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ABSTRACT: The significant consumption of fossil fuels and the increasing pollution have
spurred the development of energy-storage devices like batteries. Due to their high cost and
limited resources, widely used lithium-ion batteries have become unsuitable for large-scale
energy production. Sodium is considered to be one of the most promising substitutes for
lithium due to its wide availability and similar physiochemical properties. Designing a suitable
cathode material for sodium-ion batteries is essential, as the overall electrochemical
performance and the cost of battery depend on the cathode material. Among different types
of cathode materials, polyanionic material has emerged as a great option due to its higher
redox potential, stable crystal structure, and open three-dimensional framework. However, the
poor electronic and ionic conductivity limits their applicability. This review briefly discusses
the strategies to deal with the challenges of transition-metal oxides and Prussian blue analogue,
recent developments in polyanionic compounds, and strategies to improve electrochemical
performance of polyanionic material by nanostructuring, surface coating, morphology control,
and heteroatom doping, which is expected to accelerate the future design of sodium-ion battery cathodes.

1. INTRODUCTION
The whooping energy demands and environmental concerns
regarding the emission of toxic gases during the consumption of
fossil fuels make nonrenewable energy sources unsuitable for
future energy needs.1 The search for an efficient, clean, and
sustainable source of energy paved the way for the growth of
renewable energy sources such as tidal energy, solar energy, and
wind energy. However, their intermittent energy supply due the
variable weather conditions diminishes their reliability on the
global market.2,3 Hence suitable electrochemical energy storage
devices are required for the production of electricity from
renewable energy sources. Batteries are becoming popular
among electrochemical storage devices because of their higher
energy efficiency.4

Even though the research on sodium-ion batteries (SIB)
started parallel with lithium-ion batteries (LIB) in 1980, LIBs
dominated the industry due to their higher energy efficiency and
long life span which made LIB an ideal energy storage device
after its commercialization in 1991 by Sony Corporation with
carbon as anode and LiCoO2 as cathode.

5 Mainly there are four
main components in an LIB system�cathode, anode, current
collector, and electrolyte. Cobalt and nickel-based transition-
metal oxides are generally used as cathode materials, graphite is
used as anode, and copper serves as a current collector. The
demand for LIB has increased with the fast-growing electronic
grid appliances and electric vehicle industry. However, the raw
materials of LIBs, mainly lithium, cobalt, and copper, are rare
elements where the relative abundance of lithium is limited to 20
ppm and its uneven distribution around the world has raised
concern about the price and its long-term availability.6,7 A steep

increase in the price of LiCoO2 can be seen in the beginning of
this century due to the widespread use of LIBs.8 Generation of
heat during a charging−discharging cycle due to the electro-
chemical reaction increases the battery temperature, and a
failure in the management of heat can cause combustion or even
explosion, which raises safety concerns in LIBs.9 According to P.
Rüetschi “three E” determines the success of a battery, i.e.,
energy, economics, and environment. Considering the abun-
dance, cost, and safety issues conventional LIBs have become
less suitable for the vast future energy needs.10 These concerns
motivated the researchers to find suitable alternative energy
storage devices for LIBs (Figure 1).

In comparison to lithium, sodium resources are limitless, as
sodium is one of the most prevalent elements found in the
earth’s crust. It is the smallest alkali metal next to Lithium, and its
comparable physical and chemical properties with Li, have made
SIBs an ideal substitute for LIBs. SIB cathodes rely on abundant
iron and manganese, rather than scarce nickel and cobalt, for its
electrode material. And unlike geologically constrained lithium
resources, sodium is evenly distributed all over the world making
it easily available. Another advantage of SIB is that sodium is free
from alloying reaction with aluminum, so the cheaper aluminum
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serves as a current collector rather than copper, which further
reduces the cost. The use of same current collector makes it easy
to recycle and also enables SIBs to be stored at 0 V.11 This ability
of SIBs to be transported in short-circuit stage compared to
LIBs, which is stored and transported in 20−40% charge state to
avoid the dissolution of copper, makes it safer. Further, Na+ ion
being larger in size has a low charge density as compared to the
Li+ ion and thus has low desolvation energy. This facilitates
higher mobility of Na+ ions and makes it easier for Na+ to move
between electrode and electrolyte.6 Therefore, the faster sodium
transport kinetics and easier charge transfer has led to higher rate
capability even though it suffers from less polarizing energy.12

Also, the self-heating temperature for LIBs (165 °C) is less than
that of SIBs (260 °C) making SIBs thermally more stable than
LIBs.11 The research interest in the field of Na-ion batteries has
increased in recent years due to its wide availability and low cost.
A comparison bar plot which shows the number of publications
in Li-ion battery and Na-ion battery is given in Figure 2.
Threefold increase in number of publications can be observed
for Na-ion battery from 2015 to 2023, whereas only two times
increase is observed for Li-ion battery. Increasing cost and rare
lithium resources make LIBs unsuitable for large-scale energy
storage. SIBs are suitable for storage grid appliances where cost
and safety are more considered than energy density. A
comparison of the properties of Na and Li is given in the
Table 1.

SIBs suffer from a lower specific capacity than the LIBs
counterparts because of their lower reduction potential and the
larger size of Na. However, they have an upper hand over safety,

cost effectiveness, and abundance, which make SIBs worthwhile
exploring. For large-scale grid storage, cost and longevity are
considered more than energy and power density.

SIBs work in a similar “rocking chair” mechanism as LIBs as
the sodium ions shuttle between the two electrodes because of
the voltage generated across cathode and anode. A sodium ion
battery consist of a positive electrode-cathode, negative
electrode-anode, electrolyte, separator, and current collector.
Sodium ions shuttle between cathode and anode during
charging and discharging. Initially, SIBs are in a discharged
state. The positive electrode contains the transferrable sodium
ion, and the anode will be sodium-free. At the time of charging,
oxidation occurs at the cathode, and sodium ions deintercalate

Figure 1. Schematic illustration of types of cathode materials along with the strategies to improve their performance.

Figure 2. Comparison of number of publications of Li-ion battery and Na-ion battery in recent years. Source: Web of Science. Data until 2024
February.

Table 1. Comparison of the Properties of Na and Li13−15

Na Li

Material abundance
(ppm)

23,600 20

Shannon’s ionic radii (Å) 1.02 0.76
Relative atomic mass 6.94 23.00
E° (vs SHE) (V) −2.71 −3.04
Melting point (°C) 97.7 180.5
Desolvation energy in
PC

157.3 kJ mol−1 218.0 kJ mol−1

Self-heating temperature 260 °C 165 °C
Price ∼0.3$ ∼6$
Coordination preference octahedral and

prismatic
octahedral and
tetrahedral

Distribution Everywhere 70% in South America
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from the cathode material at a potential around 3.0 V versus
Na+/Na and get into the anode around or lower than 1 V by
passing the separator and the electrolyte. To compensate the
positive charges of the sodium ions, electrons are transported
across the external circuit, i.e., from cathode to anode. During
discharging, the circuit is connected to a load, Na+ ions insert
into cathode from electrochemically oxidized anode, and the
electrons also transferred from anode to cathode through an
external circuit; thus, they reach the initial discharged state. A
suitable cathode material which possesses sufficient sodium
content, having large interstitial spaces to host bigger Na+ ion,
structurally stable during charging and discharging, and
sufficient ionic and electronic conductivity is needed for the
commercialization of high power and energy-dense SIBs.16

Cathodes are the most important components of SIBs, which
have a direct effect on the specific capacity, cycling life, and the
operating voltage, and they carry one-third fraction of the
battery. It is still a challenge to the research community to find
suitable Na host material with a comparable energy density and
working potential as Li analogues. After the successful
commercialization of LiCoO2 as a cathode material for LIBs,
sodim insertion characteristics of NaxCoO2 were also studied,
and it is found that LiCoO2 has a specific capacity of 402 Wh
kg−1 when graphite is used as anode material, but the similar
P2−Na0.67CoO2 has only reached up to 251 Wh kg−1.17,18 After
realizing cathodes for sodium ion battery cannot be duplicated
from the Li analogues, development of various sodium host
materials using a large number of transition metals and studies
regarding the sodium de/intercalation mechanism have been
done for the design of better materials.

Layered transition-metal oxides and polyanionic materials are
two main categories of cathode materials for sodium ion

batteries. Even though layered transition-metal oxides exhibit
high energy density, they suffer from sluggish kinetics, and large
volume change and complex phase transitions during charging
and discharging reduces the cycling life of battery. Safety issues
caused by the release of oxygen are another concern of layered
transition-metal oxides. Layered transition metal oxides are
highly sensitive to moisture. Structural changes and the
formation of electrically insulating surface resulting from the
reaction with H2O and CO2 degrades the electrochemical
properties.19 Alternatively, polyanionic materials exhibit a great
diversity in their structures, especially in polyanions where Na+
extracting voltage can be tuned by an inductive effect, which is
used to design high-voltage electrode material. Voltage-capacity
plots of electrode materials for a Na-ion battery are shown in
Figure 3(a). The good structural integrity and open framework
of polyanionic materials provide a good cycling life. This
characteristics provides long-term stability when compared to
layered transition metal oxides, making polyanionic materials, a
promising electrode material for sodium ion battery. In terms of
safety, polyanionic materials have good thermal stability due to
the strong covalent bond of oxygen atoms with the nonmetal
and with the transition metal.20 But the high molecular weight of
the polyanionic compounds leads to lower specific capacity,
resulting in a lower energy density. Polyanionic compounds
exhibit low electronic conductivity, especially in the NASICON
materials, which affects their electrochemical performance. By
using a suitable surface coating, heteroatom doping, modifying
the morphology, and nano structuring can alleviate this issue.21

The higher thermal stability of the polyanionic compounds,
particularly for phosphates due to the P−O bond, are promising
for mid-range electric vehicles (EVs) and stationary energy
storage.22 But these compounds lag behind in energy and power

Figure 3. (a) Voltage-Capacity plot of different cathode materials. Reprinted with permission from ref 50, copyright 2016, Wiley.50 Structural pattern
of (b)O3-layered transitionmetal oxide and (c) P2-layered transitionmetal oxide. Reprinted with permission from ref 51, copyright 2015,Wiley.51 (d)
Capacity retention of P2−Na0.67[Fe0.5Mn0.5]O2 and P’2-Na[Fe0.5Mn0.5]O2. Reprinted with permission from ref 52, copyright 2016, Nature
Communications.52 (e) Structural changes occurring in PBAs. Reprinted with permission from ref 53, copyright 2022, Wiley.53
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density when compared to layered transition metal oxides, and
also the polyanionic groups can render the transport of
electrons, which results in the poor capacity and performance
of the materials. This review systematically deals with different
ways of improving the electronic conductivity of the polyanionic
materials, which is very essential for its better performance.23

This review provides a brief introduction about layered oxides
and Prussian blue analogues along with the challenges and the
methodologies to improve their performance and discusses
recent developments in the field of polyanionic compounds,
challenges faced by the material as sodium host, and the
strategies to improve their electrochemical performance. Even
though there are several papers regarding polyanionic
compounds, a review which comprehensively discusses about
the different methods for improving the performance of the
polyanionic compound is still lacking. Recently, Chunliu Xu et
al. published review article which deals with V-based, Fe-based,
and Mn-based polyanionic compounds toward high energy
density and long cycle life, but the different ways to improve the
electronic conductivity, which is a major limiting factor for the
decrement in the performance of electrochemical performance,
is not addressed.24 Jin et al.,25 Zhao et al.,26 and Barpanda et al.27

have discussed different kinds of polyanionic materials, their
characterization techniques, and the electrochemical perform-
ance, but they lack in explaining different strategies to improve
the performance. Ling et al.28 have discussed about electronic
properties, different synthesis methods, and ways to improve the
electronic conductivity, but the discussion is limited to
phosphate-based polyanionic materials. Here we include an
introduction to different types of cathode materials, a detailed
description about the different kinds of polyanionic materials,
and the ways to alleviate the main challenges caused by the
material. It is anticipated that this review will be beneficial in
developing new polyanionic materials with enhanced electro-
chemical performance.
1.1. Layered Transition-Metal Oxide. Layered transition-

metal oxides have a generic chemical formula of NaxTMO2+y,
where TM stands for transition metal (Mn, Fe, V, Cr, Zn, Ru)
and the Na+ ions are located in between the edge-sharing TMO6
octahedral sheets.29 Structurally, layered transition metal oxides
are classified mainly into O3 and P2 by Delmas et al.; besides
that, O2 and P3 are also present, where P and O correspond to
the trigonal prismatic and octahedral sites of sodium ions and 2
and 3 represent numbers of different transition metal oxide
layers.30 O3 is composed of layers that are packed in an
ABCABC pattern (Figure 3(b)), with one edge and one face
shared by all the sodium, and sodium content is between 0.7 and
1. P2 compounds have a sodium content of about 7, exhibit an
ABBA transition metal oxide layer stacking pattern, and share all
of the sodium either completely on the edge or completely on
the face (Figure 3(c)). Oxide layer stacking in the P3 phase,
which occurs when x ≈ 0.5, displays the ABBCCA pattern, and
all of Na share one face and three edges with three MO6
octahedra.31 Specific energy and the cyclic life of the material is
significantly impacted by the structure of the oxides due to the
difference in sodium content, ion diffusion rate, and the
difference in phase transitions during intercalation and
deintercalation of sodium ions.31 Even though the sodium
content, reversible capacity, and ion diffusion are higher for O3
compounds, it suffers from lower cycling stability due to the
complex phase transition that occurs during the charging and
discharging process (O3 → O′3 → P3 → P′3 → P3″) for
NaNi0.5Mn0.5O2, while the P2 shows P2 → O2 transformation.32

The multiple phase transitions in SIBs compared to LIBs are
mainly attributed to the larger size of sodium, elongated Na−O
bonds, and the ordering arrangement between Na and vacancies
created at various Na contents.29 During charging, sodium from
the cathode transfers to the anode, resulting in the decrease of
sodium content in the cathode, which further proceeds to
gliding of the metal oxide layer due to the repulsion between
oxygen atoms leading to the successive phase transitions.33 The
limited phase transitions in the P2 phase lead to the
comparatively higher structural stability in P2, which contributes
to the good cycling stability and the higher rate capability.
Suppression of phase transition by limiting the cutoff voltage
and substituting the transition metal ions by electrochemically
inactive and active elements such as Al,34 Mg,35 Sb,36 Zn,13

Cu,37 and Fe38 are explored as they improve the electrochemical
performance of layered oxides.39 Even though limiting the cutoff
can reduce the capacity, a stable cycle life can be obtained which
is due to the enhanced structural stability of the material.40

Sodium ion extraction during the electrochemical cycling leads
to the gliding of transition metal layers, which eventually
changes the symmetry of vacant sites. Generally, a P2 phase
transforms to O2 phase due to the gliding of TMO6 octahedra
when a certain amount sodium ion is extracted. This kind of
phase transition is responsible for the capacity fading.41,35

Doping the TM sites with ions having similar radii like Mg, Al,
and Zn into the cathode structure changes the local environ-
ment, which is found to improve the cyclic stability.18 From the
c o m p o u n d s N a 0 . 6 7 N i 0 . 3 3 − x M g x M n 0 . 6 7 O 2 ,

4 2

Na0.5Mn0.5−xAlxCo0.5O2,
34 and Na0.66Ni0.33−xZnxMn0.67O2,

43 it
is understood that the smaller bond length of the dopant with
the oxygen compared to the TM-O bond will reduce the slab
thickness of TMO6. The reduced thickness of the TM layers will
increase the d-spacing of the Na layer, which in turn results in
improved diffusion kinetics of sodium ion during (de)sodiation.
The stronger bond of dopant with oxygen increases the overall
structural stability of the material. The presence of redox-
inactive ions as dopants allows more sodium ions to stay in their
sites during charging-discharging to stabilize the overall charge
balance. Thus, phase transitions such as P2−O2 are inhibited.
Even though limiting the cutoff can reduce the capacity, a stable
life cycle can be obtained which is due to the structural stability
of the material.40

Lower specific energy because of the limited sodium content
is another challenge faced by the layered transition metal oxide.
Studies have shown that adding sodium sacrificially to the
sodium-deficient transition metal oxide can improve the
reversible capacity to a large extent. Biao Zhang et al. introduced
Na3P salt to the P2−Na0.67[Fe0.5Mn0.5]O2 and obtained P’2-
Na[Fe0.5Mn0.5]O2 in which reversible capacity is increased by
20%. From Figure 3(d) it is observed that reversible capacity has
been increased from 71 to 155 mA h g−1 by the introduction of a
sacrificial sodium source (Na3P) without any sacrifice in
capacity retention. However, the handling of Na3P salt in the
atmospheric air is difficult due to humidity issues.44 Armand et
al. successfully obtained 60% enhancement in reversible capacity
by the introduction of 10% Na3N as a sodium reservoir to P2−
Na0.67[Fe0.5Mn0.5]O2. The generation of N2 gas during oxidation
by electrochemical decomposition can hamper battery perform-
ance.45 Further, triggering an oxygen redox reaction in the lattice
by mainly substituting lithium is also an effective strategy to
improve the storage capacity of the oxides. This can provide a
capacity even higher than theoretical capacities, but it suffers
from structural degradation due to the oxygen loss from the
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lattice.46,47 Chen et al. synthesized P2-type Na0.72[Li0.24Mn0.76]-
O2 which gives a reversible capacity of 270 mA h g−1 and energy
density of 700 W h kg−1 in the range of 1.5 and 4.5 V.48

Sodium transition metal oxides shows lower air stability
compared to the Li counterparts due to their lower redox
potentials; thus, the atmospheric exposure can deteriorate the
performance of material. Reaction with H2O and CO2 leads to
the formation of Na2CO3 and NaOH; this increases the rate of
sodium extraction from the lattice. A side reaction occurring at
the electrode−electrolyte interface and decomposition of the
electrolyte leads to the deposition of the side reactants at the
electrode surface, will lower the ionic-electronic conductivity,
and lead to the corrosion of electrode material. Hence a
protective surface oxide with an oxide layer such as Al2O3, MgO,
NaPO3 prevents the active surface from direct contact with air,
and the electrolyte thus improves the electrochemical perform-
ance of the battery.47,49

1.2. Prussian Blue Analogues. The chemical formula of
Prussian blue analogues (PBAs) can be indicated as
AxM1M2(CN)6 where A can be Li+, Na+, K+, or NH4

+, M2 is
generally occupied by Fe, which is coordinated to low-spin
carbon, and M1 corresponds to transition metal including Mn,
Ni, and Co which are coordinated to the high-spin nitrogen of
the cyanide group. PBAs are reported by Goodenough’s group,
and their crystal structure is dictated by the concentration of
alkali ions as well as the amount of trapped water; based on this
three distinct types of polymorphic structures such as
monoclinic, cubic, and rhombohedral are found. Hydrated
Na2−δMn[Fe(CN)6] exhibits a monoclinic structure. Whereas
its dehydrated framework shows rhombohedral structure. The
alkali-rich framework shows monoclinic configuration, whereas,
alkali-deficient one has a cubic framework. The structural
change of PBA from hexagonal to orthorhombic with the effect
of water is shown in Figure 3(e). Intermediate structural forms
are encountered during sodium intercalation and deintercala-
tion.54

Generally, the electrochemical performance of the PBA is
largely affected by the water content, phase purity, defects, and
crystallinity. It is difficult for the PBAs to reach the ideal
electrochemical performance due to the Fe(CN)6 vacancy and
the coordinated water in the lattice as it distorts the crystal
structure, promotes the organic electrolyte decomposition,
fastens the side reaction with the electrolyte, and decreases the
ion/electron conductivity. Moreover, the positively charged
vacancies lower the sodium ion uptake, which lowers the specific
capacity.55,56 Three different kinds of water molecules are
present in PBAs, namely, absorbed water, which is compara-
tively easy to remove by a simple heating procedure below 120
°C, and interstitial and coordinated water, which are difficult to
remove due to the physiochemical bonding with the framework.
Increasing sodium content during synthesis and prefilling the

vacancies can reduce the uptake of water molecules.57,58 A
commonly used hydrothermal and coprecipitation synthesis
process of PBAs leads to imperfect crystal growth, thus leading
to the formation of a large number of vacancies. Tuning the
synthesis process is an effective strategy to produce nanomicro-
sized PBAs, with fewer defects, thus improving the specificity of
the electrode.59 The cyclic stability of the PBAs is lowered by the
structural degradation that occurs due to the defects in the
framework and also by the dissolution of the transition metal
ion, which can reduce by a proper surface coating to an extent.
Safety concerns regarding the release of cyanide under strong
acidic conditions and high temperatures is unignorable. The
proper treatment of chemical waste with excess oxidizing agent
to fully oxidize cyanide to nontoxic products is being
considered.60

2. POLYANIONIC COMPOUNDS
Polyanion-type electrode materials are compound that contains
a series of tetrahedron anion units (XO4)n− or their derivatives
(XmO3m + 1)n− (X = S, P, Si, As, Mo, orW) with strong covalent-
bonded MOx polyhedra (M represents a transition metal). Due
to strong covalently bonded oxygen with the transition metal M
and the nonmetal X, they show higher thermal stability
compared to other cathode materials, which makes them
popular where safety is a concern.61 Also their minor structural
changes during their insertion and deinsertion of sodium ions
due to the robust 3D structure is another advantage. Polyanionic
materials generally show lower gravimetric densities due to their
heavier polyanoinic groups.

The higher redox potential of the polyanionic compounds can
be explained with molecular orbital theory. Interactions among
the 3d orbital of a transition metal and the 2sp orbital of oxygen
(M-O) causes the energy splitting of molecular orbitals into
bonding and antibonding orbitals. A highly covalent M-O bond
will lead to larger spillting which in turn will decrease the energy
difference (ΔE) between the antibonding orbitals and the Fermi
level of sodium (vacuum state), thus reducing the voltage as ΔE
proportional to the redox potential of the metals. When an
electronegative polyanionic group is introduced to the frame-
work, the M-X bond weakens the M-O bond, as it increases the
electron density on the transition metal; thus, the antibonding
orbitals rise to a lower extent, which raises the redox potential of
the transition metal (Figure 4).23,62

2.1. Phosphates. After the successful commercilization of
LiFePO4,

63 the sodium analogue NaFePO4 was explored as a
cathode material for SIB cathodes. NaFePO4 was noticed to
have two different phases olivine and maricite where both of the
lattices have been formed by the slighty distorted octahedral
FeO6 and the tetrahedral PO4. Both of the crystal structures
belong to the Pmna space group where the maricite phase
consists of edge-shared FeO6 units that are linked with PO4 with

Figure 4. Schematic illustarion of (a) changes in molecular orbitals and (b) covalancy of M-O bond. Reprinted with permission from ref 20, copyright
2020, Wiley.20
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no Na+ diffusion channels, thus being considered as electro-
chmically inert, whereas in the olivine phase neighboring FeO6
units are corner-shared with PO4, giving rise to a 1D catonic
channel along the b-axis.64,65 Olivine and maricite sites differ in
the occupation sites of Na+ and Fe2+; in olivine, Na+ occupies the
M1 sites and Fe2+ in the M2 sites, whereas in the case of marcite
Na+ occupies the M2 sites and the Fe2+occupies M1 sites as
shown in Figure 5(a,b). Due to the long distance between the

M2 sites, alkali-ion hopping is not possible in maricite. Kim et al.
through quantum mechanics (QM) and density functional
theory (DFT) calculations found that Na diffusion in
Na1−xFePO4 (x ≈ 0) can occur through two possible ways:
Path 1 is along the bc plane, and path 2 is along the b direction as
shown in Figure 5(c,d).66 Olivine NaFePO4 has been widely

accepted due to the excellent theoretical capacity and energy
density of 154 mA h g−1 and 446 W h kg−1, respectively, and an
operating potential of 2.9 V (vs Na+/Na) based on Fe3+/Fe2+
single redox couple.67 Na ions and the Fe ions accommodate
crystallographically different octahedral sites as they have
different charges and size and the P atoms found at 1/8th of
tetrahedral sites within the hexagonal close-packed (hcp)
oxygen framework. A direct high-temperature synthesis route
produces a thermodynamically stable maricite phase rather than
olivine; thus, it generally requires complicated cation exchange
from LiFePO4.

68,69

LiFePO NO BF FePO LiBF NO

(de lithiation)
4 2 4 4 4 2+ + +

FePO 3/2NaI NaFePO 1/2NaI (sodiation)4 4 3+ +

The stability studies of maricite and olivine phases have been
reported by P.Moreau and group.65 A sodium exchange reaction
in olivine NaFePO4 is a two-step process separated by a voltage
drop having intermediate Na0.7FePO4 stage which is related to
the Na+ ordering in the lattice framework.70 The practical
capacity of the olivine phase lags behind the theoretical capacity
due to the high charge transfer kinetics and low ionic
conductivity, and this can be minimized through proper surface
coating and optimizing the morphology. Ghulam Ali et al.
developed olivine NaFePO4 modified with polythiophene
having discharge capacity of 142 mA h g−1 with a cyclic stability
of 94% over 100 cycles (Figure 6(a)). The material exhibits
excellent electrochemical performance due to the electrical
conduction generated by the polythiophene layer.71

Doping another redox-active metal with olivine NaFePO4 is
an efficient method to enhance the voltage of the material.
Partial substitution of Fe by Mn was also explored in the olivine
phase, and it was found that 10−20% of Mn substitution can
enhance the capacity by >15% through a kinetically produced
intermediate phase that reduces the volume disparity between
the fully sodiated and desodiated phases.72

For the first time, Kim et al. reported 50 nm particle sized
maricite NaFePO4 which shows a capacity of 142 mA h g−1 at
0.05 C; here, the sodium ion diffusion occurs through the two

Figure 5. Structure of (a) maricite NaFePO4 and (b) olivine NaFePO4.
Reprinted with permission from ref 65, copyright 2010, American
Chemical Society.65 (c) Na diffusion channel in maricite NaFePO4.
Reprinted with permission from ref 73, copyright 2015, Royal Society of
Chemistry.73

Figure 6. (a) Capacity retention of bare NaFePO4 and PTh-coated NaFePO4. Reprinted with permission from ref 71, copyright 2016, American
Chemical Society.71 (b) NASICON crystal structure having rhombohedral symmetry. The lantern unit is highlighted by the dash line. Reprinted with
permission from ref 78, copyright 2023, Elsevier.78
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pathways�path 1 in the bc plane and path 2 along the b
direction�as shown in Figure 5(c).

Following the initial desodiation, maricite NaFePO4 changes
into amorphous FePO4, which has lower barriers to sodium ion
hopping. The electrochemical characteristics of amorphous
FePO4 are used to determine subsequent charging and
discharging.73 Reducing the size of the marcite phase to
nanoscale is an effective strategy to mitigate the poor kinetics
due the large mismatch between the maricite and amorphous
phases (17.58% in unit volume), and the lower electronic
conductivity of the maricite phase is another drawback besides
the restricted ion mobility. A hybrid of maricite NaFePO4/C/
graphene was synthesized by Rahman et al. with NaFePO4
particle sizes varying from 40 to 150 nm. It demonstrated a rate
performance of 51 mA h g−1 at 5 C and a 98% cycling life after
300 cycles. Nanosizing of the material leads to increased reactive
sites, and also it shortens the ion transport distance. Yong-chang
Liu et al. synthesized binder-free nanosized maricite NaFePO4
having 1.6 nm size coated with porous N-doped carbon
nanofibers by an electrospinning method which has a reversible
capacity of 145mA h g−1 at 0.2 C, high rate capability of 61mA h
g−1 at 50 °C, and capacity retention of 89% over 6300 cycles.74

The NaMnPO4 material exhibits both olivine and maricite
phases, with the olivine phase facilitating Na+ diffusion through
edge-sharing octahedra along the b-axis, while Na+ mobility is
hindered in the thermally stable maricite structure. Despite
various synthesis methods like ion exchange, phosphate-format
precursor, and topotactic molten salt reaction being employed
for optimization, there remains a limited amount of research on
the underlying mechanism of NaMnPO4. To gain a
comprehensive understanding of its electrochemical properties,
additional strategies, such as carbon coating, is necessary.75

2.2. NASICON. NASICON (Sodium superionic conductor)
structured materials NaxM2(PO4)3 (M = V, Ti; x = 1,2,3) are a
class of materials well-known for its higher ion diffusion rates
and stable 3D framework which in turn provides good cyclic
stability and satisfactory rate capability compared to the olivine
type of polyanionic compounds.76 They usually exhibit a
rhombohedral structure with R3̅c space group where each
MO6 octahedron interlinked to three XO4 tetrahedral units with
corners to establish [M2(PO4)3]3− and forms a lantern structure
which gives rise to a three-dimensional open framework with
ample Na+ diffusion paths (Figure 6(b)). Two kinds of
interstitial sites (Na1 and Na2) are formed in the framework
for sodium occupation in the crystal structure. These interstitial
sites were connected with the conduction pathways resulting in
the fast kinetics of Na ions. Na1 occupies 2Na+ ions and Na2
occupies 6Na+ ions. Na+ ions from Na2 sites are extracted more
readily than fromNa1 sites due to the weak bonding energy. The
chemical tunability of cation and anion offers great opportunities
for material engineering.77

Among the reported single and binary types of transition
metal, the type Na3V2(PO4)3 having a specific capacity and
energy density of 117 mA h g−1 and 392 W h kg−1 is considered
as the most promising cathode candidate due to the high cyclic
stability and the working potential of 3.3−3.4 V.79 The recent
structural studies of Na3V2(PO4)3 show that it cannot be
assigned to the typical R3̅c at room temperature as it shows four
distinct crystal structures (a, b, b’, g) from −30 to 225 °C. At
lower temperature a phase with long-range Na+ ordering
belonging to the C2/c space group is formed. In two
intermediate-temperature β and β′ monoclinic phases are
incommensurate modulated structures. At temperature above

180 °C rhombohedral form γ (R3̅c) appears where the sodium
ions are fully distributed in the interstitial sites.80 Besides this
material has two different voltage plateaus at around 3.3 and 1.6
V which make it suitable for cathode and anode material
simultaneously. However, the electrochemical performance of
the Na3V2(PO4)3 still needed to be improved in terms of
reversibility and cyclability. The absence of direct M-OM
electronic delocalization and the presence of polyanionic groups
lead to poor electronic conductivity, which is also a challenge to
deal with, cationic substitution, carbon coating, and supporting
are ways to fasten the reaction kinetics and improve the
performance.

For carbon coating other than organics such as glucose,
sucrose, citric acid, oxalic acid, reduced graphene oxide (rGO),
and carbon nanotubes, polymers are also employed. In addition
Yanping Zhou et al. reported 3D carbon foams consisting of
mesoporous nanofibers through the assembly of recombinant
elastin-like polypeptides (ELP16) proteins, which shown
superior rate capability of 73 mA h g−1 at 100 °C. This is
because the transport characteristics have improved due to the
unique pore-like morphology which provided quick transport
pathways for the sodium ions. In addition improved surface area
of electrodes achieved through the coating permits larger
contact area with the electrolytes.81 Heteroatom doping on the
single carbon layer is also explored as the dopant can increase the
interlayer spacing of the carbon layers, which can ease the
intercalation and deintercalation of Na+ ions in addition to
creating active defects which improves the electron transfer. Wei
Li et al. made a composite of highly porous Na3V2(PO4)3 with
sulfur-doped carbon which shows a rate performance of 116.5
mA h g−1 at 1C and a capacity retention of 91% after 2500
cycles.82,83

2.3. Pyrophosphates. Phosphorus oxyanions that contain
two phosphorus atoms in a P−O−P linkage are called
pyrophosphates. The general formula of pyrophosphate for
SIBs is NaxMy(P2O7)z where M = transition metal (V, Mn, Fe,
Co, Ni, or Mo); x, y, and z are integers, and x > 1.84 Depending
upon the transition metal choice and synthesis process
pyrophosphates can crystallize in numerous structures like
tetragonal, triclinic, and orthorhombic. Among them pyrophos-
phates of Fe, V, and Mn exhibit good electrochemical activity
relative to phosphates because of the greater stability of the
P2O7

4− group, but their rate capabilities, crystallinity, and
theoretical specific capacities are comparatively poor. Pyrophos-
phates are energetically more stable than orthophosphates at
high temperatures as orthophosphates get decomposed between
500 and 550 °C to form pyrophosphates when exposed to air.85

Pyrophosphates are better than oxides as their unit cell
parameters are always greater, which means they have a large
spatial structure which allows free mobility of ions. They have an
open framework structure which facilitates facile ion transport
pathways and are an attractive energy storage material. Themost
common type of defect which is found in this pyrophosphate
framework is an antisite defect where the alkali cations and M
ions exchange positions, and for this very low activation energy is
required suggesting long-range and 3D (Na ion) diffusion.86

Okada et al.87 reportedNaVP2O7 having specific capacity of only
38.4 mA h g−1 at C/20 with the average V4+/V3+ redox potential
centered at 3.4 V in which octahedral (VO6) units are linked
with five P2O7 groups, which is less than the theoretical specific
capacity 108mA h g−1. The reason behind such an observation is
the lowering of the miscibility gap between the sodiated and
desodiated phases and inherent high res istance.
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Na3.64Fe2.18(P2O7)2 was reported by Bolei et al.88 to have a
remarkable reversible capacity of 99 mA h g−1 at 0.2C, an
exceptional cycling life retention of 96%, and a high Coulomb
efficiency of over 100% even after 1000 cycles at 10C. Here, a 3D
network structure comprised of FeO6 and PO4 links together to
form a huge tunnel that facilitates Na+ ion movement.
2.4. Orthophosphate. The compounds which contain only

one phosphorus unit or the simplest form of phosphorus are
called orthophosphate. The general formula of orthophosphate
for SIBs is NaMPO4, where M = Transition metal. Among all
possible transition metals Fe was the first one to be studied, i.e.,
NaFePO4, and it was found to exist in two forms�olivine and
maricite. These forms were composed of PO4 tetrahedra and
FeO6 octahedra crystallized in the orthorhombic space group
Pnma with distinct unit cell parameters. Although the maricite
phase is thermodynamically stable as compared to olivine it is
electrochemically inactive as it lacks Na+ ion diffusion channels
due to the structural arrangement. In the maricite phase the
adjacent octahedral units are shared on the edges, which are
further connected with tetrahedral units to share the corners,
whereas in the olivine phase the corner-shared octahedral units
are connected with tetrahedral units.84,85 The olivine phase of
NaFePO4 shows 80% theoretical capacity that is of 125 mA h
g−1.68

2.5. Mixed Phosphates.These are the compounds with the
general formula Na4Μ3(PO4)2P2O7 (M: transition metals)
having a three-dimensional orthorhombic structure made up of
PO4 tetrahedra and MO6 octahedra that share corners with the
pyrophosphate group through a P−O−P interlayer link are
called Mixed phosphates. Recently, Mixed phosphates have
caught scientists’ attention as a new class of SΙB cathode
materials because of their long lifetime, small volumetric strain,
and higher operating voltage than existing polyanionic materials.
When compared to a 1D channel possible in other polyanions,
the 3D channels in a mixed polyanion have four Na+ sites which
allows fast Na+ diffusion.89 The schematic illustration of Figure
6. Potentially, a unique cathode may result from the tunability of
structure through the inclusion of different combinations of
polyanions. However, during the electrochemical reaction, the

redox reaction in materials frequently involves complicated
structural evolutions that needs to be studied further.90 In this
case due to themixing of some other element the redox potential
of M metal is increased independent of cationic size and redox
activity of 3d metal substituents, which was earlier possible only
by the addition of a more electronegative element.91 Hyungsub
et al.92 reported Na4Mn3(PO4)2(P2O7) having the highest redox
potential of 3.84 V among the reported Mn-based cathodes with
an energy density of 416Wh kg−1. The reason for this increment
is the low-activation energy barrier during 3D Na diffusion
during charging at several states of charge of the
Na4−xMn3(PO4)2(P2O7) electrode (where x = 0, 1, 3). In
contradiction to various Mn-based electrodes where Na ion
migration is decreased due to the structural change by Jahn−
Teller distortion (Mn3+), here no decrement is observed; in fact,
it helps by opening up Na diffusion channels.92 The reversible
capacity of Na4Fe3(PO4)2P2O7/C (NFPP) (a schematic
representation of this material is given in Figure 7(a)) cathode
material was initially reported by Kim et al.93 in SIBs, where it
showed a capacity of 113.5 mA h g−1 at 0.1C. The correlation
between the Na ion extraction and structure is shown in Table 2.

Wen et al.94 developed NFPP having a reversible capacity of 118
mA h g−1 at 0.2C, and even at the high scan rate of 20C it shows
64 mA h g−1 capacity and a capacity retention of 79.6% over
10,000 cycles at 10C. With a hard carbon anode and NFPP
cathode, the full cell shows a reversible capacity of 126.4 mA h
g−1 at 20 mA g−1 and a high operating voltage of 2.9 V.95

2.6. Sulfates. Polyanionic materials (NaxMy(XO4)n; M is
transition metal; X = Si, S, P, W, As, Mo) consist of a series of

Figure 7. (a) Schematic representations of Na4Fe3(PO4)2(P2O7). Reprinted with permission from ref 90, copyright 2013, American Chemical
Society.90 (b) Structural framework of Na2Fe2(SO4)3. Reprinted with permission from ref 96, copyright 2014, Nature Communications.96

Table 2. Order of Sodium Extraction from the Structure of
NaxFe3(PO4)2(P2O7) (1 ≤ x ≤ 4)

composition
space
group

Na1
site

Na2
site

Na3
site

Na4
site

Na4Fe3(PO4)2(P2O7) Pn21a 1.0 1.0 1.0 1.0
Na3Fe3(PO4)2(P2O7) Pn21a 1.0 0 1.0 1.0
Na2Fe3(PO4)2(P2O7) Pn21a 0.5 0 1.0 0.5
NaFe3(PO4)2(P2O7) Pn21a 0 0 0.5 0.5
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tetrahedral units of anion (XO4)n− and other derivatives. These
materials are categorized into sulfates, silicates, mixed
phosphates, phosphates, pyrophosphates, etc. Polyanionic
sulfate cathodes, because of the high electronegativity of sulfur,
exhibit relatively higher Mn+/M(n−1)+ redox potentials in
comparison with the majority of different stated cathodes.97

Sulfate-based polyanions are not prepared using conventional
methods of high-temperature solid state in aqueous media due
to reasons such as low thermal stability at high temperatures
(i.e., above 350 °C) and hygroscopic properties of sulfates. This
has resulted in inexpensive, sustainable synthesis using
techniques like ball milling, solvothermal method, and a low-
temperature solid-state pathway, which decreases the cost and
energy consumption and contributes in its commercializa-
tion.97,98

2.6.1. Fe-Based Polyanionic Sulfates. Among the most
distinctive members of the category are Fe-based polyanionic
sulfates consisting of several crystal structures such as crystal
water-containing bloedite- and krohnkite-type sulfates and a
crystal water-free alluaudite/eldfellite phase.97 Along with the
high inductive effect provided by the S, high energy density can
be obtained by enhancing the number of sulfate groups.99 Thus,
various bi-, tri-, and polysulfates were synthesized in different
studies.

The excellent redox potential of Fe2+/Fe3+ (3.6−3.9 V vs Li/
Li+) in Li-based polyanion sulfate cathodes became the
inspiration to explore Na-based bisulfates.100 However, due to
high moisture sensitivity, bisulfates are likely to form hydrated
derivatives when they come in contact with air. Na2Fe(SO4)2·
nH2O is synthesized by the dissolution of Na2SO4 and FeSO4·
7H2O in DI water, then heating the mixture at 70−90° to give a
saturated solution. The hydration degree n = 4 (Fe(SO4)·
4H2O) can be obtained by precipitating the final product by
adding alcohol, while hydration n = 2 can be obtained without
using the hydrophobic alcohol media.99,100 The Na2Fe(SO4)2·
4H2O stabilizes in a monoclinic structure with a bloedite atomic
arrangement. The P21/c monoclinic framework is composed of
four O atoms linking to two H atoms together with isolated
MO2(OH)4 octahedral units within the octahedra and the rest
two O atoms connected to SO4 tetrahedra. Large vacancies are
filled by the Na+ ions. The Na2Fe(SO4)2·2H2O assumes a P21/c
krohnkite framework, along with isolatedMO2(OH)4 octahedra
with four O atoms that are attached to four sulfate tetrahedra
and two O linked with two H. This arrangement creates
pathways for Na ion migration.100 Careful dehydration of
Na2Fe(SO4)2·4H2O leads to formation of Na2Fe(SO4)2 also
forming a lattice with Na ion in large cavities.

A new class of polyanionic sulfate cathode, Na2Fe2(SO4)3,
reported by Barpanda et al. in 2014 having high redox potential
of almost 3.8 V (vs Na), over 100 mA h g−1 reversible capacity,
and an alluaudite-type structure is given in Figure 7(b).96 Solid-
state synthesis is one method of producing a polyanion that
involves the annealing of 2/3 molar mixture of Na sulfate and Fe
sulfate.99 The polyanion assumes an alluaudite type structure
(monoclinic;C2/c) having general equationNa2+2xFe2−x(SO4)3.
The alluaudite-type arrangement has edge-sharing FeO6
octahedral units that are bridged together by SO4. This creates
a 3-D framework with large channels running in line with the c
axis.101 The Na2+2xFe2−x(SO4)3 polyanion cathodes have
exceptional rate kinetics due to the existence of quick migration
routes for Na ion. One explanation for the high redox potential is
the unique 3-D framework having a short Fe−Fe bond length
and the presence of multiple electronegative sulfate units.102

Fe-based sulfates are electromagnetically active cathodes with
high redox potential, relative elevated capacity, safe, inexpensive,
and have sustainable methods of synthesis.97,99 Nevertheless,
they are sensitive to moisture, have poor conductivity, and
decompose easily at high temperatures limiting their storage and
synthesis.97 Numerous studies contributing to develop
improved polyanions have been done, for example, a
Na2.26Fe21.87(SO4)3 phase was developed in which the Na+
storage was improved by tuning the exposed crystal plane,
resulting in a cell voltage of 2.35 V, an initial discharge capacity
of 83.9 mA h g−1, and capacity of 24 mA h g−1 (after 40
cycles).103 A firm graphene Na2+2xFe2−x(SO4)3 was assembled
through a spray-drying method at low temperature resulting in
enhanced stability and high conductivity as well as reversible
capacity and better rate performance.104 Fe-based polyanionic
sulfate cathodes offer a strong foundation for material discovery
and are among the cathode materials with the most potential for
SIB development in the future.
2.6.2. Mn-Based Polyanionic Sulfates. Mn-based sulfates

have attracted researchers because of their inexpensive cost, high
natural abundance, reversible electrochemical activity, high
intercalation voltage, and theoretical capacity. They are
considered as one of the most promising options available for
high-voltage cathodes.97,101 The synthesis of Mn-based
polyanionic sulfates is difficult due to the large size of Mn3+

ions as compared to Fe2+ and high degree of Jahn−Teller
distortion resulting in large lattice deformation.97,98 The two
systems, Na2FeMn(SO4)3 and Na2.5(Fe1−yMny)1.75(SO4)3, have
been evaluated for their electrochemical performance and have
an alluaudite-type structure in which Na+ ions are present in
three crystallographic positions. Na2FeMn(SO4)3 delivers a
capacity of about 110 mA h g−1 with an average voltage of 3.6 V.
In a sequence of nonstochiometric Na2.5(Fe1−yMny)1.75(SO4)3
solid mixtures, there is gradual increase in average operation
voltage with increasing Mn substitution, but the capacity drops
dramatically. This is due to the inactivity of Mn2+ during cycling,
and the charge compensation relies solely on the Fe3+/2+ redox
pair.105

Mn-based sulfates face drawbacks such as low electronic
conductivity and low performance in SIBs, irrespective of
whether they exhibit reversibility or cycling stability. This issue
can be approached with solutions such as carbon coating and
doping, which are going to need considerable research in the
future. Usually, sulfates are synthesized below 450 °C often
resulting in the presence of impurity and off-stoichiometric
phases. In order to improve their crystallinity, thermal stability,
and purity, excess Na or carbon sources can be added during
synthesis.105 Low price, high annual production, and high
capacity make Mn-based polyanions one of the standout
candidates for polyanionic sulfate cathodes.
2.6.3. Cu-Based Polyanionic Sulfates.Cu-based polyanionic

sulfates are another candidate along with Fe- and Mn-based
sulfates which may be utilized in extensive energy storage
devices. To delve deeper into the inactivity of Cu-based
polyanionic sulfates in Na+ storage and migration, Kovrugin et
al.105 conducted theoretical calculations to explore the potential
kinetic mechanism of Na2Cu(SO4)2. It was found that the
theoretical capacity was around 89 mA h g−1, and the redox
potential is 4.7 V (versus Na), which is outside the stability
window of the electrolytes makes it an unacceptable cathode.106

In another study, Na2Cu(SO4)2 and its water derivative
Na2Cu(SO4)2·2H2O were prepared, and their redox mechanism
was observed. The high Jahn−Teller distortion of Cu2+ along
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with high redox potential lead to minimal (de)intercalation
capacity.107 The possible solutions to address the issue related to
Cu-based polyanions include alteration of carbon content in
electrode or structuring cathode compound at nanoscale.107 Cu-
based polyanionic cathodes are relatively inexpensive and may
emerge as potential battery electrodes that involve conversion
redox reactions
2.7. Fluorine Transition-Metal Salt. Increasing the energy

density is an important factor to improve the energy density of
the polyanionic material. Incorporating strongly electronegative
anions to the polyanionic compounds is one of the ways to boost
the redox potential of the material. Due to its strong ionicity, F−

can be considered because it not only results in a significant
energy difference between the antibonding orbitals and the
vacuumbut also weakens the bond betweenM andO, raising the
redox potential.
2.7.1. Fluorophosphates. A new class of fluorophosphates

(Na3V2(PO4)2F3, NaVPO4F, and Na3(VO1−xPO4)2F1+2x (0 ≤ x
≤ 1)) with 3D sodium intercalation and improved electro-
chemical characteristics, such as high theoretical capacity and
energy density, is produced when electronegative fluorine atoms
are added to sodium vanadium phosphate.70

2.7.1.1. NaVPO4F. There are two polymorphic phases of
sodium vanadium fluorophosphates (NVPFs): the tetragonal
phase at elevated temperature and the monoclinic phase at low
temperature. Barker et al. reported the tetragonal NVPF with
space group I4/mmm, discharge voltage of 3.7 V, and initial
capacity of 82 mA h g−1.80 Later, Zhero et al. created NaVPO4F
in a monoclinic phase with C2/c as space group and a specific
capacity of 83.3 mA h g−1.81,82

The XRD of NaVPO4F matched with NASICON (Na
supersonic conductor) structured Na3V2(PO4)3. They both
displayed comparable electrochemical performance at various
plateaus of voltage.83 Numerous carbon coatings and ion
substitutions of metals were conducted to enhance the
electrochemical performance of NVPF. According to Lu et al.,
NVPF/C has a higher capacity of 97.8 mA h g−1 for NVPF/C
than pristine NVPF. In a similar manner, Ruan et al. improved
electrochemical performance by graphene sheet coating. Zhero
et al. also denoted improvement in monoclinic NVPF after
doping Cr3+ into V positions. Additionally, Al doping also
improved the performance compared to Al-free NVPF.84 Jin and
his colleagues used electrospinning to create NaVPO4F/C
nanofibers that had a high capacity (about 126 mA h g−1 C),
good rate efficiency (about 61 mA h g−1 at 50C), and a long-life
cycle. Outstanding electrochemical performance of NaVPO4F/
C resulted from the presence of small nanoparticles (about 6
nm) embedded within the pore-filled carbon. These nano-
particles effectively enhanced the kinetics of Na ion diffusion.85

2 .7 . 1 . 2 . Na 3 (VO1− x PO4 ) 2 F 1 + 2 x ( 0 ≤ x ≤ 1 ) .
Na3(VO1−xPO4)2F1+2x (0 ≤ x ≤ 1) is a novel family of vanadium
oxy fluorophosphates, created by substituting oxygen in
Na3VPF. This new family contains the V3+ and V5+ extremes
and the in t e rmed i a t e va l ence phase s V3 +/V4+ .
Na3(VO)2(PO4)2F(N3VOPF) is preferred due to the high
energy density and stability in cycling. Sauvage et al.108 and
Massa et al.109 were the first to independently report it while
assuming a tetragonal frame with symmetry I4/mnm. After that
Tristin et al. found the occurrence of N3VOPF polymorph with
the P42/mnm space group. Its electrochemical performance was
initially reported by Sauvage et al. in 2006 displaying two step
plateaus of voltage between 3.6 and 4.0 V relative to Na/Na+.86

In 2012, Rojo and group introduced the family of
Na3(VO1−xPO4)2F1+2x materials as cathode for sodium ion
batteries.87 After that the existence of Na3VOPF with mixed-
valence V3+/V4+ was introduced by Qi et al.110 and Park et al.
Single-crystalline 3D nanostructured Na3(VO)2(PO4)2F was
formed using VO2 arrays, which demonstrated superior rate
capability of 45 mA h g−1, rapid ion transport, and a little volume
change during the process of charging and discharging.88 Park et
al. discovered that the behavior of samples varied with the
presence of F after studying numerous redox transitions between
V4+/V3+ and V5+/V4+ redox reactions and Na.89 It has been
found that when oxygen was swapped out for Cl in
Na3V2Cl2(PO4)2F, the energy density rose from 520 to 758 W
h kg−1. Na3VOF cathode suffered from poor intrinsic electronic
conductivity which was improved by surface coatings, additives,
and nano structuring.90,91 Nanowires of RuO2 coated with
Na3VOPF which enhanced capacity (120 mA h g−1), cyclic
stability, and rate capability (95 mA h g−1 at 20 °C rate) were
reported by Peng et al. On doping Ru in Na3VOPF hollow
microspheres improved the electrochemical performance.92 In
2020, Liang et al. were the first to report the discovery of an
electroactive fluorophosphate, Na5V(PO4)2F2. Through ex-situ
XRD and DFT analysis, they investigated the sodium extraction
mechanism and discovered that the charging process involved a
two-phase reaction followed by a single-phase reaction.93

Mazumdar et al. conducted a theoretical study employing
DFT calculations to investigate the process in which sodium is
extracted from the phases Na5M(PO4)2F2 (Value ofM is Cr and
V). Their findings revealed that the extraction of greater sodium
content necessitates elevated voltages of 4.77 V for the Cr-based
phase and 4.56 VNa for the V-based phase.94 Fang et al.
investigated the effects of particle shape on the intercalation
characteristics of Na3V2(PO4)2F3−yOy. They employed scanning
electron microscopy (SEM) to observe various morphologies
including nanospheres (NVPF1), cylindrical agglomerates
(NVPF2), micrometric flakes (NVPF3), and sand roses
(NVPF4). Sand roses and nanospheres demonstrated improved
electrochemical performance, especially in terms of high-rate
performance. Accessibility to Na+ diffusion tunnels was cited as
the cause of this better performance.95

2.7.1.3. Other 3d Metal-Based Fluorophosphates. Compar-
ing V-based cathodes, the redox potential of different 3d metals
were compared (M = Fe, Co, Mn, Ni), and it was observed that
they have lower redox potential. The PO4

3− was replaced with
PO4F4− to provide a different structural framework. The Nazar
group first reported the crystallization of Na2FePO4F, which
belongs to the Pbcn orthorhombic space group. They found that
Na+ ion migrates very quickly in the ac plane, with only 3.7%
volume variation during deintercalation. Further studies were
done by Tereshchenko et al. using XRD and DFT calculations
which showed that Na2FePO4F adopted intermediate mono-
clinic Na1.5FePO4F. DFT calculations confirm that Na2FePO4F
crystallizes in space group Pbcn and Na1.5FePO4F crystallizes in
P21/c space group. The structure of Na2FePO4F was found to
have two distinct Na sites: the electrochemically active Na2 site
and the inert Na1.

96 Na2CoPO4F was first prepared in 2010, but
its electrochemical reversibility is poor. Later Komeba et al.
synthesized differently modified Na2CoPO4F, but it exhibited
irreversible capacity and lower cyclic stability.97 Since then,
Lang’s team has used a space-drying method to prepare pure-
phase Na2CoPO4F/C composites, but they had the ability to
degrade quickly. Although it is considered a promising high-
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voltage cathode, there are still many challenges in improving its
stability and reversibility.97

In the 3D tunnel structure, Na2MnPO4F was discovered to
crystallize with the P21/n space group; this was first reported by
Recham et al. and Ellis et al. Upon further investigation by Kim
et al. about its functionality, it was discovered that there are three
Na-ion diffusion pathways and four distinct interstitial Na sites:
the Na1−Na4 chain, the Na2−Na3 chain, and the interchain,
each with activation barrier of 600, 500, and 400 meV,
respectively.73 Research has indicated that the considerable
polarization and low electrochemical activity of Na2MnPO4F
make it unsuitable for widespread use. Consequently, more
investigation is required to enhance its electrochemical
performance.
2.8. Fluorosulfates. Sulfate chemistry has become increas-

ingly popular in the advancement of high-voltage electrode
materials for SIBs. In 2010, Tarascon and group proposed a
novel class of polyanionic materials called fluorosulfate, with the
formula AxMSO4F (A = Li/Na; M = 3d metal). Their research
was driven by the inductive effect, which is achieved by
polyanions with more electronegativity.70 Fluorosulfate can be
synthesized through various methods, including solid-state
reaction, ionothermal synthesis, polyol-assisted synthesis, and
dehydration of NaFeSO4F·2H2O. NaFeSO4F exhibits a tavorite-
like structure (maxwellite-like structure) with monoclinic
structure (C2/c). Its crystal lattice is constructed from corner-
sharing FeO4F2 octahedra connected to SO4 tetrahedra, forming
tunnels capable of storing Na ions.111

Tasrascon and group demonstrated the electrochemical
activity of NaFeSO4F in sodium ion batteries relying on the
FeII/III redox couple at 3.5 VNa. Kim and colleagues discovered a
novel polymorph of NaFeSO4F with a triplite-type crystal
structure, featuring an elevated operational voltage of 3.7 VNa
and superior electrochemical performance when compared to
the tavorite polymorph. The triplite NaFeSO4F achieved nearly
theoretical capacity around 138 mA h g−1 at a 0.01C rate. This
improved performance was attributed to variances in the
positioning of fluorine within the FeO4F2 octahedra.112

Fluorosulfates represent a compelling avenue in the realm of
cathode materials, drawing the attention of numerous research
teams due to their remarkable high operating voltages.
Nevertheless, the available structural data on fluorosulfates
remains rather restricted, rendering it an ideal realm for the
exploration of innovative, cost-effective materials like man-
ganese (Mn)- and nickel (Ni)-based systems through diverse
synthesis methods like hydrothermal and sol−gel processes.
2.9. Silicates. The basic structural unit of all silicates is a

silicon tetrahedron in which each silicon is covalently bonded by
four oxygen atoms having strong Si−O bonds. The general
formula of silicates used in NIBs is Na2MSiO4 where M = Fe,
Mn, Co. The silicate family consists mainly of parasilicates,
metasilicates, and orthosilicates. Among all possible transition
metals, Mn was the first to be explored in SIBs as Na2MnSiO4,
which exhibits a capacity of 125 mA h g−1 due to the exchange of
1e− at a rate of 0.1C (13.9 mA g−1) within 2.0 to 4.0 V at 363 K,
possessing a sufficiently high rate capability.113 Orthosilicates’
practical application is hindered due to its electrochemistry and
complex crystal structure. Researchers have tried in several ways
to improve its performance. Basit et al. utilized the cubic
polymorphs of Na2FeSiO4 with F4̅3m symmetry supported on
carbon nanotubes which in the voltage range of 1.5 to 4.5 V
shows a capacity of 172.9 mA h g−1 at 0.1C and shows a
remarkable capacity of 109.3 mA h g−1 at 20C.114 The cause for

these enhanced electrochemical capabilities is the structural
stability of the complex, reduced particle size and charge transfer
resistances, enhanced defect structure, high sodium-ion
diffusion coefficient, and enhanced electronic conductivity
thanks to carbon nanotubes. Sodium-based silicates are less
explored as compared to Lithium-based silicates. Lithium-based
silicates are explored with expected capacity because of a 2e−

exchange process,115 whereas Sodium-based silicates lag behind
because of the impure phases obtained during solid-state
synthesis and low electronic conductivity.113,116 To improve the
performance in Sodium-based silicates, a solution-assisted
synthesis method like refluxing and sol−gel assisted solvother-
mal techniques have been employed to synthesize silicate-family
nanoparticles.

3. STRATEGIES TO IMPROVE THE ELECTROCHEMICAL
PERFORMANCE

Even though polyanionic materials are considered as promising
candidates in SIB cathode materials, they suffer from poor
electronic conductivity as the metal octahedra is separated by
phosphate tetrahedra. The electron transfer pattern follows a
slower M−O−P-O-M pattern rather than a simple M-O-M
pattern, and also the deposition of the discharged products
affects the electrochemical performance specifically, lowering
the rate capability of the materials. Also, the electronegativity of
the anions affects the poor electronic conductivity in the
framework. As the separation between the valence band and
conduction band is large (1.735 eV) in Na3V2(PO4)3 assumed
due the higher electronic affinity of the vanadium, it is found to
have low electronic conductivity.117 The limited capacity and
the lower energy density due to the heavy inactive anionic group
is another challenge faced by polyanionic materials. Introducing
lighter molecular weight anionic groups or anions which can
raise the redox potential values by a strong inductive effect can
improve the energy density. The introduction of ions which can
activate multielectron redox reaction also results in improved
energy density.
3.1. Nanostructuring. One of the reasons for capacity loss

in the cathode materials is the presence of dead corners. The
larger the size of the electrode particles, the more dead corners
that are not going to participate in reaction, and more will be the
diffusion distance for Na+ ions. Shortening sodium ion diffusion
pathways by controlling the dimension of the active material is
one the successful and common strategies to enhance the
electrochemical performance.118 This increases the surface area
and thus reactive sites of the active material and reduces the ion
diffusion pathways. Kim et al. reported that previously regarded
inactive maricite NaFePO4 shows electrochemical properties
(capacity 142mA h g−1) when downsized to nanoscale. After the
first extraction of Na ions, the maricite FePO4 converts into
amorphous FePO4 which provides a smaller barrier for Na ions
to hop from one site to another.73 Law et al. reported improved
electrochemical performance of nanostructured Na2FePO4F in
comparison to the a pristine sample. The soft template method
was used to prepare nanostructured Na2FePO4F, which was
then heat-treated and subjected to high-energy ball milling. The
BET analysis showed doubled surface area of 40.0 m2 g−1 in
comparison to the pristine sample (22.2 m2 g−1). Also, the
relatively low percent of antisite disorder leads to improved Na
diffusion due to availability of diffusion channels in different
orientations. The nanostructured sample showed a capacity of
116 mA h g−1 at 0.1C and a capacity retention of 80% after 200
cycles at 1C. The improvement at nanoscale can be attributed to
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its high surface area, small size, low concentration of antisite
disorder, and improved transport properties.119 NASICON-
type Na3V2(PO4)3 is usually synthesized by high-temperature
calcination, which results in the formation of particles greater
than 2 μm; this leads to poor conductivity in turn resulting in
lowering the rate capability.120 Decreasing the particle size to
nanoscale can reduce the Na+ diffusion distance and thus
improve the transport kinetics. Choosing a lower calcination
temperature can result in smaller particle size, but it results in
lowering the crystallinity of particles.121 When compared to the
microstructured particles, nanosized particles lack tap density
and energy density due to more surface side reaction.122,123

Micro nano hierarchical structures having sufficient pores and
ion diffusion channels are the best option to alleviate this.124 An
NVP of such type was prepared by Kuppan et al.121 using an
aqueous precipitation method with low annelation temperature
and crystallization time. The prepared NVP/C material
demonstrated improved cyclic and storage performance with
capacity of 62 mA h g−1 at 40C and 50% capacity retention after
30,000 cycles. The facilitated sodium ion transport in the
nanosized carbon-coated porous NVP particles is responsible
for the material’s exceptional electrochemical characteristics.
Reducing the size of the particles can improve the kinetics of the
electrochemical processes as well as the usage of active materials.
The relation between diffusion time and diffusion length is given
as

L
D

2

Li
=

Decreasing the diffusion length will decrease the diffusion time
for a DLi leading to long-term cyclability and high-rate
capability.125 Nano NVP@C prepared by Wenchao et al.126

gave a lower value of the potential polarization (ΔE = 31 mV),
which is also comparable to the value of LiFePO4, as compared
to other NVPs. Such a low value is attributed to lower
polarization and easier migration of Na ions due to its nano size
and carbon coating. The prepared NVP@C gave a capacity
retention of 99.6% at 0.5C after 50 cycles. It also displayed long-
term cyclic stability with initial discharge capacity of 94.9 mA h
g−1 and a capacity retention of 96.1% after 700 cycles at 5C. This
can be explained by its distinct porous nano core−shell
structure. Therefore, the findings so far suggest that tiny
nanoparticles can achieve high active material utilization and
reduced diffusion pathways and, ultimately, lead to improved
electrochemical performance.
3.2. Surface Coating. Nanosizing of the active material

leads to unwanted side reaction with the electrolyte, as the
increased surface area of the active material results in heightened
interactions. Surface coating is a common strategy to enhance
electronic conductivity as well as to protect the active surface
from the electrolyte attack. Surface coating helps in the following
ways. 1. Coating with a material having high electronic
conductivity improves the electron transfer at the surface of
the active material but blocks the electron transfer between the
active material and the electrolyte (so the compounds where the
Eg is less than 0.5 eV is not preferred).127 2. Dissolution of the
active material with the electrolyte can be reduced. 3. Reduces
the unwanted side reaction of active material with the
electrolyte; thus, deposition of the impurities on the electrode
surface can be minimized. 4.Coating provides mechanical
strength to the active material, act as a binder, and prevents
the fragmentation of the active material. 5. Prevents the

agglomeration of the particles during charge−discharge, thus
improving the rate capability and cyclic stability of the
material.128 A coating layer should possess chemical properties
to prevent the side reaction between the coating layer and active
material or electrolyte along with high reduction potential.129

Coating the surface of active material with thin-layer carbon,
metal oxide, and conducting polymer has been found to
significantly enhance the electrical conductivity of the material
to a larger extent. The physical properties of the coating as well
as the homogeneity and the thickness of the coating highly affect
the electrochemical properties of the coated cathode materi-
als.129 Due to higher electronic conductivity carbon coating in
the polyanionic compounds is found to enhance the rate
capability and the cyclic stability of the material. The
interconnected open pores of the carbon frameworks favor the
electrolyte absorption and also formation diffusion pathways for
the charge carrier ions.130 The robust and flexible carbon
framework reduces the volume changes associated with the
intercalation and deintercalation of sodium during a charging−
discharging cycle.131 To attain a homogeneous carbon coating in
a polyanionic compound, organic carbon sources such as citric
acid,132 ascorbic acid,133 glucose,134 and vitamin C135 are being
employed. The coating of hard carbon,136 carbon nanotube
(CNT),137 graphene oxide,133 and amorphous carbon136 will
form a conductive framework in the material which increases the
electronic conductivity which in turn improves the electro-
chemical performance. Chen et al. synthesized CNT-decorated
NVP particles covered by amorphous carbon layers by spray-
drying and carbothermal reduction methods which enhanced
electrochemical performance. This improvement can be
attributed to the decreased charge transfer resistance and
ohmic resistance due to CNT coating. In addition, the decreased
particle size and the induced porous structure caused by the
coating of CNT increases the area of contact between the
electrolyte and the NVP particles, which in turn helps in the easy
diffusion of electrons between the particles. Along with this, the
higher amount of graphitized carbon in CNT also enhances the
electronic conductivity in the material.137 Tang et al. explored
the CNT coating in pyrophosphate by the spray-drying method
and analyzed the electrochemical performance in half cell and
full cell. Na4Mn2Co(PO4)2P2O7 with different ratios of carbon
nanotube (CNT) such as 3, 5, and 7 wt%were prepared. Among
them, sample with 5% of CNT (NM2CPP/C−CNT) shows the
best performance with a reversible initial discharge capacity of
96.1 mA h g−1 and an energy density of 371 W h kg−1 at 0.1C.
NM2CPP/Cmicrosphere structure nanoparticles were found to
have an average size of 150 nm, and they are interconnected in
the CNT network. The carbon coating helps in preventing the
electrolyte corrosion of the material by separating bulk material
from the electrolyte. The coexistence of the CNT and
amorphous carbon facilitate the facile transport of sodium
ions and electrons which leads to the enhancement of the
electrochemical performance.138 Fang et al. synthesized CNT-
coated Na2FeSiO4 microspheres which show a specific capacity
of 168.7 mA h g−1 at 0.1C and an excellent cyclic stability. The
enhanced electrochemical performance is due to the formation
of conductive transport pathways for electrons and Na+ ions as a
result of CNT coating.139

Graphene oxide is a viable option for carbon matrix for
polyanionic compounds due to the larger surface area and
numerous surface functionalities which allow the deposition of
the electrode materials.133 Rui et al. synthesized carbon-coated
Na3V2(PO4)3 nanocrystals wrapped in reduced graphene oxide
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through a freeze-drying method. The synthesized material
shows specific capacity of of 86 mA h g−1 at 100C and 64%
capacity retention after 10,000 cycles at 100C with an electrical
conductivity of ≈110 S m−1. The enhanced electrochemical
performance of the material is considered due to the highly
conductive nature of the rGO and shortened diffusion pathways
due to the reduced nanograin size, and the micro/mesopore
structure provides the fast ion transport.140

Chen et al. synthesized in situ carbon-coated Na2FeP2O7
coated with reduced graphene oxide through a freeze-drying
method. The prepared compound exhibits a capacity of 65 mA h
g−1 at 10C and almost full capacity retention at 1C.133

Chen et al. synthesized hard carbon wrapped Na3V2(PO4)3@
C, which shows an excellent electrochemical performance with a
discharge capacity of 111.6 mA h g−1 at 1C and a capacity
retention of 83.3% over 3000 cycles at 40C. The NVP@C size
decreased from 2 to 3 m to 500−800 nm subsequent to hard
carbon coating, which clearly shows that the higher calcination
temperature used for the formation of hard carbon has restricted
the particle growth of NVP thus increasing the electronic and
ionic conductivity. The increased reversible capacity of NVP@
C@HC (111.6 mA h g−1) over NVP@C (101.7 mA h g−1)
indicates that the double carbon coating increases the
reversibility of Na+ insertion/extraction. The electrochemical
studies also show that a carbon layer accommodates a large
volume change during charging and discharging.139

Rui Ling et al. synthesized Na2FePO4F/C by a solvothermal
method which exhibits a discharge capacity of 114.3 mA h g−1 at
0.1C and cyclic stability of 93.3% after 100 cycles. Morphology
changes of the material as the pH of the precursor solution
changes and also due to the effect of carbon coating were
investigated by the group. As the pH increased from 8.5 to 11.5
the morphology of the active material changed from rod-like to
slender needle-like crystals. Change in the morphology along
with pH is given in Figure 8(a−d). As a result of carbon coating,
the surface area increased as the cylindrical particles fractured
into spherical nanoparticles. The synthesized Na2FePO4F/C at
a pH of 10.5 shows the highest surface area of 126.2 me2 g−1 and
reduced particle size to 10−100 nm owing to its better
electrochemical performance. The enhanced electrochemical
performance is a cumulative effect of carbon coating and
reduced particle size where the carbon coating changes the

crystallographic orientation resulting in the reduced migration
resistance of sodium ions and charge transfer resistance.141

In short the improved electrochemical performance can be
explained as a porous carbon matrix functioning as an elastic
buffer, reducing the strain of volume changes during Na
intercalation and deintercalation leading to a high cyclic
performance. This also resulted in a 3D porous interconnected
framework, facilitating electrical contact as well as Na-ion
conduction.23,142

Heteroatom doping to the carbon framework further
improves the ionic/electronic conductivity by increasing the
interlayer spacing of the of the carbon thus providing enough
space for intercalation-deintercalation of sodium ions. In
addition, heteroatom-doped carbonmaterials possess numerous
lattice defects, which improves the electrochemical reaction
kinetics and, thus, the cyclic stability and efficiency of the
material. Wei Li synthesized Na3V2(PO4)3 structure with sulfur-
doped carbon layer (HP-NVP@SC) which shows a rate
performance of 116.5 mA h g−1 at 1C and 91% capacity
retention after 2500 cycles.82

Klee et al. have improved the stability of Na3V2(PO4)3 by
coating 1.5% or 3.5% wt. of MxOy (Al2O3, MgO, and ZnO).
Galvanostatic cycling half-cells show a significant capacity
improvement for samples coated with 1.5% of metal oxides
and good cycling stability as high as 95.9% for ZnO@
Na3V2(PO4)3. The samples coated with 1.5% metal oxides
show the least charge transfer resistance and surface area,
according to the impedance spectra recorded following the first
cycle; after 50 cycles, the surface layer and the charge transfer
show a decrement in values compared to the first cycle. This is
due to the formation of metal fluorides on the surface of the
electrode, which protects the electrode degradation by HF and
avoid a deleterious increase of the electrode resistance. The HF
traces in the electrolyte lead to side reaction and electrode
degradation. The scavenging effect of ZnO can be expressed as

ZnO 2HF ZnF H O2 2+

The acidity of the electrolyte was reduced by the conversion of
metal oxides into fluorides, hence delaying the cathode
corrosion on cycling.144

3.3. Morphology Control. The morphology of the active
material also plays an important role in affecting the rate
performance of the material by improving the electronic

Figure 8. SEM images of the as-synthesized Na2FePO4F samples. SEM images of (a) Na2FePO4F−8.5, (b) Na2FePO4F−9.5, (c) Na2FePO4F−10.5, and
(d) Na2FePO4F−11.5. Reprinted with permission from ref 141, copyright 2017, Elsevier.141 (e) Schematic illustration of doping of K+ into Na sites in
Na3V2(PO4)3. Reprinted with permission from ref 143, copyright 2014, Royal Society of Chemistry.143
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conductivity and structural stability. One-dimensional structures
and architectures like nanofibers and nanowires have advantages
like short diffusion distance of Na+ ions. A large electrode−
electrolyte contact area leads to easy access of the electrolyte and
is able to accommodate the volume change thus increasing the
cyclic stability.145 Wenhao Ren et al. successfully achieved cyclic
stability of 95.9% over 1000 cycles at 10C and a rate
performance of 94 mA h g−1 at 100C from 3D Na3V2(PO4)3
nanofiber. The improved performance is explained due to both
the electrochemical and mechanical advantages such as
multichannel diffusion pathways for ions, enhanced structural
stability, and uninterrupted electron transfer due to longitudinal
paths for facile electron transfer.146 Additionally, the 3D
architecture represents a potent family to improve high rate
capability. Typically, graphene materials are used to create 3D
structures. Yu Meng et al. constructed the 3D graphene-based
sandwich-like Na2Fe(SO4)2·2H2O composite which exhibits
good rate performance and long cycle life. The improved
electrochemical performance is attributed to easy transport of
the electrons and reduced moisture sensitivity of the sulfates,
which improves the structure stability which is related to the
hierarchical sandwich-type nanoarchitecture.147

The particles of Na2Ti3O7 possess a flower-like structure in
three dimensions (3D), along with large specific surface area.
They exhibit an open structure and nanoarchitecture, which
contributes to their 3D morphology, in turn facilitating the
diffusion of Na+ ions and the wettability of electrolyte, resulting
in exceptional rate performance. The microflower structure
augments the specific surface area and the contact area with the
electrolyte. This innovative 3D architecture effectively enhances
the electron/ion transport kinetics of Na2Ti3O7 thereby
ensuring the integrity of the electrode structure. The resultant
outcome is outstanding electrochemical performance, charac-
terized by long cycle life and high rate capability.148

Qiao et al. devised a porous structure for single-crystalline
Na3V2(PO4)3 using the polymer-stabilized droplet method. This
porous single-crystal structure significantly reduces the Na +

diffusion distance and promotes ion transition, resulting in
outstanding electrochemical properties (100 mA h g−1 at 0.5C,
and 81 mA h g−1 at 1C after 10,000 cycles).149 Na3V2(PO4)3
possesses a porous sponge-like structure with the highest surface
area, which exhibits remarkable rate capability and high cyclic
stability. Typically, a large surface area of an electrode leads to
the formation of solid electrolyte interface (SEI), which can
impede ion diffusion during battery operation. However, in this
case, the primary factor influencing the electrochemical
performance is the well-defined porous structure rather than
the SEI layers. This phenomenon resembles the synergistic or
antagonistic effect of a dopant on the electrochemical perform-
ances of multielectron materials.150

Na3V2(PO4)3/C hierarchical microspheres demonstrate
excellent performance in terms of high-rate capability and cyclic
stability in SIBs. This hierarchical architecture characterized by
large surface area and numerous mesopores enables a significant
electrode−electrolyte interaction and a short pathway for ion
diffusion. The combined effect of large surface area, attractive
structure integrity, and presence of a large interstitial space leads
to the superior performance observed.122

Qiuyue Wang et al. constructed a honeycomb-type
hierarchical porous microball (Figure 8) for Na3V2(PO4)3 by a
one-pot synthesis, in which micro/mesopore interconnective
nanochannels for fast transport of ions and increased electrolyte
penetration were present in the spherical particle, which

improves the electrochemical kinetics.151 The morphology of
the particles is found to be spherical, like microballs with a
diameter around 3 μm according to SEM analysis, given in the
Figure 9(a). The cross-sectional image of the microballs is

shown in Figure 9(b), which depicts the presence of macropores
inside the individual microballs with a size ranging from 100 to
200 nm. The walls of the macropores contain mesopores with a
size ranging from 5 to 30 nm, which is responsible for the
interconnection between the macropores as shown in Figure
9(c). Figure 9(e) is the low-resolution SEM image which
confirms the uniformity of the material.151

The synthesis routes for nanosized phosphates are widely
studied. One method is the hydrothermal method, which
produces nanosized NaFePO4 with a larger specific capacity.
Another method is the sol−gel and coprecipitation method,
which allows the control of special structures. These methods
have been used to create materials with prolonged cycle life and
superb energy density.152 The conductive interconnected
network and full contact between cathode and electrolyte is
beneficial for boosting sodium-storage performance. Spray
drying is utilized for preparing cathode materials with different
morphologies and achieving hybridization with conductive
materials. Other synthesis routes like the template method and
electrospinning can prepare cathodes with special morphologies
and remarkable performance.153

The commonly used high-temperature solid-state method
generally gives particles having irregular shapes and larger ones.
It is challenging to control the size and morphology of the
particles through the sol gel method. The easiest way is through
a hydrothermal method which requires a lower temperature
compared to other methods. The interaction of the crystal seeds
with the solvent molecules can tune the morphology of the
active material. Generally, the electrospinning method is used to
construct a one-dimensional material. The length and diameter
of the particles can be varied from micrometer to nanosize by
adjusting the synthesis parameters such as voltage, flow rate,
molecular weight of the polymers, and concentration of the
solution.154 Controlling themorphology proves advantageous in
enhancing the electrochemical performance. However, the
practical application is impeded by low tap density and intricate
preparation cost.149

Figure 9.Morphologies of the honeycomb-structuredNa3V2 (PO4)3/C
microball. (a) SEM image of the microball filled with hierarchical pores,
(b) SEM image of its cross-section and (c) enlarged image of
hierarchical pores, (e) low-resolution SEM image of the Na3V2(PO4)3
microballs and (g) its partial enlarged image. Reprinted with permission
from ref 151, copyright 2015, Royal Society of Chemistry.151
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3.4. Heteroatom Doping. Cation and anion doping play a
significant role in enhancing the intrinsic conductivity of the
polyanionic materials by tailoring the crystallography and the
electronic environment. An overview of different modified
polyanionic compounds and their electrochemical perform-
annce is given in (Table 3). Surface coating can improve surface
conductivity by forming a conductive layer on the surface.
Particle size reduction gives a shorter pathway for transport of
ions and electrons, but it increases electrode−electrolyte contact
area resulting in no beneficiary effect on intrinsic conductivity.
Therefore, doping is an effective way to improve intrinsic
conductivity.184 Doping in the lattice site with aliovalent ions
such as Ca, Al, and Ti will generate donor/acceptor doping
effect by lowering the band gap thus improving the conductivity.
Doping in the sodium site with atoms serves as a functional pillar
by enlarging ion diffusion channels and by occupying structural
distortion during charging−discharging. Introducing anions
with higher electronegativity provides higher energy density by
making use of higher potentials due to their inductive effect.185

K,186 Mg,187 Li,184 and Ca188 are reported as dopants in the
alkali sites to enhance electrochemical performance. Zheng
successfully demonstrated that an increased specific capacitance
can be achieved in Na3V2(PO4)3 by doping with Li, as the
occupation of Li in the Na2 sites activates the extraction of more
sodium ions during charging.184 A similar study of Li doping in
the sodium sites of Na3V2(PO4)2O2F was conducted by Liu et
al., and it was observed t that the enhanced electronic and ionic
conductivity is due to the increased mobile electron density and
the sodium vacancies.189

Atomically dispersed K ions in the alkali site act as functional
pillars which stabilize the structure by suppressing the unwanted
phase transition during the extraction/insertion of the sodium
ions, which improves the cyclic stability. The schematic
illustration of K+ ions in the sodium sites is given in Figure
8(e). Also the higher ionic radii of K+ ions (1.38 Å) compared to
Na+ ions (1.02 Å) expands the Na-ion diffusion channels, which
improves conductivity.143 Cao et al. reported K-doped
Na3Fe2(Po4)3 synthesized via a facile solid-state method which
shows a discharge capacity of 101.3 mA h g−1, which is almost

Table 3. Overview of Different Modified Polyanionic Compounds

Strategies Compound Synthesis Method
Specific capacity

(mA h g−1) Cyclic stability Ref

Nano structuring Na FePO4 (50 nm) Solid state 142 at C/20 95% retention after 200 cycles at 0.05C 73
Na2FePO4F (100 nm) Solid state 116 at 0.1C 80% capacity retention after 200 cycles

at 1C
119

Na7V4(P2O7)4(PO4) (150−200
nm)

Sol gel 116 at 0.1C 80% capacity retention after 200 cycles
at 1C

155

Na3(VO)2(PO4)2F (80−100
nm)

Solvothermal method 130 at 0.5C 80% capacity retention after 220 cycles
at 4C

156

Na3(VPO4)2F3 (50−100 nm) Solvothermal method 110 at 0.2C 93.6% capacity retention after 200
cycles

157

Na3V2(PO4)2O1.6F1.4 (<30 nm) Hydrothermal synthesis 67.2 at 30C 73% capacity retention after 1000
cycles at 5C

158

Na3(VO0.5)2(PO4)2F2 (30 nm) Solid state 82 at 20C 73% retention after 1000 cycles at 50C 159
NVP@C (30 nm) Sol−gel assisted hydrothermal

method
100 at 0.5C 99.6% retention after 50 cycles at 0.5C 160

NVP@pC (Nanoscale) Sol gel synthesis 116.2 at 0.2C 82.1% retention after 10,000 cycles 161
Heteroatom
Doping

Na3V1.95Mg0.05(PO4)2.9Cl0.1 Sol−gel 120 at 0.1C 79.4% after 30,000 cycles at 30C 162
K+ and Mg2+ codoped NVP@C/
RGO

Hydrothermal 52.1 at 10C ∼95% after 500 cycles 163

Na3.01V1.99Co0.01(PO4)3/C Sol gel 116 at 0.5C 80% after 1000 cycles 164
Na3−xV2−xTix(PO4)3/C Solid-State 101.2 at 10C 60% after 2000 cycles at 10C 165
Na3V1.7Mn0.3(PO4)3/C Sol gel 104 at C/2 166
Na3V1.98Al0.02(PO4)3/C Carbon thermal reduction 102.7 at 10C 99.2% after 50 cycles 167
Na3V2−xZrx(PO4)3−x(SiO4)x/C Solid state 109.6 at 0.1C 87.7% at 6C after 500 cycles 168
Na3V1.98(PO4)3−xF3x/C Solid state 143.5 at 1C 89.3% after 100 cycles 169
Na3V1.96Ce0.04(PO4)3/C Sol gel 118 at 0.2C 99% at 10C after 100 cycles 170

Morphology
controls

NVP@NSC Solid state 113 at 1C 82.1% at 50C after 5000 cycles 171
MNVP@C NWs Electrospinning 78.8 at 100C 84.1% after 3000 cycles 172
Na2.97V2.99W0.019(PO4)3/C@
CNTs

Sol gel 112.5 at 5C 86% over 500 cycles 173

Na2.9V1.9Zr0.1(PO4)3/C@rGO Sol gel 81.3 at 120C 74.3% at 200C after 3000 cycles 174
K0.24Na2.76Fe2(PO4)3 Solid state 101.3 at 10C 96.5% after 500 cycles 175
Na3V2−xZrx(PO4)2F3/NC Sol gel 98.1 at 20C 90.2% in 1000 cycles at 20C 176
Na3V2−yTiy(PO4)2F3/C Solid state 104 at 40C 91.3% after 500 cycles at 40C 177
Na3V1.9Y0.1(PO4)3/C Sol gel 80 at 50C 93.46% at 1C after 200 cycles 178
Flower like NVP@C-BN Wet-chemical method 84 at 100C 100% after 1000 cycles at 50C 178
Highly porous-NVP@SC Sol gel 95 at 30C 91% after 2500 cycles at 20C 82
Na3V2(PO4)3@C microspheres Membrane Casting method 96 at 30C 90% after 500 cycles at 50C 179
NaVPO4F/C Nanofiber electrospinning 61.2 at 50C 96.5% after 1000 cycles at 2C 180
NVPF-gel/rGO Hydrothermal 90.6 at 5C 86.4% after 200 cycles at 0.2C 181
Na3V2(PO4)2F3−SWCNT Solvothermal 117 at 0.5C 92.4% after 100 cycles 182
Na3V2(PO4)3/C nanoplate Hydrothermal 76.5 at 100C 82.6% after 10,000 cycles at 50C 183
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97% of the theoretical capacity, and the Coulombic efficiency is
100% during all the cycles.

The improved electrochemical performance of the doped one
compared to the pristine material is due to the larger lattice
spaces and increased diffusion coefficient of sodium ions.175

Fang Li developed Na0.84Ca0.08Fe2PO4(SO4)2, which shows
higher electrochemical performance as Ca doping in the sodium
sites enhanced sodium ion diffusion kinetics, similar in the case
of K-ion doping.190 Puspitasari et al.191 have studied the effect of
Ca doping in V3+ sites of NVPF and found the optimal level of
Ca doping at 0.05, which exhibits a specific capacity of 124 mA h
g−1 at 0.1C and a capacity retention of 70% after 1000 cycles at
10C. The enhanced electrochemical performance was attributed
to the expanded lattice spacing due to the larger ionic radii of Ca
ion, which improves the diffusion kinetics of Na ion. Ca doping
also reduces the bond length and strengthens the V−O and P−
O bonds, thus stabilizing the oxygen atom in the structure, thus
increasing the structural stability of the material. DFT studies
show that doping Ca in to the V sites narrows the band gap and
increases the electronic conductivity.

Doping in the transition metal sites by elements such as Cr,192

Mn,193 Ca,194 Mg,195 Fe,196 Cu,197 Co,198 Al,199 and Ti165 has
been found to improve the energy density, cyclic stability, and
ionic mobility. Chen et al.200 doped Cr in VO6 octahedra of
Na3V2(PO4)3 (Na3V1.5Cr0.5(PO4)3), which resulted in increased
energy density even in comparison with the Prussian blue
analogues and the layered oxides by activating a mutielectron
redox reaction at higher voltage. Cr doping activated the V4+/
V5+ redox couple, facilitating a three-electron redox couple in V
and extracting the third sodium during charging in nonaqueous
electrolyte in 4.2−1 V range, ultimately enhancing the energy
density. Further, through DFT studies it is confirmed that an
unpaired electron in the 3d orbital of Cr has improved adjacent
sodium ion diffusion; thus, ionic conductivity is increased. Li et
al.201 added Cr and Si to NVP forming a multielement
compound of Na3V1.9Cr0.1(PO4)2.9(SiO4)0.1 (NVP-CS). A
similar conclusion was drawn by Chen et al.202 It is established
that unpaired 3d electrons of Cr trigger V4+/V5+ reaction,
thereby increasing the average potential. It is found that
nonreacting Cr increases the material stability, confirmed with
the negative formation energy of the NVP-Cr compound. Si in
the system is found to alter the electronic energy levels of V and
O which aid the redox reaction of V by reducing the band gap.
Due to the combined effect Cr and Si, NVP-CS has a lower
migration barrier (0.073 eV) in comparison with NVP (0.144
eV). NVP-CS has attained an energy density of 357.6 W h kg−1

and a cyclic stability of 90% after 300 cycles at 1C.
Paek et al. have improved the sodium storage performance in

Na3V2(PO4)3 and in Na3V2(PO4)2F3 by 8.9% of Fe doping in
the V sites. It is found that Fe doping makes complete use of the
V3+/V4+ redox pair and also enables the two phase transitions in
Na3V2(PO4)3 which increase the ion diffusivity. Fe also reduces
the band gap and increases the electron transport kinetics which
overall resulted in long cycle life and improved energy density of
the materials.203 Similarly, Zhan et al. synthesized
Na3V1.5Fe.5(PO4)3@C, which shows a cyclic stability of 77.7%
after 5000 cycles at 20C.204

Liu et al. modified Na4Co3(PO4)2P2O7 with Al doping
(Na3.85Co2.85Al0.15(PO4)2P2O7), which delivers a discharge
capacity of 99.5 mA h g−1 at 0.5C and cyclic stability of 96.3%
after 900 cycles at 10C. The extra vacancies created due to Al3+
compared to Co2+ improve the ionic transportation. Doping Al
not only improves the ionic and electronic conductivity but also

improves the structural stability of the material. Similar to cation
doping, anions can also be introduced in the lattice polyanionic
structure for improved electrochemical kinetics and structural
stability.

Liu et al.205 doped the PO4
3− group in Na4Fe3(PO4)2P2O7

with SiO4
4− achieving a specific capacity of 119.4 mA h g−1 at

0.1C with a capacity retention of 84.2% after 5000 cycles. This
increased electrochemical performance is due to the broadened
sodium ion diffusion channel which improves the ion transport.
The stronger Si−O bond improves the crystal structure stability
and also accommodates the volume change during charging and
discharging, which in turn improves the cyclic performance. In
addition, the presence of the SiO4

4− group reduces the bandgap
and increases the electronic conduction.

4. CONCLUSION
There has been extensive progress in the development of
polyanionic materials, and among the total publications
regarding SIBs, 40% is taken up by polyanionic cathodes in
the past decade of SIB. They are widely explored due to their
structural advantages and high voltages provided by their
anionic groups. However, they are still hindered by limited
energy and power densities and by poor rate capability. Herein
we mainly discuss about the different strategies such as
Nanostructuring, Morphology control, Surface coating, and
Heteroatom doping in polyanionic cathodes for improved
electrochemical performance. Reducing the particle size short-
ens the ion diffusion pathways and thus improves the transport
kinetics of the material. A thin surface coating provides a carbon
conductive surface to the material thereby improving the
electronic conductivity and further enhancing the rate capability.
Along with that it acts as a protective layer, which shields the
active surface from electrolyte attack and in turn improves the
cyclic stability of the material. Different types of morphology
attained using a different synthesis process also affect the
electrochemical performance of the material. Polyanionic
materials are found in different architectural shapes, such as
nanoflower, nanorod, porous, honeycomb, nanofiber, etc.,
which provide multichannel electron diffusion pathways, thus
enhancing the rate capability of the material. Heteroatom
doping is one of the widely explored areas as it can improve the
intrinsic electronic conductivity and also contribute to the
structural stability of the material which in turn enhances the
cyclic performance. The type of dopant and the amount of
doping should be properly optimized because doping with inert
elements can result in lower energy density and also excessive
doping can result in lowering the cyclic performance. Employing
two or more strategies together results in enhanced electro-
chemical performance. These strategies contribute to sodium
ion diffusion in the bulk besides improving the electronic
conductivity. This work summarizes different strategies which
can be used to tailor polyanionic cathode materials toward high
capacity, energy density, and cyclic performance.
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