>>>>>>><

>>>>>>>:

ð1Þ

where Ri (i = 1, 2, 3, or 4) is the interface or boundary radius.

Any point X in the reference configuration, under a deformation mapping χ, is mapped to

another point x in the deformed configuration. The deformation gradient tensor is F = @x/@X.

In morphoelasticity, F is structured as a product of the growth tensor Fg and the elastic tensor

Fe in the form F = Fe Fg. We consider a cylindrical coordinate system, and the three unit basis
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vectors in the radial, circumferential, and axial directions are denoted by eR, eΘ, and eZ, respec-

tively. There is no report of growth difference among these three layers or different parts of the

cervix, so not building in differential growth between layers is the simplest first approximation

and the most parsimonious assumption. Thus, the growth is taken to be homogeneous within

the three layers throughout the cervix. Fg is taken to be a diagonal tensor denoted as

Fg ¼ greR � eR þ gyeY � eY þ gzeZ � eZ; ð2Þ

where gr, gθ, and gz are the growth parameters in the radial, circumferential, and axial direc-

tions, respectively. The growth tensor framework in (2), with growth components only in the

diagonal, is a commonly used form for other TOs such as blood vessels [18, 25] and airways

[26, 36] to study growth-caused deformation in these organs. The elastic deformation is con-

strained by incompressibility, and thus the elastic tensor Fe satisfies detFe = 1. The right Cau-

chy-Green tensor is based only on the elastic deformation part as C ¼ FT
e Fe, and the three

principal invariants based on C are I1 = trC, I2 = I3trC−1, and I3 = detC.

The article [53] showed a photo of the collagen network of the cervix using a harmonic-gen-

eration-microscopy imaging technique, and differentiated the cervix into three layers by differ-

ent collagen orientation. More particularly, in the innermost and outermost layers of the

cervix, the collagen fibers are oriented in the longitudinal direction eZ, and in the middle layer,

the collagen fibers are oriented in the circumferential direction eΘ [48] (Fig 2a). We denote the

unit collagen fiber direction vector by Nf satisfying

Nf ¼

( eZ; for R1 < R < R2 or R3 < R < R4;

eY; for R2 < R < R3:
ð3Þ

The fiber-contributed strain energy density function is taken to be [54] Wf ¼
g

2
ðI4 � 1Þ

2
,

where γ is the fiber stiffness parameter, and I4 is a pseudo-invariant defined by I4 = Nf � CNf.

Such fiber-energy function models general soft tissue, and has been employed in studies for

deformations of airways [20, 29].

Fig 2. Simple illustrations of the three-layered cervix and its fiber distribution. The left panel (a) illustrates half of

an axial cross section of the cervix with different fiber orientations in each layer. The vertical line sections in the

innermost and outermost layers illustrate collagen fibers oriented axially, whereas the dots in the middle layer illustrate

collagen fibers oriented circumferentially (perpendicular to the axial cross section). The right panel (b) illustrates a

transverse section of the cervix with three layers showing the radius prescription for the boundaries and interfaces of

the three-layered cervix.

https://doi.org/10.1371/journal.pone.0255895.g002
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The strain-energy density function for the isotropic matrix, where the fibers are incorpo-

rated, is described by the neo-Hookean model Wi ¼
m

2
ðI1 � 3Þ, where μ is the shear modulus

of the matrix. The total energy density of the deformed cervix is W = Wi + Wf. The Cauchy

stress tensor T is derived via

T ¼ � pIþ 2Fe
@W
@C

FT
e ; ð4Þ

where p is an undetermined constraint parameter, and I is the identity tensor. Ti is employed

to denote the Cauchy stress tensor in the ith layer for i = 1, 2, or 3. Tirr and Tiθθ are used to

express the stress components with respect to eR� eR and eΘ� eΘ, respectively.

Under growth, the deformation of the cervix is taken to be axisymmetric satisfying

x ¼ wðXÞ ¼ rðRÞeR þ ZeZ; ð5Þ

where r(R) is the radial function to exhibit how the radius R changes after the deformation. As

a first approximation, we assume that the axial position is unchanged by elastic deformation.

The boundary or interface radial values R1, R2, R3, and R4 are mapped to r1, r2, r3, and r4,

respectively, in the deformed configuration.

Our models are based on the assumption of no axial stretch, resulting in fixed top and bot-

tom displacement boundary conditions for the cervix. The purpose is to investigate how

growth in each direction determines cervical thinning and dilation without much consider-

ation for other external factors’ influences on the deformations. In practice, the cervix’s top

boundary experiences more complicated boundary conditions due to pressure from the fetus

and contraction of the uterus [9]. The primary goal of our model is to provide guidance for

prescribing more appropriate growth conditions for more realistic models that will eventually

encompass major important factors for the cervix in pregnancy. In this article, we also explore

how axial stretch contributes to cervical wall thinning and dilation, and make a comparison

with results from axial growth to justify the axial stretch selection in (5).

Except for a small amount of mucus [55], no other fluid or air is flowing through the lumen

to press the cervical inner boundary, and the outer cervical boundary is also generally free to

move under surrounding soft ligaments [56]. Thus for the inner and outer boundaries of the

cervix, we consider traction-free boundary conditions. More specifically,

T1rrjR¼R1
¼ 0 and T3rrjR¼R4

¼ 0: ð6Þ

At the interfaces of the three layers, the radial components of the Cauchy stress are taken to be

continuous satisfying

lim
r!r�

2

T1rr ¼ lim
r!rþ

2

T2rr; and lim
r!r�

3

T2rr ¼ lim
r!rþ

3

T3rr: ð7Þ

To obtain the final solution for deformation and Cauchy stress distribution, all the material

and geometrical parameters including R1, R2, R3, R4, μ, γ, gr, gθ, and gz are given as input. We

need to set up two equations for the unknown r2 and r3. The first equation we set up is using

(7)2 with updated T2 and T3, giving

T2rrjr¼r3 ¼ T3rrjr¼r3 ; the first equation for r2 and r3: ð8Þ

The other equation for r2 and r3 is based on continuity for the deformed radius r. The radial
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function r(R) throughout the cervical wall is

rðRÞ ¼

h
r2

2
� 2

R R2

R RgrgygzdR
i1=2

; R1 < R < R2;

h
r2

2
þ 2

R R
R2
RgrgygzdR

i1=2

; R2 < R < R3;

h
r2

3
þ 2

R R
R3
RgrgygzdR

i1=2

; R3 < R < R4:

8
>>>>>>>><

>>>>>>>>:

ð9Þ

By (9)1 and (9)2, r is automatically continuous at the interface R = R2. By (9)2 and (9)3, the con-

tinuity of r at R = R3 generates

h
r2

2
þ 2

Z R3

R2

RgrgygzdR
i1=2

¼ r3; the second equation for r2 and r3: ð10Þ

After solving for r2 and r3 numerically from (8) and (10), we can obtain the complete r as a

function of R, and also the Cauchy stress tensor T to analyze how different growth affects the

deformation.

3 Computational results

We use biologically-relevant values to parameterize the simulations. In [57], the authors stud-

ied eight women whose ages were between 36 and 43 years old and were under hysterectomy

with their cervices and uteruses removed due to pathology not related to the cervix. The size of

the cervix from each woman was different, and the average of these data is employed as the geo-

metrical parameters of the cervix in this article; more particularly, R1 = 4 mm, R2 = 8 mm, R3 =

16 mm, and R4 = 20 mm. The cervical length is 50 mm [19, 38], but is unchanged according to

the deformation defined in Eq (5). For the stiffness parameters [19, 58], μ = 1650 Pa, and γ =

1000 Pa (estimated). To elucidate how cervical wall thinning and dilation are associated with

the growth parameters gr, gθ, and gz, we study the deformation results for isotropic growth (gr =

gθ = gz) and anisotropic growth by varying one growth parameter while fixing the other two

parameters. We also study how integratively the three parameters with different quantities con-

tribute to the deformation. Growth with the growth parameter less than one means negative
growth, and growth with the growth parameter greater than one means positive growth. In the lit-

erature, there are no clear definitions for cervical thinning and dilation and no standards con-

cerning how to quantify the two deformations. Thinning is easier to understand intuitively, but

there are multiple ways to define dilation, such as using inner or outer diameter/radius

changes. For instance, in [51], Leppert measured the outer diameter of the cervix to be 10 cm

(with the outer radius to be 5 cm) compared with the original outer radius of 2 cm to indicate

how extensively the cervix was dilated. Correspondingly, both the inner and outer radii of the

cervix increase greatly during pregnancy to prepare the cervical lumen as a large canal for

smooth birth. To obtain a strong dilation effect, it is better to use both inner and outer radii to

understand dilation. For clarity, we define cervical wall thinning and dilation as follows:

• Cervical wall thinning: The cervical wall thickness after growth is less than the original wall

thickness, i.e., r4 − r1 < R4 − R1 = 16 mm.

• Cervical wall dilation: After growth, the radius for the inner boundary is greater than the

original inner boundary radius, i.e., r1 > R1, and the radius for the outer boundary is greater

than the original outer boundary radius, i.e., r4 > R4.
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3.1 Isotropic growth

We use g to represent the isotropic growth parameter satisfying g = gr = gθ = gz. In the simula-

tions, several parameters including 0.3, 0.7, 1.3, and 1.7 are used for g to represent negative or

positive growth. The simulation results are shown in Table 1. The results demonstrate that, for

negative growth with g = 0.3 and 0.7, the wall is thinned but fails to dilate, and that, for positive

growth with g = 1.3 and 1.7, the wall is not thinned but dilates. We also more vividly illustrate

the wall change effect for more values of g over the interval (0.1, 2) in Fig 3. The simulation

shows the same pattern, i.e, negative growth only makes the cervical wall thinned but does not

dilate the wall, and positive growth only dilates the wall, but instead of thinning the wall, thick-

ens the wall greatly due to the rapid volume increase from isotropic growth in all three direc-

tions. The outcome suggests that isotropic growth cannot reach the goal of both thinning and
dilation simultaneously. Anisotropic growth can be considered. In the following three

Table 1. Cervical wall thinning and dilation results for isotropic growth with g = gr = gθ = gz. Length unit: mm.

g r1 r4 Thickness Thinning Dilation

0.3 0.9 3.4 2.4 Yes No

0.7 2.7 11.8 9.1 Yes No

1.3 5.3 29.5 24.2 No Yes

1.7 7.0 44.0 37.0 No Yes

https://doi.org/10.1371/journal.pone.0255895.t001

Fig 3. The cervical wall radius and thickness for the isotropic growth parameter g over (0.1, 2). The lower point of each line interval shows r1 for

the inner boundary, and the upper point shows r4 for the outer boundary. The length of each vertical line section illustrates the cervical wall thickness

corresponding to a specific radial growth parameter.

https://doi.org/10.1371/journal.pone.0255895.g003
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subsections, we evaluate how wall thinning and dilation may occur for growth in each single

direction.

3.2 Radial growth

First we employ a few discrete values for the radial growth parameter gr varying among 0.3,

0.7, 1.3, and 1.7. The growth parameters in the circumferential and axial directions are fixed to

be gθ = 1 and gz = 1. The outcome is illustrated in Table 2. It shows that negative radial growth

generates thinning but not dilation, and positive growth does not generate thinning or

dilation.

To more clearly demonstrate how the cervical wall thickness and dilation are dependent on

radial growth, we use a continuous interval of gr from 0.1 to 2. When gr increases, r1 for the

inner boundary decreases monotonically, r4 for the outer boundary increases monotonically,

and the wall thickness (r4 − r1) also increases monotonically (Fig 4). For negative growth (gr<
1), it makes the wall thinner than the original wall with the thickness 16 mm, and smaller gr
generates thinner wall. Positive growth (gr> 1) thickens the wall. For each gr, either r1 < R1, r4

< R4, or both occur, and thus none of these gr show a dilation effect.

3.3 Circumferential growth

The same set of discrete parameters for radial growth is employed for circumferential growth,

i.e., gθ = 0.3, 0.7, 1.3, and 1.7, under gr = gz = 1. See Table 3 for the results. Negative growth

(gθ = 0.3, 0.7) makes the wall thinned, and positive growth (gθ = 1.3, 1.7) makes the wall slightly

thickened. The negative circumferential growth does not dilate the wall, but positive circum-

ferential growth dilates the wall. Fig 5 illustrates the wall thinning and dilation effect for gθ

Table 2. Cervical wall thinning and dilation evaluation for different radial growth parameters gr under gθ = gz = 1. Length unit: mm.

gr r1 r4 Thickness Thinning Dilation

0.3 9.5 14.3 4.8 Yes No

0.7 6.1 17.5 11.4 Yes No

1.3 2.7 22.5 19.8 No No

1.7 1.9 25.6 23.7 No No

https://doi.org/10.1371/journal.pone.0255895.t002

Fig 4. The cervical wall radius and thickness for the radial growth parameter gr over (0.1, 2). The lower point of

each line interval shows r1 for the inner boundary, and the upper point shows r4 for the outer boundary. The length of

each vertical line section illustrates the cervical wall thickness corresponding to a specific radial growth parameter.

https://doi.org/10.1371/journal.pone.0255895.g004
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over a continuous interval (0.3, 2). The thickness of the wall remains relatively constant for cir-

cumferential growth. As gθ increases, the dilation effect becomes obvious.

3.4 Axial growth

Table 4 demonstrates the thickening and dilation effects for axial growth again using four

parametric values 0.3, 0.7, 1.3, and 1.7 for gz under gr = gθ = 1. Only when gz< 1, can the wall

be thinned. Dilation occurs only when gz> 1, but is weak because the inner boundary radius

r1 is only slightly greater than the original radius R1 = 4 mm even for larger gz parameters. Fig

6 shows the wall radius and thickness for a continuous interval of gz in (0.1, 2). The figure

more clearly illustrates that the inner boundary r1 remains almost unchanged, and thus indi-

cates that the axial growth is insufficient to increase the luminal area much. During pregnancy,

the cervix is shortened [42], and gz< 1 can be used to realize cervical shortening. Thus we do

not consider axial growth generated dilation.

Table 3. Cervical wall thinning/thickening and dilation results for different circumferential growth parameters gθ under gr = gz = 1. Length unit: mm.

gθ r1 r4 Thickness Thinning Dilation

0.3 0.3 10.7 10.5 Yes No

0.7 1.7 16.5 14.8 Yes No

1.3 7.2 23.5 16.3 No (slightly) Yes

1.7 11.9 28.2 16.3 No (slightly) Yes

https://doi.org/10.1371/journal.pone.0255895.t003

Fig 5. The cervical wall radius and thickness for the circumferential growth parameter gθ over a continuous

interval (0.3, 2). The top points of the vertical lines represent r4, the bottom points represent r1, and the length of each

vertical line represents the wall thickness.

https://doi.org/10.1371/journal.pone.0255895.g005

Table 4. Cervical wall thinning and dilation results for different axial growth parameters gz under gr = gθ = 1. Length unit: mm.

gz r1 r4 Thickness Thinning Dilation

0.3 3.1 11.2 8.1 Yes No

0.7 3.8 16.8 13.0 Yes No

1.3 4.1 22.7 18.6 No Yes (slightly)

1.7 4.1 25.9 21.8 No Yes (slightly)

https://doi.org/10.1371/journal.pone.0255895.t004
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We also study how axial stretch other than axial growth contributes to cervical wall thin-

ning and dilation. If an axial stretch factor λz is considered in the deformation (5), the defor-

mation function is updated to

x ¼ wðXÞ ¼ rðRÞeR þ lzZeZ: ð11Þ

Consequently, if the original length of the cervix is L, then the length of the deformed cervix

becomes λz L. Furthermore, if λz< 1, the cervix is shortened, and if λz> 1, the cervix is elon-

gated. We also assume no growth occurs in the cervical tissue, i.e., Fg = I; see results in Fig 7.

Comparing with results in Fig 6 for gz, Fig 7 shows an opposite direction for thinning and dila-

tion of the cervix. Namely, the largest wall thickness value is obtained at the smallest λz value,

and the smallest thickness value occurs at the largest λz value. The thickness increases greatly

as λz decreases. By checking the endpoint values of each vertical line section for r1 and r4 (data

not shown for brevity), as λz< 1, thinning cannot occur and little or no dilation occurs, while

as λz> 1, dilation cannot occur but thinning is achieved. The results demonstrate that pure

axial growth cannot thin and dilate the cervix simultaneously. Additional growth is required to

obtain the two deformations. Considering the cervix is shortened during pregnancy, only λz<
1 should be employed.

To investigate how λz< 1 influences thinning and dilation for different axial growth

parameters gz, we work on two pairs of parameters: (1) λz = 0.8 and gz = 0.7, and (2) λz = 0.8

and gz = 1.3. Note both (1) and (2) are with gr = gθ = 1. For (1), r1 = 3.9 mm, r4 = 18.6 mm, and

thickness = r4 − r1 = 14.7 mm; for (2), r1 = 4.1 mm, r4 = 25.3 mm, and thickness = r4 − r1 =

21.2 mm. Comparing with results in Table 4 for gz = 0.7, results for (1) show larger r1 and r4

with a thicker wall, and the same pattern appears for (2) under gz = 1.3. Such outcomes dem-

onstrate that λz< 1 facilitates dilating the cervix but reduces the thinning effect, and that a

stronger axial growth effect is required to realize the expected thinning for such λz. We take

λz = 1 in the deformation mapping in (5) to reduce the possible counter-effect on thinning or

dilation from other non-identity axial stretch ratios for a focused study on outcomes from

growth effects in the three principle directions.

Fig 6. The cervical wall radius and thickness for the axial growth parameter gz over a continuous interval (0.1, 2).

The top pints of the vertical lines represent r4, the bottom points represent r1, and the length of each vertical line

represents the wall thickness.

https://doi.org/10.1371/journal.pone.0255895.g006
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3.5 Combined growth

According to the results from radial, circumferential, and axial growth, we summarize the

combined thinning and dilation effects in Table 5. Only gθ> 1 can generate substantial dila-

tion. All negative growth in the three directions generate thinning effects; gr< 1 generates the

strongest thinning effect, and gθ< 1 generates the weakest thinning effect. In summary, to

realize both thinning and dilation in the deformation, positive circumferential growth and

negative radial/axial growth are required. Because negative radial growth generates the stron-

gest thinning effect, it is preferably used to produce thinning effects.

Fig 8 shows how the radius and thickness of the cervical wall change with various combina-

tions of both gr and gθ. Where the upper and lower surfaces in the figure are more distant, the

cervical wall is thicker. The result demonstrates that thickness reaches its smallest value when

gr reaches its smallest value of 0.1, and gθ reaches its largest value of 2.0. The thinnest cervical

wall is 1.6 mm, only 10% of the original wall thickness of 16 mm. The results show a pattern

that smaller radial growth and larger circumferential growth generate a thinner wall. The best

Fig 7. The cervical wall radius and thickness for the axial stretch parameter λz over a continuous interval (0.1, 2). Interpretation of the vertical

line intervals are the same as in Fig 6.

https://doi.org/10.1371/journal.pone.0255895.g007

Table 5. Summary of different circumstances generating thinning and dilation. Over the row for thinning, the

order is made from strong to weak, i.e., gr< 1 produces the strongest thinning effect, and gθ< 1 produces the weakest

thinning effect.

Thinning: gr< 1, gz< 1, or gθ< 1

Dilation: gθ> 1

https://doi.org/10.1371/journal.pone.0255895.t005
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dilation effect is also reached for the same pairing of (gr, gθ) values. For other growth parameter

pairs, the outer boundary radius may become larger with greater outer layer dilation, but the

inner boundary radius is also reduced with smaller inner layer dilation, which is not a good

match for smooth birth. Similarly, we can study other combinations, for example, using both

gz< 1 and gr< 1 for the thinning effect and gθ> 1 for the dilation effect. For brevity, we skip

illustrating these results.

3.6 Tissue softening

After studying how growth in different directions affects wall thinning and dilation, we

address how tissue softening contributes to the deformation. Tissue stiffness is represented by

the shear modulus μ and fiber stiffness modulus γ. Tissue softening can be indicated by

decreasing these two stiffness parameters. The deformation itself is still initiated by growth.

We use the growth parameters (gr = 0.1, gθ = 2, and gz = 1), by which an optimal thinning and

dilation effect is achieved in Fig 8, to check how different stiffness parameters result in differ-

ent thinning and dilation effects. The results are shown in Table 6. It illustrates that decreasing

the shear modulus μ weakens both thinning and dilation but such weakening is only to a small

extent. In contrast, when decreasing the fiber stiffness γ, both thinning and dilation are

strengthened but also only to a slight extent. Such results predict that softening by decreasing

the shear modulus cannot facilitate cervical wall thinning and dilation much, and that tissue

softening by decreasing fiber stiffness only weakly assists cervical wall thinning and dilation.

Fig 8. Inner boundary and out boundary radii after growth with different combinations of radial and circumferential growth parameters under gz = 1.

The radial growth parameter gr is changing over the interval (0.1, 1) for a thinning effect, and gθ is changing over the interval (1, 2) for a dilation effect; gz = 1

is kept as a constant. The lower surface shows the inner boundary radius, and the upper surface shows the outer boundary radius. The difference between the

upper surface for r4 and the lower surface for r1 at the same (gr, gθ) values shows the thickness of the cervical wall.

https://doi.org/10.1371/journal.pone.0255895.g008
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4 Summary and discussion

For tubular organs, internal tissue growth significantly contributes to organ deformations.

Usually growth is employed as an input to generate deformations which are then analyzed for

normal physiological alterations or organ malfunctions [28, 29]. In some physiological activi-

ties, however, TOs need to acquire necessary deformations to maintain proper functionality

under internal growth [18, 25, 26]. Deformation-targeted growth is a novel area for explora-

tion, i.e., using deformations to find growth profiles. Additionally, deformation-targeted

growth may be more complex than our initial understanding as both positive and negative

growth can simultaneously happen inside the tissue as the TOs develop. Volume increment/

decrement may not necessarily mean positive/negative growth in the tissue. Due to the com-

plexity of biological tissue structure, different growth patterns may occur in different dimen-

sions causing more complicated combinations of tissue growth.

Our modeling of the human cervix during pregnancy elucidates how certain types of TODs

can be acquired by different types of internal growth. The cervix in pregnancy is observed to

gradually demonstrate two important deformations including cervical wall thinning and dila-

tion for smooth birth. No pressure from air or fluid inside the lumen pushes the cervical wall

to deform [48], making it different from other TOs such as blood vessels and tracheae. The

surrounding ligaments only provide supporting structure for the cervix [56], and thus cannot

initiate its deformations. In contrast, hormonally regulated growth [59, 60] is a major factor

involved with deformation of the cervix. We employ morphoelasticity with a growth tensor to

model the deformation-targeted growth. Growth in three principal morphometric dimensions

of the cervix are involved with its deformations (i.e. radial, circumferential, and axial). In the

initial simulations, growth in each single direction under no growth occurrence in the other

directions is used to show how directionalized growth may facilitate the acquired deforma-

tions. While the results reveal that each single-dimensional growth demonstrates unique

deformation strength, they also show that growth in any single dimension cannot achieve both

thinning and dilation simultaneously. More specifically, the simulations show that negative

axial growth (gz< 1) can assist thinning but not dilation, only positive circumferential growth

(gθ> 1) generates dilation, and negative radial growth (gr< 1) generates a stronger thinning

effect than negative axial growth. Therefore, negative radial growth and positive circumferen-

tial growth, under the effect of negative axial growth, are required to generate a significant

thinning and dilation effect. Furthermore, we use an assumption of incompressibility to model

elastic deformation. While our approach is good for most of pregnancy, towards the end of

Table 6. Computational results showing how tissue softening influences thinning and dilation. gr = 0.1, gθ = 2, and

gz = 1. Tissue softening is represented by decreasing the shear modulus μ or the fiber stiffness γ. When μ decreases (γ =

1000 Pa, the original fiber stiffness), thickness increases slightly and r1 decreases slightly, i.e., both thinning and dilation

are weakened slightly. When γ decreases (μ = 1650 Pa, the original shear modulus), thickness decreases slightly and r1

increases slightly, i.e., both thinning and dilation are strengthened slightly.

r1 (mm) r4 (mm) Thickness (r4 − r1)

μ = 1650 Pa 23.4 25.0 1.58

μ = 1000 Pa 23.2 24.8 1.60

μ = 500 Pa 22.7 24.4 1.62

μ = 100 Pa 21.8 23.5 1.69

γ = 1000 Pa 23.4 25.0 1.58

γ = 500 Pa 23.7 25.3 1.57

γ = 100 Pa 24.0 25.6 1.55

γ = 10 Pa 24.1 25.6 1.54

https://doi.org/10.1371/journal.pone.0255895.t006
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pregnancy adding a compressibility component may make it more realistic to express part of

the volume change due to large changes of biochemical components during pregnancy.

Cervix deformation can also be studied using 3-dimensional finite-element computation

techniques. However, one disadvantage of the finite-element technique is that it generally only

sustains a very small amount of growth. Large positive or negative growth easily causes the

computation to diverge without providing simulation outcomes. The cervix deformation is

very large in pregnancy. With only small amounts of growth considered, it is very difficult to

show how growth in different principle directions produce distinct thinning and dilation

effects. By extracting the main feature of the cervix geometry, we idealize the cervix as an axi-

symmetric cylinder and consider axisymmetric deformation incurred by growth. The model

reduces to an ordinary differential equation problem and can more easily be manipulated by

primitive computational approaches. The reduced model accommodates critically large

growth effects, and assists us in more easily analyzing how growth patterns in different mor-

phometric dimensions contribute to the thinning and dilation deformation.

The models also ignore irregularities of the cervix geometry. The cervix is not accurately

axisymmetric, especially on the top and bottom. Ligaments also surround the cervix as a sup-

port structure to the cervix. Further, the cervix is gradually pressed by the uterus above it as

the fetus grows. Besides thinning and dilation, the cervix also shortens and forms a “V” shape

over its top boundary [61]. Buckling of the inner surface may also happen under growth [62,

63], residual stress can occur in the cervix reference configuration [64], and cervical muscle

also contracts during gestation [65]. These factors are not included in the current study. More

particularly, residual stress profiles caused by internal growth are significant in modeling

deformations of the cervix, and many different residual stress profiles may emerge during

pregnancy due to different growth profiles. Similar to blood vessels [66–68], residual stress can

mediate the in vivo stress toward homeostatic stress values for the cervix, and can decrease the

transmural gradient of cervical wall stress as well. The stress-free reference configuration is

obtained usually by cutting the cervix radially to measure the opening angle after the cervix

relieves its residual stress [64]. However, it is difficult to obtain human samples to perform

such measurements [19]. Thus, it remains elusive how to incorporate residual stress in model-

ing cervix deformations [10, 69, 70]. Due to this difficulty, residual stress is also ignored in our

work and left for future modeling work when more related data are available. Because we use

the cervix in early pregnancy as the reference configuration, in which growth has not exten-

sively developed and the lumen pressure from small amount of mucus is very low [19], we

expect the residual stress would affect the stress distribution in the cervix but has little effect on

the overall deformation as in blood vessels [71].

We mainly studied anisotropic growth in this article as a direction to explore growth com-

plexity. Many other possibilities or their combinations can also be explored, e.g., isotropic

growth with inhomogeneous growth over each layer or some layers, isotropic and homoge-

neous growth with different growth parameters in different layers, and anisotropic growth

with inhomogeneous growth in each or some layers. These possibilities can be considered

based on future advanced biological understanding of growth profiles in the cervix. When we

consider thinning and dilation, it is equally important to consider how extensively the two

deformations are achieved based on the fact that the cervix needs to provide a greatly enlarged

canal for birth [60]. We are confident that investigation of these possibilities also involves neg-

ative and positive growth in different levels verifying growth complexity.

Presently our model provides a qualitative understanding of how required deformation is

formed under specified growth. Based on such outcomes, more realistic models accommodat-

ing patient-specific geometries can be established to more accurately delineate how the cervix

becomes thinned and dilated. Furthermore, the model provides a platform to explore how
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hormone-regulated biochemical influences, and cell regulations, are associated with growth.

By knowing how growth is exhibited in different directions, we can find how biochemical and

cellular activities generate corresponding directionalized growth. The growth tensor can be

used to derive the surface growth vector over any virtual surface inside the organ to form

related growth boundary conditions, comparable to the traditional displacement, force, or

pressure boundary conditions. These new growth boundary conditions make the model more

straightforward to generate growth-controlled TODs. Our results discover that a mix of posi-

tive and negative growth in different directions together contributes to needed deformations.

When studying deformation-targeted growth, a uniform growth may not be enough to repre-

sent the accurate growth status inside tissues, and more complex growth should be considered.

Such complex growth should not be ignored or minimized in importance when studying

TODs, and further physiological interpretations and integration with biochemical and cellular

activities are needed.

Author Contributions

Conceptualization: Kun Gou, Seungik Baek, Hai-Chao Han.

Formal analysis: Kun Gou, Marvin M. F. Lutnesky, Hai-Chao Han.

Investigation: Kun Gou, Seungik Baek, Marvin M. F. Lutnesky, Hai-Chao Han.

Methodology: Kun Gou, Seungik Baek, Hai-Chao Han.

Project administration: Kun Gou, Hai-Chao Han.

Resources: Kun Gou.

Software: Kun Gou.

Supervision: Kun Gou, Hai-Chao Han.

Visualization: Kun Gou.

Writing – original draft: Kun Gou.

Writing – review & editing: Kun Gou, Seungik Baek, Marvin M. F. Lutnesky, Hai-Chao Han.

References
1. Monson KL, Converse MI, Manley GT. Cerebral blood vessel damage in traumatic brain injury. Clin Bio-

mech. 2019; 64:98–113. https://doi.org/10.1016/j.clinbiomech.2018.02.011

2. Chen H, Kreider W, Brayman AA, Bailey MR, Matula TJ. Blood vessel deformations on microsecond

time scales by ultrasonic cavitation. Phys Rev Lett. 2011; 106:034301. https://doi.org/10.1103/

PhysRevLett.106.034301

3. Labanaris AP, Polykandriotis E, Horch RE. The effect of vacuum-assisted closure on lymph vessels in

chronic wounds. J Plast Reconstr Aesthet Surg. 2009; 62:1068–1075. https://doi.org/10.1016/j.bjps.

2008.01.006

4. Moriondo A, Solari E, Marcozzi C, Negrini D. Diaphragmatic lymphatic vessel behavior during local skel-

etal muscle contraction. Am J Physiol Heart Circ Physiol. 2015; 308:H193–H205. https://doi.org/10.

1152/ajpheart.00701.2014

5. Zhao Y, Raco J, Kourmatzis A, Diasinos S, Chan HK, Yang R, et al. The effects of upper airway tissue

motion on airflow dynamics. J Biomech. 2020; 99:109506. https://doi.org/10.1016/j.jbiomech.2019.

109506 PMID: 31780123

6. Xia G, Tawhai MH, Hoffman EA, Lin CL. Airway wall stiffening increases peak wall shear stress: a fluid-

structure interaction study in rigid and compliant airways. Ann Biomed Eng. 2010; 38:1836–1853.

https://doi.org/10.1007/s10439-010-9956-y

PLOS ONE Growth-profile configuration for specific deformations of tubular organs

PLOS ONE | https://doi.org/10.1371/journal.pone.0255895 August 11, 2021 15 / 18

https://doi.org/10.1016/j.clinbiomech.2018.02.011
https://doi.org/10.1103/PhysRevLett.106.034301
https://doi.org/10.1103/PhysRevLett.106.034301
https://doi.org/10.1016/j.bjps.2008.01.006
https://doi.org/10.1016/j.bjps.2008.01.006
https://doi.org/10.1152/ajpheart.00701.2014
https://doi.org/10.1152/ajpheart.00701.2014
https://doi.org/10.1016/j.jbiomech.2019.109506
https://doi.org/10.1016/j.jbiomech.2019.109506
http://www.ncbi.nlm.nih.gov/pubmed/31780123
https://doi.org/10.1007/s10439-010-9956-y
https://doi.org/10.1371/journal.pone.0255895


7. Patel K, Abbassi-Ghadi N, Markar S, Kumar S, Jethwa P, Zaninotto G. Peroral endoscopic myotomy for

the treatment of esophageal achalasia: systematic review and pooled analysis. Dis Esophagus. 2016;

29:807–819. https://doi.org/10.1111/dote.12387

8. Misra JC, Maiti S. Peristaltic transport of rheological fluid: model for movement of food bolus through

esophagus. Appl Math Mech. 2012; 33:315–332. https://doi.org/10.1007/s10483-012-1552-7

9. Mazza E, ParraSaavedra M, Bajka M, Gratacos E, Nicolaides K, Deprest J. In vivo assessment of the

biomechanical properties of the uterine cervix in pregnancy. Prenat Diagn. 2014; 34:33–41. https://doi.

org/10.1002/pd.4260

10. Myers KM, Feltovich H, Mazza E, Vink J, Bajka M, Wapner RJ, et al. The mechanical role of the cervix

in pregnancy. J Biomech. 2015; 48:1511–1523. https://doi.org/10.1016/j.jbiomech.2015.02.065 PMID:

25841293

11. Jung H, Lee DY, Ahn W. Real time deformation of colon and endoscope for colonoscopy simulation. Int

J Med Robot. 2012; 8:273–281. https://doi.org/10.1002/rcs.1414

12. Oda M, Kondo H, Kitasaka T, Furukawa K, Miyahara R, Hirooka Y, et al. Robust colonoscope tracking

method for colon deformations utilizing coarse-to-fine correspondence findings. Int J Comput Assist

Radiol Surg. 2017; 12:39–50. https://doi.org/10.1007/s11548-016-1456-6 PMID: 27431209

13. Rudyk R, Malinowski M, Mackiewicz A, Bedzinski R, Noszczyk-Nowak A, Skonieczna J, et al. Numeri-

cal analysis of deformation and flow in the proximal area of the urethra. Int J Appl Mech Eng. 2020;

25:130–141 https://doi.org/10.2478/ijame-2020-0025

14. Nolan DR, Gower AL, Destrade M, Ogden RW, McGarry JP. A robust anisotropic hyperelastic formula-

tion for the modelling of soft tissue. J Mech Behav Biomed Mater. 2014; 39:48–60. https://doi.org/10.

1016/j.jmbbm.2014.06.016

15. Guo ZY, Peng XQ, Moran B. A composites-based hyperelastic constitutive model for soft tissue with

application to the human annulus fibrosus. J Mech Phys Solids. 2006; 54:1952–1971. https://doi.org/10.

1016/j.jmps.2006.02.006

16. Martins PALS, Jorge RMN, Ferreira AJM. A comparative study of several material models for prediction

of hyperelastic properties: Application to silicone-rubber and soft tissues. Strain. 2006; 42:135–147.

https://doi.org/10.1111/j.1475-1305.2006.00257.x

17. Rubin MB, Bodner SR. A three-dimensional nonlinear model for dissipative response of soft tissue. Int J

Solids Struct. 2002; 39:5081–5099. https://doi.org/10.1016/S0020-7683(02)00237-8

18. Fok PW. Growth of necrotic cores in atherosclerotic plaque. Math Med Biol. 2012; 29:301–327. https://

doi.org/10.1093/imammb/dqr012

19. Gou K, Topol H, Demirkoparan H, Pence TJ. Stress-swelling finite element modeling of cervical

response with homeostatic collagen fiber distributions. J Biomech Eng. 2020; 142:081002. https://doi.

org/10.1115/1.4045810

20. Gou K, Pence TJ. Computational modeling of tracheal angioedema due to swelling of the submucous

tissue layer. Int J Numer Methods Eng. 2017; 33:e2861.

21. Duong MT, Nguyen NH, Staat M. Physical response of hyperelastic models for composite materials

and soft tissues. Asia Pac J Comput Eng. 2015; 2:1–18.

22. Tian FB, Zhu L, Fok PW, Lu XY. Simulation of a pulsatile non-Newtonian flow past a stenosed 2D artery

with atherosclerosis. Comput Biol Med. 2013; 43:1098–1113. https://doi.org/10.1016/j.compbiomed.

2013.05.023

23. Yan SR, Sedeh S, Toghraie D, Afrand M, Foong LK. Analysis and management of laminar blood flow

inside a cerebral blood vessel using a finite volume software program for biomedical engineering. Com-

put Methods Programs Biomed. 2020; 190:105384. https://doi.org/10.1016/j.cmpb.2020.105384

24. Goriely A. The mathematical and mechanics of biological growth. Springer; 2017.

25. Goriely A, Vandiver R. On the mechanical stability of growing arteries. IMA J Appl Math. 2010; 75:549–

570. https://doi.org/10.1093/imamat/hxq021

26. Gou K, Fok PW, Fu Y. Nonlinear tubular organ modeling and analysis for tracheal angioedema by swell-

ing-morphoelasticity. J Eng Math. 2018; 112:95–117. https://doi.org/10.1007/s10665-018-9967-5

27. Zhang Y, Dunn ML, Drexler ES, McCowan CN, Slifka AJ, Ivy DD, et al. A microstructural hyperelastic

model of pulmonary arteries under normo-and hypertensive conditions. Ann Biomed Eng. 2005;

33:1042–1052. https://doi.org/10.1007/s10439-005-5771-2 PMID: 16133913

28. Gou K, Muddamallappa MS. An analytic study on nonlinear radius change for hyperelastic tubular

organs under volume expansion. Acta Mechanica. 2020; 231:1503–1517. https://doi.org/10.1007/

s00707-019-02603-8

29. Gou K, Pence TJ. Hyperelastic modeling of swelling in fibrous soft tissue with application to tracheal

angioedema. J Math Biol. 2016; 72:499–526. https://doi.org/10.1007/s00285-015-0893-0

PLOS ONE Growth-profile configuration for specific deformations of tubular organs

PLOS ONE | https://doi.org/10.1371/journal.pone.0255895 August 11, 2021 16 / 18

https://doi.org/10.1111/dote.12387
https://doi.org/10.1007/s10483-012-1552-7
https://doi.org/10.1002/pd.4260
https://doi.org/10.1002/pd.4260
https://doi.org/10.1016/j.jbiomech.2015.02.065
http://www.ncbi.nlm.nih.gov/pubmed/25841293
https://doi.org/10.1002/rcs.1414
https://doi.org/10.1007/s11548-016-1456-6
http://www.ncbi.nlm.nih.gov/pubmed/27431209
https://doi.org/10.2478/ijame-2020-0025
https://doi.org/10.1016/j.jmbbm.2014.06.016
https://doi.org/10.1016/j.jmbbm.2014.06.016
https://doi.org/10.1016/j.jmps.2006.02.006
https://doi.org/10.1016/j.jmps.2006.02.006
https://doi.org/10.1111/j.1475-1305.2006.00257.x
https://doi.org/10.1016/S0020-7683(02)00237-8
https://doi.org/10.1093/imammb/dqr012
https://doi.org/10.1093/imammb/dqr012
https://doi.org/10.1115/1.4045810
https://doi.org/10.1115/1.4045810
https://doi.org/10.1016/j.compbiomed.2013.05.023
https://doi.org/10.1016/j.compbiomed.2013.05.023
https://doi.org/10.1016/j.cmpb.2020.105384
https://doi.org/10.1093/imamat/hxq021
https://doi.org/10.1007/s10665-018-9967-5
https://doi.org/10.1007/s10439-005-5771-2
http://www.ncbi.nlm.nih.gov/pubmed/16133913
https://doi.org/10.1007/s00707-019-02603-8
https://doi.org/10.1007/s00707-019-02603-8
https://doi.org/10.1007/s00285-015-0893-0
https://doi.org/10.1371/journal.pone.0255895


30. Fok PW, Gou K. Finite element simulation of intimal thickening in 2D multi-layered arterial cross sec-

tions by morphoelasticity. Comput Methods Appl Mech Eng. 2020; 363:112860. https://doi.org/10.1016/

j.cma.2020.112860

31. Cowin SC. Tissue growth and remodeling. Annu Rev Biomed Eng. 2004; 6:77–107. https://doi.org/10.

1146/annurev.bioeng.6.040803.140250

32. Timmons B, Akins M, Mahendroo M. Cervical remodeling during pregnancy and parturition. Trends

Endocrin Met. 2010; 21:353–361. https://doi.org/10.1016/j.tem.2010.01.011

33. Arana-Chavez VE, Bradaschia-Correa V. Clastic cells: mineralized tissue resorption in health and dis-

ease. Int J Biochem Cell Biol. 2009; 41:446–450. https://doi.org/10.1016/j.biocel.2008.09.007

34. Hotchkiss RS, Strasser A, McDunn JE, Swanson PE. Cell death. N Engl J Med. 2009; 361:1570–1583.

https://doi.org/10.1056/NEJMra0901217

35. Erlich A, Moulton DE, Goriely A. Are homeostatic states stable? Dynamical stability in morphoelasticity.

Bull Math Biol. 2019; 81:3219–3244. https://doi.org/10.1007/s11538-018-0502-7

36. Moulton DE, Goriely A. Possible role of differential growth in airway wall remodeling in asthma. J Appl

Physiol. 2011; 110:1003–1012. https://doi.org/10.1152/japplphysiol.00991.2010

37. Rodriguez EK, Hoger A, McCulloch AD. Stress-dependent finite growth in soft elastic tissues. J Bio-

mech. 1994; 27:455–467. https://doi.org/10.1016/0021-9290(94)90021-3

38. Jordan JA, Singer A. The Cervix, Second Edition. Part 4: The cervix in pregnancy and labour. Blackwell

Publishing Ltd; 2006.

39. Rice DA, Yang TY, Stanley PE. A simple model of the human cervix during the first stage of labor. Jour-

nal of biomechanics. 1976; 9:153–163. https://doi.org/10.1016/0021-9290(76)90154-8

40. Junqueira LC, Zugaib M, Montes GS, Toledo OMS, Krisztan RM, Shigihara KM. Morphologic and histo-

chemical evidence for the occurrence of collagenolyis and for the role of neutrophilic polymorphonuclear

leukocytes during cervical dilation. Am J Obstet Gynecol. 1980; 138:273–281. https://doi.org/10.1016/

0002-9378(80)90248-3

41. Miftahof RN, Nam HG. Biomechanics of the gravid human cervix, Chapter 9: Gravid uterus as a soft bio-

logical shell. Springer-Verlag Berlin Heidelberg; 2011.

42. Iams JD, Goldenberg RL, Meis PJ, Mercer BM, Moawad A, Das A, et al. The length of the cervix and

the risk of spontaneous premature delivery. New Engl J Med. 1996; 334:567–573. https://doi.org/10.

1056/NEJM199602293340904 PMID: 8569824

43. Saito M, Kozuma S, Kikuchi A, Sakai M, Fujii T, Unno N, et al. Sonographic assessment of the cervix

before, during and after a uterine contraction is effective in predicting the course of labor. Ultrasound

Obest Gynecol. 2003; 22:604–608. https://doi.org/10.1002/uog.927 PMID: 14689533

44. House M, Kaplan DL, Socrate S. Relationships between mechanical properties and extracellular matrix

constituents of the cervical stroma during pregnancy. Semin Perinatol. 2009; 33:300–307. https://doi.

org/10.1053/j.semperi.2009.06.002

45. Leppert PL, Yu SY. Elastin and collagen in the human uterus and cervix. In: Leppert PL, Woessner JF,

editors. The extracellular matrix of the uterus, cervix and fetal membranes: synthesis, degradation and

hormonal regulation. Ithaca, NY: Perinatology Press; 1991. p. 59–67.

46. Yu SY, Tozzi CA, Babiarz J, Leppert PC. Collagen changes in rat cervix in pregnancy-polarized light

microscopic and electron. Proc Soc Exp Biol Med. 1995; 209:360–368. https://doi.org/10.3181/

00379727-209-43908

47. Ludmir J, Sehdev HM. Anatomy and physiology of the uterine cervix. Clin Obstet and Gynecol. 2000;

43:433–439. https://doi.org/10.1097/00003081-200009000-00003

48. Krantz KE, Phillips WP. Anatomy of the human uterine cervix, gross and microscopic. Annals of the

New York Academy of Sciences. 1962; 97:551–563.

49. Andersson S, Minjarez D, Yost NP, Word RA. Estrogen and progesterone metabolism in the cervix dur-

ing pregnancy and parturition. J Clin Endocrinol Metab. 2008; 93:2366–2374. https://doi.org/10.1210/

jc.2007-2813

50. Yellon SM. Contributions to the dynamics of cervix remodeling prior to term and preterm birth. Biol

Reprod. 2017; 96:13–23. https://doi.org/10.1095/biolreprod.116.142844

51. Leppert PC. Anatomy and physiology of cervical ripening. Clin Obstet Gynecol. 1995; 2:267–279.

52. Leppert PC. Cervical softening, effacement and dilation: A complex biochemical cascade. J Matern-

Fetal Med. 1992; 1:213–223 https://doi.org/10.3109/14767059209161921

53. Vink J, Feltovich H. Cervical etiology of spontaneous preterm birth. Semin Fetal Neonat M. 2016;

21:106–112. https://doi.org/10.1016/j.siny.2015.12.009

54. Demirkoparana H, Pence TJ. Swelling of an internally pressurized nonlinearly elastic tube with fiber

reinforcing. Int J Solids Struct. 2007; 44:4009–4029. https://doi.org/10.1016/j.ijsolstr.2006.11.006

PLOS ONE Growth-profile configuration for specific deformations of tubular organs

PLOS ONE | https://doi.org/10.1371/journal.pone.0255895 August 11, 2021 17 / 18

https://doi.org/10.1016/j.cma.2020.112860
https://doi.org/10.1016/j.cma.2020.112860
https://doi.org/10.1146/annurev.bioeng.6.040803.140250
https://doi.org/10.1146/annurev.bioeng.6.040803.140250
https://doi.org/10.1016/j.tem.2010.01.011
https://doi.org/10.1016/j.biocel.2008.09.007
https://doi.org/10.1056/NEJMra0901217
https://doi.org/10.1007/s11538-018-0502-7
https://doi.org/10.1152/japplphysiol.00991.2010
https://doi.org/10.1016/0021-9290(94)90021-3
https://doi.org/10.1016/0021-9290(76)90154-8
https://doi.org/10.1016/0002-9378(80)90248-3
https://doi.org/10.1016/0002-9378(80)90248-3
https://doi.org/10.1056/NEJM199602293340904
https://doi.org/10.1056/NEJM199602293340904
http://www.ncbi.nlm.nih.gov/pubmed/8569824
https://doi.org/10.1002/uog.927
http://www.ncbi.nlm.nih.gov/pubmed/14689533
https://doi.org/10.1053/j.semperi.2009.06.002
https://doi.org/10.1053/j.semperi.2009.06.002
https://doi.org/10.3181/00379727-209-43908
https://doi.org/10.3181/00379727-209-43908
https://doi.org/10.1097/00003081-200009000-00003
https://doi.org/10.1210/jc.2007-2813
https://doi.org/10.1210/jc.2007-2813
https://doi.org/10.1095/biolreprod.116.142844
https://doi.org/10.3109/14767059209161921
https://doi.org/10.1016/j.siny.2015.12.009
https://doi.org/10.1016/j.ijsolstr.2006.11.006
https://doi.org/10.1371/journal.pone.0255895


55. Sakai M, Shiozaki A, Tabata M, Sasaki Y, Yoneda S, Arai T, et al. Evaluation of effectiveness of prophy-

lactic cerclage of a short cervix according to interleukin-8 in cervical mucus. Am J Obstet Gynecol.

2006; 194:14–19. https://doi.org/10.1016/j.ajog.2005.06.014 PMID: 16389005

56. Vu D, Haylen BT, Tse K, Farnsworth A. Surgical anatomy of the uterosacral ligament. Int Urogynecol J.

2010; 21:1123–1128. https://doi.org/10.1007/s00192-010-1147-8

57. Aspden RM. Collagen organisation in the cervix and its relation to mechanical function. Collagen Rel

Res. 1988; 8:103–112. https://doi.org/10.1016/S0174-173X(88)80022-0

58. Paskaleva AP. Biomechanics of cervical function in pregnancy-case of cervical insufficiency. Ph.D.

Thesis, Department of Mechanical Engineering, Massachusetts Institute of Tehchnology; 2007.

59. Nallasamy S, Yoshida K, Akins M, Myers K, Iozzo R, Mahendroo M. Steroid hormones are key modula-

tors of tissue mechanical function via regulation of collagen and elastic fibers. Endocrinol. 2017;

158:950–962. https://doi.org/10.1210/en.2016-1930

60. Schlembach D, MacKay L, Shi L, Maner WL, Garfield RE, Maul H. Cervical ripening and insufficiency:

from biochemical and molecular studies to in vivo clinical examination. Eur J Obstet Gynecol Reprod

Biol. 2009; 144:S70–S76. https://doi.org/10.1016/j.ejogrb.2009.02.036

61. To MS, Skentou C, Liao AW, Cacho A, Nicolaides KH. Cervical length and funneling at 23 weeks of ges-

tation in the prediction of spontaneous early preterm delivery. Ultrasound Obstet Gynecol. 2001;

18:200–203. https://doi.org/10.1046/j.1469-0705.2001.00437.x

62. Han HC, Chesnutt JKW, Garcia JR, Liu Q, Wen Q. Artery buckling: new phenotypes, models, and appli-

cations. Ann Biomed Eng. 2013; 41:1399–1410. https://doi.org/10.1007/s10439-012-0707-0

63. Jin L, Liu Y, Cai Z. Post-buckling analysis on growing tubular tissues: A semi-analytical approach and

imperfection sensitivity. Int J Solids Struct. 2019; 162:121–134. https://doi.org/10.1016/j.ijsolstr.2018.

11.031

64. Capone DJ, Clark GL, Bivona D, Ogola BO, Desrosiers L, Knoepp LR, et al. Evaluating residual strain

throughout the murine female reproductive system. J Biomech. 2019; 82:299–306. https://doi.org/10.

1016/j.jbiomech.2018.11.001 PMID: 30458959

65. Rosengren SM. Effects of muscle contraction on cervical vestibular evoked myogenic potentials in nor-

mal subjects. Clin Neurophysiol. 2015; 126:2198–2206. https://doi.org/10.1016/j.clinph.2014.12.027

66. Taber LA, Humphrey JD. Stress-modulated growth, residual stress, and vascular heterogeneity. J Bio-

mech Eng. 2001; 123:528–535 https://doi.org/10.1115/1.1412451 PMID: 11783722

67. Fung YC, Liu SQ. Change of residual strains in arteries due to hypertrophy caused by aortic constric-

tion. Circ Res. 1989; 65:1340–1349. https://doi.org/10.1161/01.RES.65.5.1340

68. Fung YC. What are the residual stresses doing in our blood vessels? Ann Biomed Eng. 1991; 19:237–

249 https://doi.org/10.1007/BF02584301 PMID: 1928868

69. Fernandez M, House M, Jambawalikar S, Zork N, Vink J, Wapner R, et al. Investigating the mechanical

function of the cervix during pregnancy using finite element models derived from high-resolution 3D

MRI. Comput Methods Biomech Biomed Eng. 2016; 19:404–417. https://doi.org/10.1080/10255842.

2015.1033163

70. House M, McCabe R, Socrate S. Using imaging-based, three-dimensional models of the cervix and

uterus for studies of cervical changes during pregnancy. Clin Anat. 2013; 26:97–104. https://doi.org/10.

1002/ca.22183

71. Han HC, Marita S, Ku DN. Changes of opening angle in hypertensive and hypotensive arteries in three-

day organ culture. J Biomech. 2006; 39:2410–2418. https://doi.org/10.1016/j.jbiomech.2005.08.003

PLOS ONE Growth-profile configuration for specific deformations of tubular organs

PLOS ONE | https://doi.org/10.1371/journal.pone.0255895 August 11, 2021 18 / 18

https://doi.org/10.1016/j.ajog.2005.06.014
http://www.ncbi.nlm.nih.gov/pubmed/16389005
https://doi.org/10.1007/s00192-010-1147-8
https://doi.org/10.1016/S0174-173X(88)80022-0
https://doi.org/10.1210/en.2016-1930
https://doi.org/10.1016/j.ejogrb.2009.02.036
https://doi.org/10.1046/j.1469-0705.2001.00437.x
https://doi.org/10.1007/s10439-012-0707-0
https://doi.org/10.1016/j.ijsolstr.2018.11.031
https://doi.org/10.1016/j.ijsolstr.2018.11.031
https://doi.org/10.1016/j.jbiomech.2018.11.001
https://doi.org/10.1016/j.jbiomech.2018.11.001
http://www.ncbi.nlm.nih.gov/pubmed/30458959
https://doi.org/10.1016/j.clinph.2014.12.027
https://doi.org/10.1115/1.1412451
http://www.ncbi.nlm.nih.gov/pubmed/11783722
https://doi.org/10.1161/01.RES.65.5.1340
https://doi.org/10.1007/BF02584301
http://www.ncbi.nlm.nih.gov/pubmed/1928868
https://doi.org/10.1080/10255842.2015.1033163
https://doi.org/10.1080/10255842.2015.1033163
https://doi.org/10.1002/ca.22183
https://doi.org/10.1002/ca.22183
https://doi.org/10.1016/j.jbiomech.2005.08.003
https://doi.org/10.1371/journal.pone.0255895

