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Abstract

Stress-induced cardiac hypertrophy leads to heart failure. Our previous studies demonstrate

that insulin-like growth factor—II receptor (IGF-IIR) signaling is pivotal to hypertrophy regu-

lation. In this study, we show a novel IGF-IIR alternative spliced transcript, IGF-IIRα (150

kDa) play a key role in high-salt induced hypertrophy mechanisms. Cardiac overexpression

of IGF-IIRα and high-salt diet influenced cardiac dysfunction by increasing pathophysiologi-

cal changes with up-regulation of hypertrophy markers, atrial natriuretic peptide (ANP) and

brain natriuretic peptide (BNP). We found that, cardiac hypertrophy under high-salt condi-

tions were amplified in the presence of IGF-IIRα overexpression. Importantly, high-salt

induced angiotensin II type I receptor (AT1R) up regulation mediated IGF-IIR expressions

via upstream mitogen activated protein kinase (MAPK)/silent mating type information regu-

lation 2 homolog 1 (SIRT1)/heat shock factor 1 (HSF1) pathway. Further, G-coupled recep-

tors (Gαq) activated calcineurin/nuclear factor of activated T-cells, cytoplasmic 3 (NFATc3)/

protein kinase C (PKC) signaling was significantly up regulated under high-salt conditions.

All these effects were observed to be dramatically over-regulated in IGF-IIRα transgenic

rats fed with a high-salt diet. Altogether, from the findings, we demonstrate that IGF-IIRα
plays a crucial role during high-salt conditions leading to synergistic cardiac hypertrophy.
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Introduction

Insulin-like growth factor (IGF) and IGF-II receptor (IGF-IIR) signaling is crucial for cardiac

development and remodelling [1–3]. IGF-IIR is parentally imprinted and knocking down its

expression had severe fetal cardiac abnormalities [4,5]. Reactivation of IGF-IIR signaling

occurs during cardiac stresses leading to cardiac remodeling; thus prolonged stress ensues

with cardiac hypertrophy and heart failure. IGF-IIR, a type I transmembrane glycoprotein acti-

vation and its cell surface expression in cardiomyocytes promote IGF-II binding through G-

protein-related mechanism leading to cardiomyocyte apoptosis [3,6]. Substantial evidence

from our laboratory demonstrates that IGF-II:IGF-IIR signaling promotes physiological and

pathological changes in the heart tissue leading to cardiac hypertrophy, apoptosis and heart

failure [3,6–8]. We have made pioneering studies in identifying the molecular pathway of

IGF-IIR signaling; we elucidated IGF-IIR activation in angiotensin II (ANG II)-induced

hypertensive cardiomyocyte apoptosis through JNK activated SIRT1 degradation leading to

HSF1 acetylation [3]. We identified CHIP mediated HSF1 protein stability via its TPR domain

is essential for HSF1 nuclear translocation and subsequent inhibition of IGF-IIR expression

[9]. In addition, we also found that ERK/GSK3 mediated HSF1 phosphorylation and subse-

quent RNF126 degradation by ANG II caused IGF-IIR protein stabilization leading to hyper-

trophy [10]. Thus, these studies showed the clear evidence that IGF-IIR activation and its

overexpression is responsible for cardiac hypertrophy and heart failure. Importantly, in

IGF-IIR knockdown studies, we did not find complete recovery from DOX-induced cardio-

myocyte apoptosis [9]. Thus, implicating on the association of other key regulatory proteins in

cardiac hypertrophy mechanisms.

Recently, we identified novel alternative splicing truncated IGF-IIR using rapid amplifica-

tion of cDNA ends (RACE) and sequence analysis. This fragment lacked IGF-IIR exon 1–9

segment but consisted of intron 9 (nt 645–806)- exon10- intron 36 (nt 1–455). mRNA expres-

sion pattern for primer specific to intron 9 (nt 645–806) revealed its expression in heart, brain,

liver, placenta and testis of rats. Further, we also confirmed that this transcript can encode a

protein with 1359 amino acids with start codon at 231 bp (exon 10) and stop codon at 4307 bp

(intron 36). By sequence analysis, we found that amino acids of the truncated protein were

consistent with IGF-IIR, except the C-terminal 15 amino acid. We named the novel protein as

IGF-IIRα and aimed to identify its biological significance and its involvement in cardiac

pathophysiology.

IGF-IIRα regulates cardiac apoptosis through down-regulation of survival proteins AKT/

PI3K signaling and up-regulation of caspase 3 activation. In addition, overexpression of

IGF-IIRα regulates cardiac fibrosis through uPA/tPA/TGF-β signaling and higher collagen

accumulation and further aggravated its effect in high-salt condition [11]. In this study, we

aimed to identify whether novel IGF-IIRα is involved in cardiac hypertrophy and further its

functional role in high-salt induced hypertensive heart failure in vivo. Then, we would like to

investigate whether IGF-IIRα could be a novel potential therapeutic target for heart failure.

Materials and methods

Antibodies and reagents

All chemicals and reagents were procured from Sigma-Aldrich, USA. For western blotting, the

primary antibodies p-ERK, p-JNK, p-P38 were purchased from Cell Signalling, USA. IGF-IIR,

AT1R, NFATC3, ANP, BNP, α-tubulin, p-PKC (Abcam, USA) and GAPDH, SIRT1, Gαq, p-

GATA4 (Santa Cruz Biotechnology, USA). All secondary antibodies (anti-rabbit, mouse and

goat, HRP-conjugated antibodies) were procured from Santa Cruz Biotechnology, USA.

Over expression of IGF-IIRα enhances cardiac hypertrophy
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Transgenic construction

The transgenic construct includes the rMYH6 promoter, 3HA-IGF-IIRα-A2 (NCBI) BAC

DNA. 3HA-IGF-IIRα-A2 was amplified and ligated into the rMYH6 promoter expression vec-

tor. The primer sequences used include IGF-IIRα:5’IGF-IIRα-KnpI:5’-TTGGTACCGAATGA
GTGTCATAAACTTTGAG-3’and3’-IGF-IIRα-XbaI:5’-CCCTCTAGAAGTCATGTCGGCTGC
TGTGAGTGAAGCTGA-3’. We next successfully subcloned the full-length of IGF-IIRα into

the pcDNA3.1-myc-His driven by α-MHC cardiac-specific promoter via pronuclear microin-

jection and developed IGF-IIRα over expression transgenic rats (TG). Positive founders were

identified by PCR and backcrossed to WT. Genotyping was performed by PCR analyses with

the specific primers. Forward primer5’-TAGCAAACTTCAGCCACCCTTC-3’ and Reverse

primer 5’-ACTTCCACTCTTATCCACAGCACAC-3’ which were designed to amplify a

739bp fragment.

Animal procedure

All protocols were reviewed and approved by the IRB (Institutional Review Board) and the

animal care and use advisory group of the China Medical University, Taichung, Taiwan. Ani-

mals were procured from BioLasco Co., Ltd., Taipei, Taiwan. Male TG founder had a defi-

ciency in fertility. In our study, we have used eight week oldfemale Sprague-Dawley (SD)

animals were supplied with standard diet (Laboratory rodent diet 5001) & tap water and main-

tained at a constant temperature (22˚C) on a 12-hour light/dark cycle. After a 4 week acclima-

tisation period, the animals were divided into 4 groups with 6 animals in each group: SD rats

(WT), SD-TG (IGF-IIRα) rats (TG), SD + high salt diet rats (8% high salt) (WT-HD), SD-TG

(IGF-IIRα) + high salt diet rats (8% high salt) (TG-HD). The treatment period is for about 16

weeks. The high salt diets are procured from research diets, NJ, USA. After treatment, all rats

were sacrificed by decapitation under terminal anesthesia and hearts were collected. Finally,

the heart tissue was collected and stored at -80˚C for further analysis.

Echocardiography

Echocardiography was performed for SD rats, SD-TG (IGF-IIRα) rats, SD + high salt diet rats

(8% high salt), SD-TG (IGF-IIRα) + high salt diet rats (8% high salt) before sacrificing. Rats

were anesthetized with isoflurane, and echocardiography was performed using 12 MHz linear

transducers and 5–8 MHz sector transducer (Vivid 3, General Electric Medical Systems Ultra-

sound, Tirat Carmel, Israel). Measurements were contrived from M-mode planes and two

dimensional images obtained in the parasternal long and short axesat the level of the papillary

muscles after observation of at least six cardiac cycles. IVSd—Interventricular septal thickness

at end-diastole, LVIDd—Left ventricular internal dimension at end-diastole, LVPWd—Left

ventricular posterior wall thickness at end-diastole, IVSs—Interventricular septal thickness at

end-systole, LVIDs—Left ventricular internal dimension at end-systole, LVPWs—Left ventric-

ular posterior wall thickness at end-systole, SV–Stroke Volume, LVd Mass—Left ventricular

end diastole mass, LVs Mass–Left ventricular end systole mass were measured.

Tissue protein extraction

The left ventricle tissue was collected and homogenized using lysis buffer (20mM Tris, 2mM

EDTA, 50mM β-mercaptoethanol, 10% glycerol, protease inhibitor, phosphatase inhibitor, pH

7.4). The homogenates were kept at -20˚C for overnight and centrifuged at 12,000 rpm for 30

minutes. After centrifugation, the supernatant was collected and stored at -80˚C for further

analysis.
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Western blotting

The western blotting for protein expression analysis was as described previously with slight

modifications [12]. The Protein concentration of the heart tissue was estimated by Lowry’s

protein assay. Protein samples 40 μg/lane were resolved by 8–15% gradient SDS-PAGE with a

constant voltage. Then the gel was transferred to a PVDF membrane (GE Healthcare Life Sci-

ences) for 90 minutes at 90V. After transferring, the membrane was placed in blocking solu-

tion (3% BSA) for one hour at RT. After washing with TBST, the membrane was incubated

with respective primary antibody overnight at 4˚C. Then, the membrane was incubated with

secondary antibody for one hour at RT. Then the blots were visualized using a chemilumines-

cence ECL western blotting reagent (Millipore) in Fujifilm LAS-3000 (GE Healthcare). The

intensities were quantified using ImageJ.

Hematoxylin and eosin staining

The heart was fixed in 4% buffered formaldehyde and 2-μm thick sections were cut from paraf-

fin-embedded tissue blocks. For histopathological staining, the slices were counterstained with

hematoxylin-eosin following manufacturer’s instructions. The average diameter of cardiomyo-

cyte was analyzed with image analysis software. All measurements were averaged from three

slices.

Statistical analysis

Statistical analysis was performed with GraphPad Prism software, version 6.01, California. All

data are expressed as Mean± SD. The data were subjected to two-way analysis of variance fol-

lowed by Tukey’s post hoc tests. The level of statistical significance and confidence level was

set as p<0.05.

Results

IGF-IIRα transgenic rat development

Fig 1A shows IGF-IIR and novel IGF-IIRα mRNA transcripts by northern blot using random

primed DNA labelling probe contained intron 9 in different organs of rat. Fig 1B shows the

structural domain of IGF-IIR and IGF-IIRα. IGF-IIRα is identified as the truncated form of

IGF-IIR having CIMR (cation-independent mannose-6-phosphate receptor repeat) region.

Full length of IGF-IIR and IGF-IIRα mRNA region is shown in the Fig 1C. Schematic diagram

of IGF-IIRα transgenic vector construction with N-terminal 3XHA, the vector was driven by

cardiac specific promoter Myh6 promoter (Fig 1D). Two transgenic founders of IGF-IIRα rats

(one male and one female) were identified and offspring (F1) TG-IGF-IIRα were developed.

The genomic DNA amplification of IGF-IIRα was shown in Fig 1E. Further, the protein

expression of IGF-IIRα was confirmed in the TG-IGF-IIRα rat heart (Fig 1F).

IGF-IIRα induced cardiac damage in normal and high-salt induced diet

We identified that the TG-HD and WT-HD rats showed an increase in their heart size com-

pared to WT rats. TG-HD showed heart enlargement compared to its counterpart TG rats (Fig

2A). The histologic cardiomyocytes area was significantly higher in TG-HD, WT-HD, TG

compared to the WT (Fig 2B and 2C). Morphological data are summarized in Table 1. There

was no significant difference in body weight and tibia among the groups. There was a signifi-

cant difference in WHW, WHW/tibia, WHW/BW between the groups. In the present study,

we observed that whole heart weight increases in WT-HD and TG-HD rats compared to WT

rats. These results suggest that IGF-IIRα regulates cardiac hypertrophy.

Over expression of IGF-IIRα enhances cardiac hypertrophy
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The echocardiography parameters of IGF-IIRα in the normal diet and high salt diet data

are presented in Table 1. There was a significant difference between WT & TG subsequently

differences are found in WT-HD & TG-HD. Echocardiography parameters like IVSd, LVIDd,

LVPWd, IVSs, LVIDs, LVPWs, SV, LVd Mass and LVs Mass were highly up-regulated in

TG-HD compared to WT. Consequently, there was a significant difference between WT and

TG—i.e IVSd, LVIDd, LVIDs, SV and LVs Mass. These observations showed that, IGF-IIRα is

a key player in cardiac damage; while supplementation with high-salt diet further aggravated

IGF-IIRα mediated heart damage.

IGF-IIRα is responsible for cardiac hypertrophy

Our previous studies demonstrate that IGF-IIR regulates cardiac hypertrophy mechanism

[10]. So, in this study, we aimed to understand whether IGF-IIRα, the alternative splicing form

Fig 1. Identification of alternative splicing form of IGF-IIR: IGF-IIRα and development of IGF-IIRα transgenic rats. (a) identification of novel IGF-IIRα
mRNA transcripts contained intron9 (nt 645–806). Detection of mRNA transcripts by northern blots using random primed DNA labeling probe contained

intron9 (nt 645–806) in various tissue samples, (b) the structural domain of IGF-IIR and IGF-IIRα, (c) full length of IGF-IIR and IGF-IIRα mRNA, (d)

schematic diagram of IGF-IIRα transgenic vector construction. IGF-IIRα with N-terminal 3XHA, which is driven by cardiac specific promoter Myh6 promoter,

(e) DNA genotyping was performed by PCR for TG-IGF-IIRα positive founders identification and (f) protein expression of TG-IGF-IIRα from the heart.

https://doi.org/10.1371/journal.pone.0216285.g001

Fig 2. Structural and morphological changes in heart tissues of TG-IGF-IIRα rats. (a) heart of TG-IGF-IIRα rats dramatically enlarged and (b,c) representative

histological images with hematoxylin and eosin staining of heart sections. Histopathological analysis reveals that high-salt induced hypertrophy and severe heart

damages in TG-IGF-IIRα rats.���: p<0.001.

https://doi.org/10.1371/journal.pone.0216285.g002
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of IGF-IIR might involve in the regulation of hypertrophy. Further, its role in high-salt fed rats

will show its functional importance during stress conditions. In our present study, we found

that WT-HD and TG-HD rats showed increased ANP & BNP hypertrophy marker expressions

compared to WT rats (Fig 3). Further, ANP and BNP expressions were significantly higher in

TG-HD compared to WT rats. These findings showed that IGF-IIRα regulates cardiac hyper-

trophy and further causes extensive activation of hypertrophy markers during high-salt

conditions.

IGF-IIRα regulates upstream MAP Kinase activation

Our previous findings reported that IGF-IIR:IGF-II signaling activates p-JNK expression in

angiotensin induced cardiomyocyte apoptosis [3]. In this study, we found that IGF-IIRα TG

rats showed up regulated p-ERK, p-JNK and p-p38 expressions compared to WT rats (Fig 4).

We found significant up-regulation of p-p38 expressions in TG-HD compared to WT rats.

The p-JNK and p-ERK expressions in TG-HD rats were significantly higher compared to WT

rats. We observed that TG rats by itself increased MAPK expressions and these expressions

were further up-regulated in high salt conditions. In general, these findings showed that

IGF-IIRα regulates hypertrophy and hyperactivation occurs during salt supplementation.

Table 1. Body weight, cardiac characteristics and echocardiographic parameters of the normal diet and high salt diet groups.

WT TG WT-HD TG-HD

BW (g) 262.25 ± 21.06 265.4 ± 26.03 268 ± 18.91 274 ± 17.82

WHW (g) 0.77 ± 0.05 0.82 ± 0.03 1.07 ± 0.06 c, f 1.12 ± 0.08 c, f

Tibia (mm) 39.5 ± 2.38 40.60 ± 2.07 40.48 ± 0.79 40.02 ± 0.19

WHW/Tibia (100g/mm) 1.95 ± 0.20 2.02 ± 0.14 2.64 ± 0.14 c, f 2.79 ± 0.19 c, f

WHW/BW × 103 2.93 ± 0.09 3.10 ± 0.26 4.00 ± 0.37 c, f 4.25 ± 0.06 c, f

IVSd (mm) 0.97 ± 0.07 1.16 ± 0.01 c 1.13 ± 0.03 c 1.21 ± 0.06 c, g

LVIDd (mm) 7.92 ± 0.13 8.58 ± 0.10 c 8.10 ± 0.32e 9.25 ± 0.22 c, f, i

LVPWd (mm) 0.92 ± 0.06 0.96 ± 0.07 1.12 ± 0.07 b, e 1.35 ± 0.10 c, f, i

IVSs (mm) 1.83 ± 0.16 2.14 ± 0.03a 2.04 ± 0.06 2.82 ± 0.31 c, f, i

LVIDs (mm) 4.51 ± 0.29 5.43 ± 0.05 c 4.60 ± 0.13e 5.63 ± 0.60 c, i

LVPWs (mm) 1.57 ± 0.06 1.91 ± 0.06b 1.99 ± 0.02 c 2.46 ± 0.29 c, f, i

SV (Teich) 1.29 ± 0.07 0.98 ± 0.03 c 0.92 ± 0.08 c 0.91 ± 0.06 c

LVd Mass (ASE) 1.02 ± 0.01 1.10 ± 0.08 1.10 ± 0.05 1.21 ± 0.03 c, e, h

LVs Mass (ASE) 1.04 ± 0.03 1.19 ± 0.02 c 1.18 ± 0.04 c 1.30 ± 0.05 c, f, i

Values are Mean ± SD.
a p<0.05
b p<0.01 and
c p<0.001 are compared to wild type normal diet
d p<0.05
e p<0.01 and
f p<0.001 are compared to TG normal diet
g p<0.05
h p<0.01 and
i p<0.001 are compared to wild type high salt diet. BW—Body weight; WHW—Whole heart weight; IVSd—Interventricular septal thickness at end-diastole; LVIDd—

Left ventricular internal dimension at end-diastole; LVPWd—Left ventricular posterior wall thickness at end-diastole; IVSs—Interventricular septal thickness at end-

systole; LVIDs—Left ventricular internal dimension at end-systole; LVPWs—Left ventricular posterior wall thickness at end-systole; SV–Stroke Volume; LVd Mass—

Left ventricular end diastole mass; LVs Mass–Left ventricular end systole mass.

https://doi.org/10.1371/journal.pone.0216285.t001
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IGF-IIRα regulates IGF-IIR signaling through SIRT1 degradation and

HSF1 expression

We next sort to examine the mechanism of IGF-IIRα regulated cardiac hypertrophy. We

found that there was a significant increase in IGF-IIR and IGF-IIRα expressions in TG-HD

rats compared to TG rats. Further, TG-HD rats showed an increase in AT1R expressions com-

pared to TG rats (Fig 5). Downstream to this, we found there was an increased SIRT1 degrada-

tion with concomitant HSF1 down regulation during high salt supplementation. HSF1 protein

expression was significantly down-regulated in TG-HD compared to WT rats, TG rats and

WT-HD rats. Significant up-regulation of Gαq expressions was observed in TG-HD rats as

compared to TG and WT rats. These results showed that IGF-IIRα regulates hypertrophy via

activation of SIRT1 degradation and HSF1 acetylation.

Fig 3. IGF-IIRα regulates cardiac hypertrophy. (a) protein levels of hypertrophy markers BNP and ANP, (b) quantified expression levels of BNP marker expression in

WT, TG, WT-HD & TG-HD and (c) cardiac hypertrophy marker ANP expression in WT, TG, WT-HD & TG-HD. Representative western blots are shown �: p<0.05.

https://doi.org/10.1371/journal.pone.0216285.g003
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IGF-IIRα regulates pathological hypertrophy through Calcineurin/

NFATc3 pathway

Gαq mediated calcineurin/NFATc3 intracellular signaling leads to ANP and BNP expressions.

In the present findings, the results showed up-regulated expressions of calcineurin and

NFATc3 in TG and high salt diet rats (Fig 6). There was a significant up-regulation of calci-

neurin expression in TG-HD rats compared to TG rats and WT rats. Calcineurin-induced

transcription factor NFATc3 expression was found to be statistically significant in TG-HD rats

compared to WT rats. Further, p-GATA4 expressions were up-regulated in TG-HD rats as

compared with TG and WT rats. Additionally, p-PKC expression was up-regulated in TG-HD

rats compared to TG and WT rats. From the above results, it is evident that activation of calci-

neurin/NFATc3 signaling by IGF-IIRα regulates pathological hypertrophy.

Discussion

We demonstrated for the first time that, IGF-IIRα plays a key regulatory role in the cardiac

structure and high-salt induced hypertrophy. In this study, we identified IGF-IIRα overexpres-

sion aggravated stress-induced cardiac dysfunction by enhancing up-stream AT1R/HSF1

pathway and Gαq-mediated calcineurin/NFATc3 signaling leading to pathological

hypertrophy.

Remarkable findings from our lab shows that IGF-IIR signaling regulates cardiac hypertro-

phy leading to heart failure [10]. Here, we report on the association of novel IGF-IIRα in the

regulation of hypertrophy. In this study, we demonstrate the association of IGF-IIRα and

high-salt induced hypertension in regulating cardiac hypertrophy. Adaptive response to high-

salt induced hypertension initiates physiological changes to the heart which then transmits to

maladaptive cardiac dysfunction leading to pathological hypertrophy [13,14]. The present

observations on the high-salt induced histological changes and increased cardiac LV mass

were consistent with the previous reports [15–17]. Data from the morphological and patholog-

ical findings revealed that, IGF-IIRα overexpression is involved in cardiac remodeling and car-

diac function decline. IGF-IIRα overexpressed rats showed visible changes in heart weight,

heart weight-body weight ratio, a cross-sectional area of the heart. As LVIDd and LVIDs are

recognized index for cardiac hypertrophy progress, significantly higher IVSs, IVSd, LVPWd,

LVIDd and LV mass values indicated left ventricular abnormality in IGF-IIRα rats. In our

present study, we assessed the difference in LVd mass and LVs mass in TG, WT-HD and

TG-HD compared to the control rats. The present findings results are similar to the Zheng

et al. [18] and Crawford et al. [19] reported that differences found between LV mass at end

diastole and systole in healthy patients and coronary artery disease/hypertensive patients.

There is no significant difference between WT and TG in WHW/BW and a few echocardio-

graphic parameters. Basically, IGF-IIRα gene is in silent form, under stress condition it acti-

vates and leads to cardiac remodeling. But in some important parameters we observed a

significant difference between WT and TG in IVSd, LVIDd, LVIDs, SV and LVs mass. Chang

et al. [11] reported that ejection fraction and fractional shortening was down regulated in TG,

WT-HD and TG-HD compared to the WT rats. In addition, IGF-IIRα regulates cardiac apo-

ptosis through cytochrome C/caspase 3 activation with decreased expression of survival pro-

teins and cardiac fibrosis through uPA/tPA/TGF-β signaling and aggravates in high-salt

Fig 4. Overexpression of IGF-IIRα up-regulates MAP kinase pathway in high salt diet groups. (a) protein expression of hypertrophy related

MAPK protein levels in WT, TG, WT-HD & TG-HD and (b-d) bars represent the relative protein quantification and indicates Mean ± SD.

Representative western blots are shown �: p<0.05, ��: p<0.01.

https://doi.org/10.1371/journal.pone.0216285.g004
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condition. We and others have reported that reactivation of hypertrophy markers ANP and

BNP leads to cardiac hypertrophy through Gαq mediated IGF-IIR signaling [10,20–23]. Acti-

vated to restore the heart function, these natriuretic peptides regulate vasodilatation and

peripheral vascular resistance [24]. However, paralleled enhancement of various signaling

pathways leads to vascular dysfunction and matrix remodeling with end result causing heart

failure. The observed mild increase in hypertrophy markers in IGF-IIRα overexpression rats

reveal that IGF-IIRα might independently regulate hypertrophy mechanisms. These results

give us previously unanswered questions about incomplete recovery from doxorubicin medi-

ated cardiac dysfunction during IGF-IIR silencing [9]. Importantly, IGF-IIRα overexpression

under high-salt conditions highly amplified cardiac dysfunction indicating its major participa-

tion in stress-induced cardiac hypertrophy. In addition to previously demonstrated significant

role of IGF-IIR [3,9], the present finding adds on the functional contribution of IGF-IIRα in

hypertrophy mechanisms.

IGF-IIR: IGF-II signalling regulates pathological hypertrophy. Earlier we have demon-

strated that AT1R mediated JNK1/2 activation leading to HSF1 acetylation through SIRT1

degradation up-regulates IGF-IIR expression [3]. MAPK, a serine threonine kinase regulates

stress-induced activation of intra-cellular signaling [25,26]. Here, we observed a significant

up-regulation in the phosphorylated status of ERK1/2, JNK as well as p38 in cardiac tissues in

TG, WT-HD and TG-HD rats. However, TG-HD rats showed the significant increase in

MAPK expressions compared to WT and TG rats. Activation of MAPK is central to cardio-

myocyte hypertrophy which is regulated via ANG-II mediated AT1R activation [27]. AT1R is

also known to mediate ANG-II-induced physiological changes including vasoconstriction,

retention of salt and water and cardiac contractility [28]. Under high-salt conditions, we found

significant activation of IGF-IIR signaling through increased HSF1 acetylation via SIRT1 deg-

radation. Interestingly, we found that IGF-IIR expressions in TG rats were accompanied by a

slight increase in AT1R, Gαq and decrease in HSF1expression, without noticeable changes in

SIRT1 expressions. Consistent with this observation, overexpression Gαq-TG study suggests

that Gαq is sufficient to mediate cardiac hypertrophy through AT1R activation [23]. Further,

TG-HD rats showing amplified activation of IGF-IIR expression through MAPK/HSF1/SIRT1

pathway. Thus, we propose that IGF-IIRα might also activate other signaling mechanisms to

regulate IGF-IIR expressions causing cardiac hypertrophy. In addition, activated IGF-IIR pro-

tein translocates to the membrane and binds to IGF-II (IGF-IIR:IGF-II) leading to Gαq medi-

ated calcium signaling [29]. Since IGF-IIRα lacks transmembrane domain the activated

protein might reside in the cytoplasm and thereby amplify hypertrophy mechanisms through

regulation of IGF-IIR expressions. However, knowing its functional importance in regulating

IGF-IIR expressions, future studies will evaluate its detailed mechanism of action. In converse,

mechanical stress induced cardiac hypertrophy was regulated via up regulated AT1R expres-

sions in the absence of ANG-II [30].

IGF-IIR mediate pathological hypertrophy through Gαq coupled activation of calcium/

NFAT signaling. Increased calcium influx activates protein kinase C and calcineurin through

phospholipase activation. Calcineurin activation hasa regulatory role during cardiac hypertro-

phy through NFATc3/GATA4 pathway [31–34]. NFATc3 belongs to a family of Rel homology

domain-containing transcription factors [35]. NFATc3 signalling is key to transmitting hyper-

trophy stimuli [36–38]. In this study, calcineurin mediated dephosphorylated NFATc3 along

Fig 5. IGF-IIRα regulates IGF-IIR signaling through SIRT1 degradation and HSF1 acetylation. (a) expression levels of IGF-IIR,

IGF-IIRα, AT1R, SIRT1, HSF1 and Gαq. Protein expression of cardiac tissue (b) IGF-IIR,(c) IGF-IIRα,(d) AT1R,(e) SIRT1, (f) HSF1 and

(g) Gαq. Representative western blots are shown �: p<0.05, ��: p<0.01, ���: p<0.001.

https://doi.org/10.1371/journal.pone.0216285.g005
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with p-GATA4 inside the nucleus transcriptionally up-regulates ANP and BNP expressions.

Increase in an active form of NFATc3 and GATA4 was found in WT-HD and TG-HD. The

hypertrophic stimulus was found to be dramatically increased under high-salt conditions in

TG rats. Previously, NFATc3 and GATA4 transgenic overexpression studies reveal its signifi-

cant association in the development of myocardial hypertrophy [39,40]. Previous findings

show that GATA4 is responsible for regulating hypertrophy and cardiac survival [41]. Calci-

neurin regulated NFAT/GATA4 activation causes left ventricular hypertrophy in humans

[42].

Conclusion

From these findings, it is evident that IGF-IIRα plays a crucial role in enhancing cardiac

hypertrophy under high-salt conditions. Future studies on IGF-IIRα localization and specific

knockdown of IGF-IIR under IGF-IIRα overexpression will delineate its exact role in cardiac

hypertrophy.
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