
EDITORIAL
Unravelling the Role of Neutrophil Extracellular Traps in Acute
Liver Failure
cute liver failure (ALF) is a life-threatening disease
Athat often requires organ support, admission to an
intensive care facility, and urgent liver transplantation. Pa-
tients develop complex changes in their hemostatic system
and massive systemic activation of inflammatory responses.
The exact pathologic mechanisms of ALF are incompletely
understood, and there is a need for targeted treatment
strategies.1 A study by Ye et al2 published in this issue of
Cellular and Molecular Gastroenterology and Hepatology
improves the understanding of the role of neutrophils in the
onset and progression of ALF, and provides novel thera-
peutic targets that could be further explored.

Neutrophils accumulate in the injured liver and are
considered key players in ALF- associated liver injury. On
activation, such as by platelets or danger-associated mo-
lecular patterns, a neutrophil can release its internal com-
ponents to form a neutrophil extracellular trap (NET). NETs
consist of unfolded DNA structures to which granular en-
zymes, such as neutrophil elastase (NE), are bound, which
trap and remove pathogens. NETs have a host-protective
function, but have also been implicated as drivers of dis-
eases, such as sepsis and autoimmune diseases.3 In addition,
NETs have been shown to promote thrombosis in various
ways. NETs bind and activate platelets, promote activation
of coagulation, bind fibrinogen to inhibit its degradation,
and stabilize thrombi.4,5 Because of these characteristics,
NETs might provide a connection between the profound
activation of the hemostatic system and the immune system
that is seen in patients with ALF, making it an interesting
subject of study in this disease.

We have recently shown in a large cohort of patients
with ALF that plasma markers of NETs were elevated and
associated with death or the need for urgent liver trans-
plantation. Moreover, histologic analyses of explanted livers
obtained from a small proportion of these patients showed
NET formation in the liver.6 These findings underline a
potential role for NETs in the progression of ALF that
warrant mechanistic studies.

In this issue, a well-designed study by Ye et al2

investigated the potential role for NETs in ALF in a
galactosamine-lipopolysaccharide-induced ALF mouse
model, and specifically studied the contribution of
microRNA-223 and NE to disease progression. The authors
demonstrated a protective role for microRNA-223 and
detrimental effects of NE in ALF by modulating neutrophil
recruitment to the liver, NET formation, and hepatic injury.
Interestingly, pharmacologic and genetic blockage of NE
resulted in decreased NET formation and hepatic injury that
could at least in part be attributed to the decreased
neutrophil recruitment to the liver in NE-deficient mice.
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These results are in line with a previous experimental study
in septic mice that showed that inhibition of NE resulted in
significantly decreased NET formation and was more effi-
cient in reducing hepatic injury than inhibition of NET
formation alone.7 In addition, in this study the necrotic
areas in the liver of untreated septic mice colocalized with
the proteolytic activity of NE,7 suggesting direct cytotoxic
effects of NE. Whether NETs, and specifically NE, mainly
inflict hepatic injury in ALF by direct cytotoxic effects or
whether other mechanisms, such as (local) activation of the
hemostatic system and consequent ischemic injury, are
involved should be further explored. NET-induced activa-
tion of the hemostatic system has been shown to contribute
to chronic liver disease progression by formation of (micro)
thrombi in the liver in a mouse model of portal hyperten-
sion.8 Moreover, NE contributes to thrombus formation by
activating platelets through proteinase-activated receptor-
1,9 and by degradation of tissue factor pathway inhibitor.10

These mechanisms may explain why neutrophil influx and
NET formation is decreased in the absence of NE, because
activated platelets and fibrin can bind and activate neu-
trophils. Therefore, we think that the interplay of NE, NETs,
and the hemostatic system in ALF is of definite interest for
future study.

In conclusion, the results of the study by Ye et al2

improve the understanding of this difficult to treat dis-
ease, and provide rationale to explore targeted treatment
strategies. In addition to this study, others have demon-
strated that the removal or inhibition of NETs and NE by for
example DNase I or sivelestat, which are both clinically
available compounds, reduced liver injury and thrombosis
in experimental models.7,11 It is, however, important to
acknowledge the vital role of NETs in pathogen clearance,
and that blocking NETs might further increase the risk of
infection in patients with ALF. However, there is experi-
mental evidence that inhibition of NETs does not increase
bacterial dissemination, and it was suggested that other
cell types, such as macrophages and Kupffer cells,
compensate for the loss of (immune) function of NETs.12 We
look forward to future studies that unravel the role of
neutrophils and NETs in ALF, and explore its therapeutic
potential.
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