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Abstract: Extracellular vesicles (EVs) are biological nanoparticles of great interest as novel sources of
biomarkers and as drug delivery systems for personalized therapies. The research in the field and
clinical applications require rapid quantification. In this study, we have developed a novel lateral
flow immunoassay (LFIA) system based on Fe3O4 nanozymes for extracellular vesicle (EV) detection.
Iron oxide superparamagnetic nanoparticles (Fe3O4 MNPs) have been reported as peroxidase-like
mimetic systems and competent colorimetric labels. The peroxidase-like capabilities of MNPs coated
with fatty acids of different chain lengths (oleic acid, myristic acid, and lauric acid) were evaluated in
solution with H2O2 and 3,3,5,5-tetramethylbenzidine (TMB) as well as on strips by biotin–neutravidin
affinity assay. As a result, MNPs coated with oleic acid were applied as colorimetric labels and applied
to detect plasma-derived EVs in LFIAs via their nanozyme effects. The visual signals of test lines
were significantly enhanced, and the limit of detection (LOD) was reduced from 5.73 × 107 EVs/µL
to 2.49 × 107 EVs/µL. Our work demonstrated the potential of these MNPs as reporter labels and as
nanozyme probes for the development of a simple tool to detect EVs, which have proven to be useful
biomarkers in a wide variety of diseases.

Keywords: extracellular vesicles; iron oxide superparamagnetic nanoparticles (Fe3O4 SMNPs); lateral
flow immunoassay (LFIA); nanozyme

1. Introduction

Iron oxide superparamagnetic nanoparticles (Fe3O4 MNPs) have attracted consider-
able scientific interest due to their superparamagnetic properties, biocompatibility, and
non-toxicity, resulting in a wide range of biomedical and technological applications. For
example, Fe3O4 MNPs have been applied in energy storage [1]; tissue engineering [2];
protein, DNA, and cell separation from samples [3,4]; biosensing [5]; drug-delivery and
-targeting [6–8]; magnetic resonance imaging (MRI) [9–11]; and as mediators of heat for
cancer therapy (hyperthermia) [12].

The work of Gao et al. [13] first reported that Fe3O4 nanoparticles have intrinsic
peroxidase-like activity, catalyzing the oxidation of chromogenic substrates (TMB, DAB,
and OPD) as the natural horseradish peroxidase. The word “nanozyme” has been coined to
describe this kind of enzyme-mimicking nanomaterial, since enzymes and nanozymes share
similar catalytic properties [14]. These nanomaterials with enzyme-mimetic activity have
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shown several advantages over natural enzymes. Fe3O4 MNPs nanozymes are much more
cost-effective as well as more suitable for large-scale production; they also exhibit robustness
for diverse uses, ease of modification and large surface areas, which allows them to be
conjugated to various ligands for multifunctionalities, such as antibodies [15], peptides [16],
and small molecules [17]. Considering these strengths, Fe3O4 nanozymes have shown
potential in a wide range of applications, as reviewed in [18–20]. Specifically, by merging
distinctive physicochemical features and catalytic properties, numerous nanozyme-based
platform technologies have been established, for bioanalysis [21], disease diagnosis [22,23],
and therapy [24,25]. Noteworthy among these technologies are nanozyme-based biosensors.
However, in the case of ferrum-based nanozymes, reports in the literature on their use in
paper-based biosensors are still scarce. Duan et al. [26] successfully developed a nanozyme-
based immunoassay using Fe3O4 magnetic NPs for Ebola virus detection on paper strips.
Sensitivity was improved 100-fold in comparison with the standard colloidal gold-based
LFIA. Thus, the use of iron oxide MNPs as nanozymes has shown great potential in the
detection of biomarkers. In this specific field, extracellular vesicles (EVs) have become
targets of interest since they are present in bodily fluids and are involved in intercellular
communication in physiological and pathological processes [27–29]. The generic term EV
includes those vesicles with an endosomal origin (exosomes) or formed by membrane
budding (microvesicles/microparticles). EV cargos, such as proteins, nucleic acids, and
lipids, are considered powerful sources of biomarkers. In addition, EV levels may be altered
under pathological conditions, as in chronic fatigue syndrome [30]. Therefore, EVs have
become significant targets in diagnostics and have been determined in cancers [31,32] and
non-cancerous diseases [33–35]. Nevertheless, EVs are a relatively new type of targets
for bioanalysis and detection, and most standard analytical methods have insufficient
sensitivity and throughput to be usable in EV detection, let alone for clinical use [36,37], as
the quantification needs in the field demand rapid and simplified methods of analysis [38].
Active research is thus underway to overcome these challenges.

Our research group has developed LFIAs for plasma-derived EVs and explored differ-
ent types of MNPs with the double aim of facilitating the isolation step from biological me-
dia and reporter labels in LFIAs [39–41]. In this work, we have evaluated the peroxidase-like
activity of Fe3O4 MNPs coated with three different double layers of fatty acids: MNP-OA:
oleic acid-CH3(CH2)7CH=CH(CH2)7COOH; MNP-LA: lauric acid- CH3(CH2)10COOH; and
MNP-MA: myristic acid-CH3(CH2)12COOH. The coating of MNPs with fatty acids provides
several advantages: their stability in water increases, they are biocompatible for biomedical
uses, and the presence of carboxylic groups makes them suitable for subsequent bioconju-
gation [42,43]. To this end, TMB was employed as the chromogenic substrate to investigate
color development both in solution and in lateral flow affinity assays using different con-
centrations of Fe3O4 MNPs. In addition, we have developed a nanozyme-mediated signal
readout lateral flow immunoassay for detection of plasma-derived EVs to improve the
sensitivity of the system. For this purpose, various concentrations of Fe3O4 MNPs with
different coatings were added into TMB and H2O2 to generate colored substrates and
absorbances were measured with a UV–Vis spectrophotometer. For immunoaffinity tests
on strips, neutravidin-conjugated Fe3O4 MNPs left brown test lines on membranes when
LFIA was accomplished. The strips were immersed int TMB and H2O2 mixed solution
for signal amplification. A lateral flow optical reader was utilized to measure the color
intensity of the test lines before and after peroxide reactions. LFIA paper-based biosensors
were further explored for EV detection. Anti-CD9 and anti-IgG were immobilized in the
test lines and control lines on the membranes, respectively. Antibody anti-CD63-coupled
Fe3O4 MNPs presented on the test line with a brown color and the completed biosensors
were bathed in the substrate mixture for signal enhancement and measured with the reader
before and after nanozyme effect.
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2. Materials and Methods
2.1. Chemicals and Reagents

Superparamagnetic magnetite nanoparticles (MNPs) were synthesized by co-precipitation
and characterized as reported by Bica et al. [42]. The particles were then coated with biocompat-
ible surfactants: oleic acid (MNP-OA), lauric acid (MNP-LA), and myristic acid (MNP-MA).

Neutravidin, biotin-BSA, N-(3-Dimethylaminopropyl)-N′-ethyl carbodiimide (EDC),
N-Hydroxy succinimide (NHS), bovine serum albumin (BSA), anti-mouse IgG, 3,3′,5,5′-
Tetramethylbenzidine (TMB), and hydrogen peroxide (H2O2) were purchased from Merck
(Darmstadt, Germany). Monoclonal antibodies anti-CD63 and anti-CD9 were acquired
from Immunostep S.L (Salamanca, Spain). The other reagents used in this study were of
analytical grade.

Nitrocellulose membranes (UniSart CN95) were purchased from Sartorius (Madrid,
Spain). The other materials used were glass fiber sample pads (GFCP001000, Millipore,
Darmstadt, Germany), backing cards (KN-V1080, Kenoshatapes, Amstelveen, The Nether-
lands) and absorbent pads (Whatman, Piscataway, USA).

Based on previous results, the sample buffer consisted of 10 mM phosphate-buffered
saline (PBS), pH 7.4, with 0.5% Tween-20 and 1% BSA.

2.2. Equipment

Analysis of absorbance of magnetic nanoparticles with various coatings was achieved
with a UV–Vis spectrophotometer (PG Instrument, LTD) together with UV/Win Spec-
trophotometer Software. An IsoFlow reagent dispensing system (Imagene Technology,
Hanover, USA) was used to dispense the detection lines (dispense rate: 0.100 µL/mm) and
the strips were cut with a guillotine Fellowes Gamma (Madrid, Spain). A portable strip
reader ESE Quant LR3 lateral flow system (Qiagen Inc., Hilden, Germany) was used to
quantify the intensity of the test line by means of reflectance measurements.

2.3. Functionalization of MNPs

The carboxylic groups were activated using carbodiimide chemistry at a molar ratio
EDC/NHS of 1.1. The MNPs were then incubated for 20 min under shaking. Then, the
desired concentrations of neutravidin or anti-CD63 antibody were added and incubated for
4 h. The mixture was blocked with 1% BSA and further separated by a magnet for 10 min.
Lastly, the conjugates were dispersed in 10 mM PBS, pH 7.4.

2.4. Evaluation of Peroxidase-like Activity and Signal Enhancement

To test the catalytic activity of three MNPs in solution, TMB and H2O2 were added to
different concentrations of MNPs. The oxidation of TMB was monitored by measuring the
absorbance at 652 nm and 25 ◦C after 10 min using a UV–Vis spectrometer. The experiments
were performed in triplicate, and the calibration curves were elaborated to study the effects
of different coatings.

2.5. Isolation and Characterization of Plasma-Derived Extracellular Vesicles

Plasma samples were collected after written informed consent was obtained and
with the approval of the Ethics Committee of the Hospital Universitario San Agustín
(Avilés, Spain). Peripheral venous blood was collected in 10 mL tubes with EDTA as an
anticoagulant after discarding the first milliliter and processed within 30 min of collection.
Blood was first centrifuged for 30 min at 1550× g to remove cells. Aliquots of plasma were
stored at −80 ◦C until use.

EVs from healthy controls were isolated with ExoQuickTM precipitation solution
(System Biosciences, Palo Alto, CA, USA), following the manufacturer’s instructions. EVs
were characterized in terms of size and concentration using a NanoSight LM10 instru-
ment (Malvern, Worcestershire, UK) and NTA 3.1 software at Nanovex Biotechnologies
S.L (Asturias, Spain). Samples were diluted in 10 mM HEPES 7.4 to achieve a particle
concentration ranging from 107 to 109 particles/mL.
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2.6. Lateral Flow Assays
2.6.1. Preparation of the Lateral Flow Strips

A nitrocellulose membrane was incorporated onto a plastic backing card to give
robustness to the membrane. For the affinity tests, a biotin-BSA (1 mg/mL) test line was
immobilized on the membrane. For the LFIA tests, antibodies anti-CD9 and anti-IgG at
a concentration of 1 mg/mL were dispensed as the test line and control line, respectively.
The reagents were dispensed across the membrane at a rate of 0.100 µL/mm. The sample
pad and the absorbent pad were then assembled onto the backing card with an overlap of
around 2 mm. The complete strip was cut into individual 4 mm strips.

2.6.2. Lateral Flow Assays

The affinity assays between biotin and neutravidin on paper-based biosensor were
performed as a model study for LFIA, since the vitamin biotin and the protein avidin,
including its analogue streptavidin and neutravidin, bind together irreversibly [44]. Then,
10 µL of the MNP–neutravidin conjugates were transferred into microtubes with running
buffer to a final volume of 100 µL. The strips were then added and allowed to run for
20 min.

A similar procedure was followed for the detection of EVs. A range of concentrations
of EV samples were homogenized with the detection antibody coupled to the MNPs. Then,
the strips were added and allowed to run for 15 min.

Schematics for both types of lateral flow assays are shown in Figure 1.
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Figure 1. Schematic representation of the (A) lateral flow affinity assay (biotin–neutravidin) and the
(B) lateral flow immunoassay for EV detection, using MNPs as reporter labels. Figure 1 was created
using https://biorender.com/.

3. Results
3.1. Nanozyme Activity of MNPs Coated with Fatty Acids of Different Chain Lengths

To evaluate peroxidase-like activity and the potential effect of chain length, the chro-
mogenic substrate TMB was selected. TMB is oxidized faster than other HRP substrates,
thus enabling a quick development of color. A range of concentrations of MNP-OA, MNP-
MA, and MNP-LA were employed to catalyze TMB in solution when H2O2 was present. In
general, all the MNPs catalyzed the oxidation of TMB, mimicking peroxidase, and turning
the colors of the solutions from transparent to varying shades of green (Figure 2). Higher
nanozyme concentrations yielded higher absorbance values, thus indicating higher rates
of reactions. No significant differences were found regarding the different coatings of the
MNPs. Figure 1 shows the calibration curves obtained for the three types of MNPs after
measuring the absorbance. A straight line fitted best for the set of data in all cases, with
similar coefficients of determination (R2). Therefore, all three types of MNPs were further
used as reporter labels on paper-based biosensors.

https://biorender.com/
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3.2. Nanozymes as Labels for Lateral Flow Assays

Since the three types of particles showed good peroxidase-like properties, their perfor-
mance in a paper-based sensor was evaluated. As a model study for LFIA, an affinity test
between biotin and neutravidin was carried out. To this end, the MNPs were conjugated
with three different concentrations of neutravidin (0.25, 0.50, and 0.75 mg/mL). The strips
were completely immersed in the substrate solution for 15 min. The intensity of the test
lines was measured before and after immersion (Figure 3).

As shown in Figure 3, MNPs exhibited their abilities as optical labels by recognizing
biotin and leaving a brown test line on the strip, which can be measured by an optical
signal. Nevertheless, MNPs with different coatings performed differently as probes in
LFIA. Overall, the intensity of the test lines before treatment with the substrate solution
increased when using higher concentrations of conjugated neutravidin. This trend was
more pronounced in MNPs coated with oleic acid (Figure 3A) in comparison to MNP-MA
and MNP-LA. By contrast, the signal intensities developed by MNP-MA were weakest
with all three neutravidin concentrations.
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Figure 3. Nanozyme-mediated signal enhancement on lateral flow strips. MNP-OA (A), MNP-MA
(B), and MNP-LA (C) were functionalized with different concentrations of neutravidin (0.25 mg/mL,
0.5 mg/mL, 0.75 mg/mL) and used as reporter labels for affinity assays. Signal intensities were mea-
sured before (brown lines) and after (blue lines) signal enhancement. Graphs show the means ± SDs
of three independent experiments. Representative LFA strips before and after enhancement are
shown for each concentration.

Regarding their nanozyme activity, the results obtained confirmed that the catalytic
activity of the three MNPs significantly enhanced the colorimetric signal, thus improving vi-
sual detection by the naked eye. When comparing the measurements after the enhancement
reaction with the initial ones, the enhancement effect was greater at the lowest concentra-
tion of neutravidin (0.25 mg/mL) for MNP-OA and MNP-MA, reaching a 3-fold and a
2.5-fold increase, respectively. In the case of MNP-LA, the intensity was 3.3-fold higher
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at the highest concentration of neutravidin (0.75 mg/mL). Concerning the possible effect
of chain length, no significant differences in the enzymatic properties of the MNPs were
found. Nevertheless, MNP-OA and MNP-LA showed better performance, as the signal
intensities on the test line were significantly higher than those measured when using MNP-
MA, before and after the enzymatic reaction. MNP-OA, despite not demonstrating the best
intensity after signal enhancement, showed great signal divergences when conjugated with
different concentrations of neutravidin, which could facilitate its visualization not only for
qualification but also for quantification in real-case detection.

3.3. Effect over Time of the Nanozyme-Based Lateral Flow Assay

The peroxidase-like activity of the three MNPs on the strips and the effects over time
were further studied. After the first signal enhancement, the strips were immersed again
in the substrate solution and the reaction was left for an additional 15 min. For further
comparison purposes, the signal intensities of the test lines were measured. The results for
each concentration of neutravidin are shown in Figure 4. As illustrated, with neutravidin
at 0.25 mg/mL and 0.50 mg/mL (Figure 4A,B), all three MNPs exhibited better peroxidase-
like activities with longer reaction times in TMB and H2O2. MNP-LA still proved to be
the highest caliber nanozyme in the 30 min reaction, while MNP-MA remained the lowest.
Notably, the signals for MNP-OA increased significantly as the concentration of conjugated
neutravidin and reaction time increased and it proved almost as capable as MNP-LA with
0.5 mg/mL neutravidin (Figure 4B), whereas when the concentration of neutravidin was
0.75 mg/mL for conjugation, the signal of MNP-MA was hardly enhanced by a longer
color reaction time, which might have been due to its capability saturation as a nanozyme
at high conjugate concentrations. Moreover, MNP-LA reduced from 1356.71 mm*mV in
15 min to 1249.06 mm*mV in 30 min, which might indicate instability with high levels of
conjugates in catalysis. MNP-OA, however, maintained significant growth after 30 min,
and this great difference could also be captured by the naked eye. These findings suggested
that MNP-OA was the highest-performing option for further utilization in EV detection.
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3.4. Nanozyme-Mediated LFIA for EV Detection

Through the experimental studies described above, MNP-OA was eventually selected
as the nanozyme probe. These particles showed great performance in terms of their
peroxidase-like activity in paper strips. In addition, this fatty acid coating was the first and
the one most used for highly uniform and monodispersed magnetic nanoparticle synthesis
in aqueous solutions [45,46].

The nanozyme probe can target EVs and be visualized by catalyzing a color reac-
tion with TMB and H2O2. To achieve this, the MNP-OA was conjugated with anti-CD63
antibodies, and antibodies anti-CD9 and anti-IgG were immobilized on paper biosen-
sor membranes as test line and control line, respectively. EVs would be recognized by
tetraspanin CD63 and CD9 binding to antibodies on the nanozyme probe and biosensor
membrane simultaneously, forming a sandwich detecting format. This format and the
use of two different tetraspanins as targets ensures that the system does not capture other
non-EV components that may be present in the fractions isolated. Plasma-derived EVs
obtained using a precipitation reagent were characterized by NTA to determine the con-
centrations of the samples and their sizes (Figure 5A). As these EVs were below 200 nm,
they may be considered small EVs (sEVs), in accordance with the International Society of
Extracellular Vesicles [47]. EV fractions were then diluted and a range of concentrations
of the vesicles was subsequently assayed with our system. The catalysis reaction was
performed in the same way as described in Section 3.3 for 30 min. The outcomes are shown
in Figure 5B. A LFIA optical reader was employed to measure signal intensities before and
after the catalyzation reactions. The quantification data were used to establish calibration
curves (Figure 5C,D).
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Figure 5. Signal enhancement for detection of different concentrations of plasma-derived EVs using
anti-CD9 as capture antibody and MNP-OA-anti-CD63 as reporter label. (A) Concentration and
hydrodynamic size distribution profiles of isolated EV, measured by NTA. (B) Representative image
of the results obtained in the strips, before and after signal enhancement. B: blank; C-: EV-depleted
plasma; CL: control line; TL: test line. (C) Calibration curve obtained with the LFIA optical reader,
before (brown dots) and after (blue dots) signal enhancement. (D) Expanded view of the lower
concentrations of EVs and the linear regression lines. Graphs show the means ± SDs (n = 3).
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The test line signal intensities were significantly improved after the signal enhance-
ment reactions with respect to both visualization and the lateral flow reader. The repro-
ducibility of responses in the linear range before and after signal enhancement was also
studied. Table 1 compares the parameters acquired from the experimental data (linear
ranges, regression parameters, and LODs) of LFIA before and after signal enhancement
reactions. The SD was less than 5% in all the cases, except for point 31.4 × 107 EV after
signal enhancement, where it was 19%. The nanozyme-mediated LFIA system showed
a wider linear range (up to 62.8 × 107 EV/µL) in comparison with the standard assay
(up to 31.4 × 107 EV/µL). The LOD was determined using the σb/m criterion, where
m is the slope and σb is the y-intercept standard deviation. The LOD achieved before
the enhancement is similar to that described in our previous work using MNP-OA to
detect plasma-derived EVs [40]. The signal enhancement resulted in lower LOD, thus
showing the potential for sensitive and decentralized analysis of biomarkers. Although
this improvement is slightly better, it is within the range of interest when working with
extracellular vesicles. The number of circulating EVs may be informative in itself, as shown
in a pilot study with patients with chronic fatigue syndrome [30]. It is also within the
ranges for further characterization (e.g., standards used for quantification of EVs by ELISA).
In addition, further optimization may be applied to obtain lower limits of detection for
different applications in the study of EVs, such as for the detection of other less abundant
biomarkers of interest in specific diseases.

Table 1. Comparison of the different LODs obtained with the LFIA using magnetic nanoparticles
coated with oleic acid and after signal enhancement (nanozyme-mediated LFIA).

Linear Range Slope
(Log EVs/µL) LOD (EVs/µL) Regression Coefficient R2

MNP-OA 0–31.4 EVs × 107/µL 0.9843 5.73 × 107 0.9929
Signal enhancement 0–62.8 EVs × 107/µL 0.5214 2.49 × 107 0.9917

4. Discussion

In this paper, the peroxidase-like abilities of superparamagnetic nanoparticles with
three different coatings—oleic acid, myristic acid, and lauric acid—were studied. The
MNPs coated with oleic acid were ultimately used for EV detection in a lateral flow
immunoassay because of their great stability and capability as nanozymes. The MNP-
OAs conjugated with anti-CD63 antibodies as nanozyme probes showed three functions:
recognition, visualization of EVs on the strips, and signal enhancement with their intrinsic
peroxidase-like ability. Furthermore, the sensitivity and linear range of the LFIA after
the signal enhancement reaction increased, while the limit of detection diminished from
5.73 x 107 EVs/µL to 2.49 x 107 EVs/ µL, so that the nanozyme ability of MNP-OA provided
the possibility of lower-concentration detection while making it more sensitive, which is
critical for high-sensitivity detection.

Since they are found in biological fluids, EVs are good candidates as non-invasive
biomarkers for the diagnosis and prognosis of a variety of diseases. The composition and
abundance of EVs depend on the cells of origin, as well as physiological or pathological
states. The number of circulating EVs were found to be altered in several diseases [30,48–50]
Therefore, LFIAs are useful platforms for rapid and on-site detection of circulating EVs.

Many efforts have been made recently to increase the capacity of lateral flow im-
munoassays. Various nanomaterials have been explored that possess various characteristics
providing optical, electrical, and magnetic signals in LFIAs for biomolecular monitoring and
detection. However, signal amplifications of LFIAs for naked-eye identification or quantifi-
cation can be laborious and expensive. For instance, Dong et al. [51] presented EV detection
with fluorescent nanospheres combined with biotinylated modification of EV membranes.
Even though the method was extremely sensitive, with an LOD of 2.0 × 103 EVs/µL, the
sample collection and enrichment were quite time-consuming. Similarly, colloidal gold
nanoparticles coupled with aptamer were applied in EV sensing by Yu et al. [52], but a long
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incubation time for strips of up to 1 h was not ideal for rapid detection. Other methods,
such as Surface-Enhanced Raman Scattering (SERS) [53], biochips [54], and surface plasmon
resonance (SPR) [55], can identify the EV contents quantitatively with valid and accurate
results. However, these technologies may require the use of bulky analytical instruments
or operational costs may be excessive.

Enzyme-labeled conjugates were also proposed for LFIAs to enable signal amplifi-
cation. Horseradish peroxidase (HRP) is the enzyme that has been most often used to
label nanoparticles, as the oxidation of different organic substrates (such as TMB) can be
catalyzed by hydrogen peroxide [56–58]. However, the use of natural enzymes has been
limited because of their short shelf life, the possibility of inhibition or activation due to
interferents in the sample matrix, denaturation at high temperatures, and acidic/alkaline
pH. By comparison, nanozymes are highly robust against severe conditions and simple to
manufacture by chemical synthesis, as well as having tunable catalytic activities and low
costs. Many kinds of metal nanoparticles have been exploited and utilized as nanozymes in
LFIAs. For example, Pt-Au NPs [59], Pt-Pb NPs [60], PB NPs [61] and MnO2-NFs [62]. They
can be easily immobilized on paper-based strips and provide qualitative visual information
through the collection of tracers on test lines or quantitative data by including appropri-
ate enzymatic substrates (colorimetric or chemiluminescent detection). In addition, the
magnetic features of nanozyme labels allow for rapid immunomagnetic separation. Thus,
these MNPs may have potential applications in the field of enrichment of subpopulations
of circulating EVs of interest. As a result, immunoassays and immunosensors that use
nanozymes as signaling components have become increasingly popular in recent years,
and the trend is continuing [63].

5. Conclusions

In conclusion, the signal-enhancement approach presented here is affordable, rapid,
and does not involve the use of bulky equipment. It could also be applied for the de-
tection of other biological substances simply by replacing the conjugated antibodies
since the method is reliable and ubiquitous. Consequently, these findings imply that the
nanozyme-enhanced LFIA can be exploited as a diagnostic tool for the visual assessment
of biomolecules or chemical reagents and that it has potential for a variety of applications.
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