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Abstract

Real-world agents, humans as well as animals, observe each other during interactions and

choose their own actions taking the partners’ ongoing behaviour into account. Yet, classical

game theory assumes that players act either strictly sequentially or strictly simultaneously

without knowing each other’s current choices. To account for action visibility and provide

a more realistic model of interactions under time constraints, we introduce a new game-

theoretic setting called transparent games, where each player has a certain probability of

observing the partner’s choice before deciding on its own action. By means of evolutionary

simulations, we demonstrate that even a small probability of seeing the partner’s choice

before one’s own decision substantially changes the evolutionary successful strategies.

Action visibility enhances cooperation in an iterated coordination game, but reduces cooper-

ation in a more competitive iterated Prisoner’s Dilemma. In both games, “Win–stay, lose–

shift” and “Tit-for-tat” strategies are predominant for moderate transparency, while a

“Leader-Follower” strategy emerges for high transparency. Our results have implications

for studies of human and animal social behaviour, especially for the analysis of dyadic and

group interactions.

Author summary

Humans and animals constantly make social decisions. Should an animal during group

foraging or a human at the buffet try to obtain an attractive food item but risk a confronta-

tion with a dominant conspecific, or is it better to opt for a less attractive but non-con-

frontational choice, especially when considering that the situation will repeat in the

future? To model decision-making in such situations game theory is widely used. How-

ever, classic game theory assumes that agents act either at the same time, without knowing

each other’s choices, or one after another. In contrast, humans and animals usually try to

take the behaviour of their opponents and partners into account, to instantaneously adjust
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their own actions if possible. To provide a more realistic model of decision making in a

social setting, we here introduce the concept of transparent games. It integrates the proba-

bility of observing the partner’s instantaneous actions into the game-theoretic framework

of knowing previous choice outcomes. We find that such “transparency” has a direct

influence on the emergence of cooperative behaviours in classic iterated games. The trans-

parent games can contribute to a deeper understanding of social behaviour and decision-

making of humans and animals.

Introduction

One of the most interesting questions in evolutionary biology, social sciences, and economics

is the emergence and maintenance of cooperation [1–5]. A popular framework for studying

cooperation (or the lack thereof) is game theory, which is frequently used to model interac-

tions between “rational” decision-makers [6–9]. A model for repeated interactions is provided

by iterated games with two commonly used settings [2]. In simultaneous games all players act

at the same time and each player has to make a decision under uncertainty regarding the cur-

rent choice of the partner(s). In sequential games players act one after another in a random

or predefined order [10] and the player acting later in the sequence is guaranteed to see the

choices of the preceding player(s). Maximal uncertainty only applies to the first player and—if

there are more than two players—is reduced with every turn in the sequence.

Both classical settings simplify and restrict the decision context: either no player has any

information about the choices of the partners (simultaneous game), or each time some players

have more information than others (sequential game). This simplification prevents modelling

of certain common behaviours, since humans and animals usually act neither strictly simulta-

neously nor sequentially, but observe the choices of each other and adjust their actions accord-

ingly [1]. Indeed, the visibility of the partner’s actions plays a crucial role in social interactions,

both in laboratory experiments [3, 11–16] and in natural environments [4, 17–20].

For example, in soccer the penalty kicker must decide where to place the ball and the goal-

keeper must decide whether to jump to one of the sides or to stay in the centre. Both players

resort to statistics about the other’s choices in the past, making this more than a simple one-

shot game. Since the goalkeeper must make the choice while the opponent is preparing the

shot, a simultaneous game provides a first rough model for such interactions [21, 22]. How-

ever, the simultaneous model ignores the fact that both players observe each other’s behav-

iour and try to predict the direction of the kick or of the goalkeeper’s jump from subtle

preparatory cues [15], which often works better than at chance level [21–23]. Using instanta-

neous cues should not only affect one-shot decisions but also iterative statistics: Learning by

observing a keeper over iterations that he has the tendency of jumping prematurely encour-

ages strategies of delayed shots by the kicker, and vice versa. While the soccer example repre-

sents a zero-sum game, similar considerations apply to a wide range of real life interactions,

see for instance Fig 1. Yet a framework for the treatment of such cases is missing in classical

game theory.

To better predict and explain the outcomes of interactions between agents by taking the vis-

ibility factor into account, we introduce the concept of transparent games, where players can

observe actions of each other. In contrast to the classic simultaneous and sequential games, a

transparent game is a game-theoretic setting where the access to the information about current

choices of other players is probabilistic. For example, for a two-player game in each round

three cases are possible:
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1. Player 1 knows the choice of Player 2 before making its own choice.

2. Player 2 knows the choice of Player 1 before making its own choice.

3. Neither player knows the choice of the partner.

Only one of the cases 1-3 takes place in each round, but for a large number of rounds one

can infer the probability pi
see of Player i to see the choice of the partner before making own

choice. These probabilities depend on the reaction times of the players. If they act nearly at

the same time, neither is able to use the information about partner’s action; but a player who

waits before making the choice has a higher probability of seeing the choice of the partner. Yet,

explicit or implicit time constraint prevents players from waiting indefinitely for the partner’s

choice. In the general case transparent games impose an additional uncertainty on the players

acting first: they cannot know in advance whether the other players will see their decision or

not in a given round.

The framework of transparent games is generic and includes classic game-theoretical

settings as special cases: simultaneous games correspond to p1
see ¼ p2

see ¼ 0, while sequential

games result in p1
see ¼ 0, p2

see ¼ 1 for a fixed order of decisions in each round (Player 1 always

Fig 1. Naturalistic example of a transparent two-player game: Group foraging in monkeys. Two monkeys are reaching for food

in two locations that are at some distance so that each monkey can take only one portion. At one location are grapes (preferred

food), at the other—a carrot (non-preferred food). (A) Initially both monkeys move toward grapes. (B) Monkey 1 observes Monkey

2 actions and decides to go for the carrot to avoid a potential fight. (C) Next time Monkey 1 moves faster towards the grapes, so

Monkey 2 swerves towards the carrot. Coordinated behaviour in such situations has the benefit of higher efficiency and avoids

conflicts. This example shows that transparent game is a versatile framework that can be used for describing decision making in

social contexts.

https://doi.org/10.1371/journal.pcbi.1007588.g001
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moves first, Player 2—second) and in p1
see ¼ p2

see ¼ 0:5 for a random sequence of decisions.

Here we ask if probabilistic access to the information on the partner’s choice in transparent

games leads to the emergence of different behavioural strategies compared to the fully unidi-

rectional access in sequential games or to the case of no access in simultaneous games.

To answer this question, we consider the effects of transparency on emergence of coopera-

tion in two-player two-choice games. To draw a comparison with the results for classic simul-

taneous and sequential settings, we focus here on the typically studied memory-one strategies

[9, 24] that take into account own and partner’s choices at the previous round of the game.

Since cooperation has multiple facets [1, 4, 8], we investigate two types of games which are tra-

ditionally used for studying two different forms of cooperation [6, 8, 25, 26]: the iterated Pris-

oner’s dilemma (iPD) [6] and the iterated (Anti-)Coordination Game (i(A)CG). We chose the

generic term (Anti-) Coordination Game because depending on the exact formulation of the

payoff matrix, (A)CGs can encompass a wide range of games such as the Battle of the Sexes or

Bach-or-Stravinsky game we focus on here [27, 28], but also the Hawk-Dove or Chicken game,

and the Leader game [29]. The two games encourage two distinct types of cooperative behav-

iour [30, 31], since the competitive setting in iPD requires “trust” between partners for cooper-

ation to emerge, i.e. a social concept with an inherent longer-term perspective. In the less

competitive i(A)CG, instead, cooperation of players in form of simple coordination of their

actions can be beneficial even in one-shot situations. Our hypothesis is that transparency

should have differential effects on long-term optimal strategies in these two types of games.

We show with the help of evolutionary simulations that this is indeed the case: transparency

enhances cooperation in the generally cooperative i(A)CG, but reduces cooperation in the

more competitive iPD.

Results

We investigated the success of different behavioural strategies in the iPD and i(A)CG games

by using evolutionary simulations. These simulations allow evaluating long-term optimal

strategies using principles of natural selection, where fitness of an individual is defined as the

achieved payoff compared to the population average (see “Methods”). The payoff matrices,

specifying each player’s payoff conditional upon own and other’s choice, are shown in Fig 2

for both games.

Our evolutionary simulations show that the probability of seeing the partner’s choice had

a considerable effect on the likelihood of acting cooperatively. In both games this likelihood

differs considerably for the probabilities below and above 0.35 (Fig 3, S2 Note). Further, the

transparency levels at which the likelihood of cooperation was high, turned out to be largely

complementary in both games.

In the following, we analyse in more detail what is behind the effect of transparency on the

cooperation frequency that is revealed in our simulations. First, we provide analytical results

for non-iterated (one-shot) transparent versions of Prisoner’s Dilemma (PD) and (Anti-)

Coordination Game ((A)CG). Second, after briefly explaining the basic principles adopted in

our evolutionary simulations, we describe the strategies that emerge in these simulations for

the iPD and i(A)CG games.

Transparent games without memory: Analytical results

In game theory, the Nash Equilibrium (NE) describes optimal behaviour for the players [7].

In dyadic games, NE is a pair of strategies, such that neither player can get a higher payoff

by unilaterally changing its strategy. Both in PD and in (A)CG, players choose between two

actions, A1 or A2 (see Fig 2): They cooperate or defect in PD and insist or accommodate in
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(A)CG according to their strategies. In a one-shot transparent game, a strategy is represented

by a vector (s1; s2; s3), where s1 is the probability of selecting A1 without seeing the partner’s

choice, s2 the probability of selecting A1 while seeing the partner also selecting A1, and s3 the

probability of selecting A1 while seeing partner selecting A2, respectively. The probabilities

of selecting A2 are equal to 1 − s1, 1 − s2 and 1 − s3, correspondingly. For example, strategy

(1; 1; 0) in the transparent PD means that the player cooperates unless seeing that the partner

defects.

For the one-shot transparent PD we show (Proposition 2 in “Methods”) that all NE are

comprised by defecting strategies (0; x; 0) with 0 � x � 1� psee
psee

P� S
R� S, where P, S and R are the ele-

ments of the payoff matrix (Fig 2A) and psee is the probability to see the choice of the partner.

At a population level, this means that cooperation does not survive in the transparent one-shot

PD, similar to the classic PD.

For the one-shot transparent (A)CG we show that the NE depend on psee (Proposition 4).

For psee <
T� R

TþS� 2R there are three NE: (a) Player 1 uses (0; 0; 1), Player 2 uses (1; 0; 1); (b) vice

versa; (c) both players use strategy (x; 0; 1) with x ¼ ðS� PÞ� pseeðTþS� 2PÞ
ð1� 2pseeÞðTþS� P� RÞ. Note that for the limiting

case of psee = 0 one gets the three NE known from the classic one-shot simultaneous (A)CG

[29]. However, for psee �
T� R

TþS� 2R the only NE is provided by (1; 0; 1). In particular, for (A)CG

defined by the payoff matrix in Fig 2B, there are three NE for psee < 1/3 and one NE otherwise.

This means that population dynamics is considerably different for the cases psee < 1/3 and psee

> 1/3, and as we show below this is also true for the iterated (A)CG. We also show that trans-

parent versions of two other classical games (“Hawk-Dove” and “Leader”) have a similar NE

structure (Proposition 8).

In summary, introducing action transparency influences optimal behaviour already in sim-

ple one-shot games.

Fig 2. Payoff matrices for Prisoner’s Dilemma and (Anti-)Coordination Game. (A) In Prisoner’s Dilemma, players adopt

roles of prisoners suspected of committing a crime and kept in isolated rooms. Due to lack of evidence, prosecutors offer each

prisoner an option to minimize the punishment by making a confession. A prisoner can select one of the two actions (A1 or

A2): either betray the other by defecting (D), or cooperate (C) with the partner by remaining silent. The maximal charge is

five years in prison, and the payoff matrix represents the number of years deducted from it (for instance, if both players

cooperate (CC, upper left), each gets a two-year sentence, because three years of prison time have been deducted). The letters

R,T,S and P denote payoff values and stand for Reward, Temptation, Saint and Punishment, respectively. (B) In the (Anti-)

Coordination Game variant known as Bach-or-Stravinsky and as Hero [27–29]) two people are choosing between Bach and

Stravinsky music concerts. Player 1 prefers Bach, Player 2—Stravinsky, hence, there is an inherent conflict about which

concert to choose; yet, above all both prefer going to the concert together. Thus the aim of the players is to coordinate (either

on Bach or on Stravinsky), which assures maximal joint reward for the players. Players can either insist (I) on their own

preference or accommodate (A) the preference of the partner. In these terms, the outcome coordination (attending the same

concert) is achieved by selecting complementary actions: either (I, A) or (A, I), which justifies the name: “anti-”coordination.

For example, when both agents coordinate on Bach, Player 1 insists, while Player 2 accommodates (I, A). In the “Methods”,

we consider also a more general class of (anti-)coordination games, encompassing Hawk-Dove (or Chicken) and Leader.

https://doi.org/10.1371/journal.pcbi.1007588.g002
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Transparent games with memory: Evolutionary simulations

Iterated versions of PD and (A)CG games (iPD and i(A)CG) differ from one-shot games in

that the current choice. We focus on strategies taking into account own and partner’s choices

in one previous round of the game (“memory-one” strategies) for reasons of tractability. A

strategy without memory in transparent games is described by a three-element vector. A mem-

ory-one strategy additionally conditions the current choice upon the outcome of the previous

round of the game. Since there are four (2 × 2) possible outcomes, a memory-one strategy is

Fig 3. Frequency of establishing effective cooperation and the forfeit reward in the iterated Prisoner’s Dilemma

(iPD) and in the iterated (Anti-)Coordination Game (i(A)CG). We performed 80 runs of evolutionary simulations

tracing 109 generations of iPD and i(A)CG players. Agents with successful strategies reproduced themselves (had

higher fraction in the next generation), while agents with unsuccessful strategies died out, see “Methods” for details.

We considered a run as “cooperative” if the average payoff across the population was more than 0.9 times the pay-off

of 3 units for cooperative behaviour in iPD [24], and more than 0.95 times the pay-off of 3.5 units for cooperative

behaviour in the i(A)CG (i.e., 90% and 95% of the maximally achievable pay-off on average over both players). For i(A)

CG we set a higher threshold due to the less competitive nature of this game. (A) In iPD cooperation was quickly

established for low probability to see the partner’s choice psee, but it took longer to develop for moderate psee and it

drastically decreased for high psee. (B) In contrast, for i(A)CG frequent cooperation emerges only for high visibility.

The small drop in cooperation at psee = 0.4 is caused by a transition between two coordination strategies (see main

text). (C) The forfeit payoff (maximal possible average payoff of the population minus actual average payoff obtained

by the population) further illustrates the same tendencies: higher transparency reduces effectiveness of cooperation in

iPD but increases in i(A)CG.

https://doi.org/10.1371/journal.pcbi.1007588.g003
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represented by a vector s ¼ ðskÞ
12

k¼1
, where k enumerates the twelve (4 × 3) different combina-

tions of previous outcome and the current probability of choice. The entries sk of the strategy

thus represent the conditional probabilities to select action A1, specifically

s1, . . ., s4 are probabilities to select A1 without seeing the partner’s choice, given that in the pre-

vious round the joint choice of the player and the partner was A1A1, A1A2, A2A1, and A2A2

respectively (the first action specifies the choice of the player, and the second—the choice of

the partner);

s5, . . ., s8 are probabilities to select A1, seeing the partner selecting A1 and given the outcome of

the previous round (as before).

s9, . . ., s12 are probabilities to select A1, seeing the partner selecting A2 and given the outcome

of the previous round.

Probabilities to select A2 are given by (1 − sk), respectively.

We used evolutionary simulations to investigate which strategies evolve in the transparent

iPD and i(A)CG (see “Methods” and [9, 24] for more detail), since an analytical approach

would require solving systems of 12 differential equations. We studied an infinite population

of players to avoid stochastic effects associated with finite populations [32]. For any generation

t the population consisted of n(t) types of players, each defined by a strategy si and relative fre-

quency xi(t) in the population with
XnðtÞ

i¼1

xiðtÞ ¼ 1. To account for possible errors in choices and

to ensure numerical stability of the simulations (see “Methods”), we assumed that no pure

strategy is possible, that is ε � si
k � 1 � ε, with ε = 0.001 [9, 24]. Frequency xi(t) in the popula-

tion increased with t for strategies getting higher-than-average payoff when playing against the

current population and decreased otherwise. This ensured “survival of the fittest” strategies. In

both games, we assumed players to have equal mean reaction times (see “Methods” for the jus-

tification of this assumption). Then the probability psee to see the choice of the partner was

equal for all players, which in a dyadic game resulted in psee� 0.5. We performed evolutionary

simulations for various transparencies with psee = 0.0, 0.1, . . ., 0.5.

In the two following sections we discuss the simulation results for both games in detail and

describe the strategies that are successful for different transparency levels. Since the strategies

in the evolutionary simulations were generated randomly (mimicking random mutations),

convergence of the population onto the theoretical optimum may take many generations and

observed successful strategies may deviate from the optimum. Therefore, when reporting the

results below we employ a coarse-grained description of strategies using the following nota-

tion: symbol 0 for sk� 0.1, symbol 1 for sk� 0.9, symbol � is used as a wildcard character to

denote an arbitrary probability.

To exemplify this notation, let us describe the strategies that are known from the canonical

simultaneous iPD [9], affecting exclusively s1, . . ., s4, for the transparent version of this game,

i.e. including s5, . . ., s12.

1. The Generous tit-for-tat (GTFT) strategy is encoded by (1a1c;1���;����), where 0.1< a,

c< 0.9. Indeed, GTFT is characterized by two properties [9]: it cooperates with cooperators

and forgives defectors. To satisfy the first property, the probability to cooperate after the

partner cooperated in the previous round should be high, thus the corresponding entries

of the strategy s1, s3, s5 are encoded by 1. To satisfy the second property, the probability to

cooperate after the partner defected should be between 0 and 1. We allow a broad range

of values for s2 and s4, namely 0.1� s2, s4� 0.9. We accept arbitrary values for s6, . . ., s12

since for low values of psee these entries have little influence on the strategy performance,
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meaning that their evolution towards optimal values may take especially long. For instance,

the strategy entry s7 is used only when the player has defected in previous round and is

seeing that the partner is cooperating in the current round. But GTFT player defects very

rarely, hence the s7 is almost never used and its value has little or no effect on the overall

behaviour of a GTFT player.

2. Similarly, Firm-but-fair (FbF) by (101c;1���;����), where 0.1 < c< 0.9.

3. Tit-for-tat (TFT) is a “non-forgiving” version of GTFT, encoded by (1010;1���;����).

4. Win–stay, lose–shift (WSLS) is encoded by (100c;1���;����) with c� 2/3. Indeed, in the

canonical simultaneous iPD WSLS repeats its own previous action if it resulted in relatively

high rewards of R = 3 (cooperates after successful cooperation, thus s1� 0.9) or T = 5

(defects after successful defection, s3� 0.1), and switches to another action otherwise (s2�

0.1, s4 = c� 2/3). Note that the condition for s4 is relaxed compared to s2 since payoff P = 1

corresponding to mutual defection is not so bad compared to S = 0 and may not require

immediate switching. Additionally, we set s5� 0.9 to ensure that WSLS players cooperate

with each other in the transparent iPD as they do in the simultaneous iPD.

We also consider a relaxed (cooperative) version of WSLS, which we term “generous

WSLS” (GWSLS). It follows WSLS principle only in a general sense and is encoded by

(1abc;1���;����) with c� 2/3, a, b< 2/3 and either a> 0.1 or b> 0.1.

5. The Always Defect strategy (AllD) is encoded by (0000;��00;��00), meaning that the proba-

bility to cooperate when not seeing partner’s choice or after defecting is below 0.1, and

other behaviour is not specified.

Note that here we selected the coarse-grained descriptions of the strategies, covering only

those strategy variants that actually persisted in the population for our simulations.

Transparency suppresses cooperation in Prisoner’s Dilemma

Results of our simulations for the transparent iPD are presented in Table 1. Most of the effec-

tive strategies are known from earlier studies on non-transparent games [9]. They rely on the

outcome of the previous round, not on the immediate information about the other player’s

choice. However, for high transparency (psee! 0.5) a previously unknown strategy emerged,

which exploits the knowledge about the other player’s immediate behaviour. We dub this strat-

egy “Leader-Follower” (L-F) since when two L-F players meet for psee = 0.5, the player acting

first (the Leader) defects, while the second player (the Follower) sees this and makes a “self-

sacrificing” decision to cooperate. Note that when mean reaction times of the players coincide,

they have equal probabilities to become a Leader ensuring balanced benefits of exploiting sac-

rificial second move. We characterized as L-F all strategies with profile (�00c;����;�11d) with

c< 1/3 and d< 2/3. Indeed, for psee = 0.5 these entries are most important to describe the L-F

strategy: after unilateral defection the Leader always defects (s2, s3� 0.1) and the Follower

always cooperates (s10, s11� 0.9). Meanwhile, mutual defection most likely takes place when

playing against a defector, thus both Leaders and Followers have low probability to cooperate

after mutual defection (s4 = c< 1/3, s12 = d< 2/3). Behaviour after mutual cooperation is

only relevant when a player with L-F is playing against a player with a different strategy, and

success of each L-F modification depends on the composition of the population. For instance,

(100c;111�;100d) is optimal in a cooperative population.

In summary, as in the simultaneous iPD, WSLS was predominant in the transparent iPD

for low and moderate psee. This is reflected by the distinctive WSLS profiles in the final strate-

gies of the population (Fig 4). Note that GTFT, another successful strategy in the simultaneous
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iPD, disappeared for psee > 0. For psee� 0.4, the game resembled the sequential iPD and the

results changed accordingly. Similar to the sequential iPD [10, 33, 34], the frequency of WSLS

waned, the FbF strategy emerged, cooperation became less frequent and took longer to estab-

lish itself (Fig 3A). For psee = 0.5 the population was taken over either by L-F, by WSLS-based

strategies or (rarely) by FbF or TFT, which is reflected by the mixed profile in Fig 4. Note that

the share of distinctly described strategies decreased with increasing psee, which indicates that

for high transparency most strategies appear in the population only transiently and rapidly

replace each other, see S1 Fig. Under these circumstances, the relative frequency of L-F

(17.8% of the population across all generations) is quite high. The fact that neither L-F nor the

Table 1. Relative frequencies of strategies that survived for more than 1000 generations in the iterated Prisoner’s Dilemma. The frequencies were computed over 109

generations in 80 runs. The frequency of the most successful strategy for each psee value is shown in bold.

Strategy psee

name description 0.0 0.1 0.2 0.3 0.4 0.5

WSLS (100c;1���;����) 62.9 79.8 80.3 56.3 12.6 3.8

GWSLS (1abc;1���;����) 0.0 1.0 6.6 22.4 16.3 6.0

GTFT (1a1c;1���;����) 36.5 0.1 0.1 0.3 0.7 0.5

TFT (1010;1���;����) 0.0 0.0 0.0 1.9 1.6 1.5

FbF (101c;1���;����) 0.0 0.0 0.1 1.0 6.0 1.8

AllD (0000;��00;��00) 0.1 0.0 0.0 0.0 2.4 1.9

L-F (�00c;����;�11d) 0.0 0.2 0.0 0.0 0.6 17.8

Rare transient strategies 0.5 18.9 12.9 18.1 59.8 66.7

https://doi.org/10.1371/journal.pcbi.1007588.t001

Fig 4. iPD strategies in the final population. Strategies are taken for the 109-th generation and averaged over 80 runs. This figure characterizes the

final population as a whole and complements Table 1 representing specific strategies. (A) Strategy entries s1, . . ., s4 are close to (1001) for psee =

0.1, . . ., 0.3 demonstrating the dominance of WSLS. Deviations from this pattern for psee = 0.0 and psee = 0.4 indicate the presence of the GTFT (1a1b)

and FbF (101b) strategies, respectively. For psee� 0.4 strategy entries s1, . . ., s4 are quite low due to the extinction of cooperative strategies. (B) Entries

s5, . . ., s8 are irrelevant for psee = 0.0 (resulting in random values around 0.5) and indicate the same WSLS-like pattern for psee = 0.1, . . ., 0.3. Note that

s6, s7 > 0 indicate that in transparent settings WSLS-players tend to cooperate seeing that the partner is cooperating even when this is against the

WSLS principle. The decrease of reciprocal cooperation for psee� 0.4 indicates the decline of WSLS and cooperative strategies in general. (C) Entries

s9, . . ., s12 are irrelevant for psee = 0.0 (resulting in random values around 0.5) and are quite low for psee = 0.1, . . ., 0.3 (s12 is irrelevant in a cooperative

population). Increase of s9, . . ., s11 for psee� 0.4 indicates that mutual cooperation in the population is replaced by unilateral defection.

https://doi.org/10.1371/journal.pcbi.1007588.g004
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transient strategies are generally cooperative explains the drop of cooperation in iPD for high

psee (Fig 3).

To better explain the success of different strategies at different transparency levels, we ana-

lytically compared the strategies that emerged most frequently in simulations. Pairwise com-

parison of these strategies (Fig 5) helps to explain the superiority of WSLS for psee < 0.5, the

disappearance of GTFT for psee > 0.0, and the abrupt increase of L-F frequency for psee = 0.5.

Although cooperation in the transparent iPD is rare for psee� 0.4, L-F is in a sense also a

cooperative strategy for iPD: In a game between two L-F players with equal mean reaction

times, both players alternate between unilateral defection and unilateral cooperation in a coor-

dinated way, resulting in equal average payoffs of (S + T)/2. Such alternation is generally sub-

optimal in iPD since R> (S + T)/2; for instance, in our simulations R = 3> (S + T)/2 = 2.5. To

check the influence of the payoff on the strategies predominance, we have varied values of R
by keeping T, S and P the same as in Fig 2 as it was done in [24] for simultaneous iPD. Fig 6

shows that for R> 3.2, evolution in the transparent iPD strongly favours cooperation for all

transparency levels, but R� 3.2 is sufficiently close to (S + T)/2 to make L-F a safe and efficient

Fig 5. Analytical pairwise comparison of iPD strategies. For each pair of strategies the maps show if the first of the two strategies increases in

frequency (up-arrow), or decreases (down-arrow) depending on visibility of the other player’s action and the already existing fraction of the

respective strategy. The red lines mark the invasion thresholds, i.e. the minimal fraction of the first strategy necessary for taking over the

population against the competitor second strategy. A solid-line invasion threshold shows the stable equilibrium fraction which allows

coexistence of both strategies (see “Methods”). Dashed-line invasion thresholds indicate dividing lines above which only the first, below only the

second strategy will survive. (A) WSLS 100 9

10
; 1001; 0000

� �
has an advantage over GTFT 1 1

3
1 1

3
; 1 1

3
1 1

3
; 0000

� �
: the former takes over the whole

population even if its initial fraction is as low as 0.25. (B) GTFT coexists with (prudent) version of cooperative strategy AllC (1111; 1111; 0000),

which is more successful for psee� 0.1. (C,D) L-F 1

3
000; 2

3
000; 111 1

3

� �
performs almost as good as GTFT and WSLS, (E) but can resist the AllD

strategy (0000; 0000; 0000) only for high transparency. (F) Note that WSLS may lapse into its treacherous version, 100 9

10
; 0000; 0000

� �
. This

strategy dominates WSLS for psee > 0 but is generally weak and cannot invade when other strategies are present in the population. Notably,

when treacherous WSLS takes a part of the population, it is quickly replaced by L-F, which partially explains L-F success for high psee.

https://doi.org/10.1371/journal.pcbi.1007588.g005
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strategy. Indeed, as one can see from Fig 3C for R = 3, other strategies for high transparency

perform much worse than L-F resulting in average population payoff around 2.

Note that higher transparency reduces cooperation for all values of R, although the effect is

most prominent for R� 3.2. Indeed, while the share of non-cooperative strategies in the popu-

lation is negligible for R� 3.6 with psee = 0 [24] and is below 5% with psee = 0.3, it is above 5%

for psee = 0.5 for all R� 3.6 (compare the top and bottom plots in Fig 6).

Cooperation emergence in the transparent (Anti-)Coordination Game

Our simulations revealed that four memory-one strategies are most effective in i(A)CG for

various levels of transparency. In contrast to iPD there exist only few studies of strategies in

non-transparent i(A)CG [31, 35], therefore we describe the observed strategies in detail.

1. Turn-taker aims to enter a fair coordination regime, where players alternate between IA

(Player 1 insists and Player 2 accommodates) and AI (Player 1 accommodates and Player 2

insists) states. In the simultaneous i(A)CG, this strategy takes the form (q01q), where q = 5/

8 guarantees maximal reward in a non-coordinated play against a partner with the same

strategy for the payoff matrix in Fig 2B. Turn-taking was shown to be successful in the

simultaneous i(A)CG for a finite population of agents with pure strategies (i.e., having 0

or 1 entries only, with no account for mistakes) and a memory spanning three previous

Fig 6. Frequencies of strategies that survived for more than 1000 generations after they emerged in the iterated

Prisoner’s Dilemma population as function of reward R for mutual cooperation. Data exemplified for psee = 0.3 and

for psee = 0.5. Values of T, S and P are the same as in Fig 2, values of R are in range (S + T)/2< R< T that defines the

Prisoner’s Dilemma payoff. The frequencies were computed over 109 generations in 40 runs. We describe as “other

cooperative” all strategies having a pattern (1�1�;1���;����) or (1��1;1���;����) but different from WSLS, TFT and FbF.

While for psee = 0.3 population for low R mainly consists of defectors, for psee = 0.5 L-F provides an alternative to

defection. For R� 3.2 mutual cooperation becomes much more beneficial, which allows cooperative strategies to

prevail for all transparency levels. Yet higher transparency reduces cooperation for all values of R. Note that the higher

R is the less specific the cooperative strategies are. Indeed, for high R cooperation is much more effective than other

types of behaviour, which makes all cooperative strategies (including even unconditional cooperation) evolutionary

successful (we refer to [24] for a similar result in the case of sequential iPD).

https://doi.org/10.1371/journal.pcbi.1007588.g006

Emergence and suppression of cooperation by action visibility in transparent games

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007588 January 9, 2020 11 / 32

https://doi.org/10.1371/journal.pcbi.1007588.g006
https://doi.org/10.1371/journal.pcbi.1007588


rounds [31]. Here in our transparent i(A)CG, we classify as Turn-takers all strategies

encoded by (�01�;�0��;��1�).

2. Challenger takes the form (1101) in the simultaneous i(A)CG. When two players with this

strategy meet, they initiate a “challenge”: both insist until one of the players makes a mistake

(that is, accommodates). Then, the player making the mistake (loser) submits and continues

accommodating, while the winner continues insisting. This period of unfair coordination

beneficial for the winner ends when the next mistake of either player (the winner accom-

modating or the loser insisting) triggers a new “challenge”. Challenging strategies were the-

oretically predicted to be successful in simultaneous i(A)CG [35, 36]. In our transparent i

(A)CG, the challenger strategy is encoded by (11b�;����;�1��) and has two variants: Chal-

lenger “obeys the rules” and does not initiate a challenge after losing (b� 0.1), while

Aggressive Challenger may switch to insisting even after losing (0.1 < b� 1/3). In both

variants we allow a broad range of values for si
4

since this entry is used after both players

accommodate, which is an extremely rare case in a game between challengers.

3. The Leader-Follower (L-F) strategy s = (1111; 0000; 1111) relies on the visibility of the oth-

er’s action and was not considered previously. In the i(A)CG game between two players

with this strategy, the faster player insists and the slower player accommodates. In a simul-

taneous setting, this strategy lapses into inefficient stubborn insisting since all players

consider themselves leaders, but in transparent settings with high psee this strategy provides

an effective and fair cooperation if mean reaction times are equal. In particular, for psee >

1/3 the L-F strategy is a Nash Equilibrium in a one-shot game (see Proposition 4 in “Meth-

ods”).

When the entire population adopts an L-F strategy, most strategy entries become irrelevant

since in a game between two L-F players the faster player never accommodates and the out-

come of the previous round is either IA or AI. Therefore, we classify all strategies encoded

by (�11�;�00�;����) as L-F.

4. Challenging Leader-Follower is a hybrid of the Challenger and L-F strategies encoded by

(11b�;0c0�;�1��), where 1/3 < b� 0.9, c� 1/3. With such a strategy a player tends to insist

without seeing the partner’s choice, and tends to accommodate when seeing that the part-

ner insists; both these tendencies are stronger than for Aggressive Challengers, but not as

strong as for Leader-Followers.

The results of our simulations for i(A)CG are presented in Table 2. The entries of the final

population average strategy (Fig 7) show considerably different profiles for various values of

psee. Challengers, Turn-takers, and Leader-Followers succeeded for low, medium and high

probabilities to see partner’s choice, respectively. Note that due to the emergence of Leader-

Table 2. Relative frequencies of strategies that survived for more than 1000 generations in the (Anti-)Coordination Game. The frequencies were computed over 109

generations in 80 runs. The frequency of the most successful strategy for each psee value is shown in bold.

Strategy psee

name description 0.0 0.1 0.2 0.3 0.4 0.5

Turn-taker (�01�;�0��;��1�) 37.5 41.2 37.5 37.5 24.9 0.0

Challenger (11b�;����;�1��) 62.5 42.7 3.4 0.5 0.0 0.0

Aggressive Challenger (11b�;����;�1��) 0.0 14.4 30.7 3.3 0.0 0.0

Challenging Leader-Follower (11b�;0c0�;�1��) 0.0 1.1 25.2 31.8 0.0 0.0

Leader-Follower (�11�;�00�;����) 0.0 0.1 2.5 26.1 74.6 100.0

Rare transient strategies 0.0 0.5 0.7 0.8 0.5 0.0

https://doi.org/10.1371/journal.pcbi.1007588.t002
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Follower strategy, cooperation thrives for psee = 0.5 and is established much faster than for

lower transparency (Fig 3B).

To provide additional insight into the results of the i(A)CG simulations, we studied analyti-

cally how various strategies perform against each other (Fig 8). As with the iPD, this analysis

helps to understand why different strategies were successful at different transparency levels. A

change of behaviour for psee > 1/3 is in line with our theoretical results (Corollary 7) indicating

that for these transparency levels L-F is a Nash Equilibrium. Population dynamics for i(A)CG

with a payoff different from the presented in Fig 2B also depends on the Nash Equilibria of

one-shot game, described by Proposition 4 in “Methods”.

Discussion

In this paper, we introduced the concept of transparent games which integrates the visibility of

the partner’s actions into a game-theoretic setting. As a model case for transparent games, we

considered iterated dyadic games where players have probabilistic access to information about

the partner’s choice in the current round. When reaction times for both players are equal on

average, the probability psee of accessing this information can vary from psee = 0.0 correspond-

ing to the canonical simultaneous games, to psee = 0.5 corresponding to sequential games with

random order of choices. Note that in studies on the classic sequential games [10, 33] players

were bound to the same strategy regardless of whether they made their choice before or after

the partner. In contrast, transparent games allow different sub-strategies (s1, . . ., s4), (s5, . . ., s8)

and (s9, . . ., s12) for these situations.

We showed that even a small probability psee of seeing the partner’s choice before one’s own

decision changes the long-term optimal behaviour in the iterated Prisoner’s Dilemma (iPD)

and (Anti-)Coordination Game (i(A)CG). When this probability is high, its effect is pro-

nounced: transparency enhances cooperation in the generally cooperative i(A)CG, but reduces

Fig 7. i(A)CG strategies in the final population. Strategies are taken for the 109-th generation and averaged over 80 runs. This figure characterizes

the final population as a whole and complements Table 2 representing specific strategies. (A): Strategy entries s1, . . ., s4. The decrease of the s2/s3 ratio

reflects the transition of the dominant strategy from challenging to turn-taking for psee = 0.0, . . ., 0.4. For psee = 0.5 the dominance of the Leader-

Follower strategy is indicated by s2 = s3 = 1. (B) Entries s5, . . ., s8 are irrelevant for psee = 0. Values of s6, s7 decrease as psee increases, indicating an

enhancement of cooperation in i(A)CG for higher transparency (s8 is almost irrelevant since mutual accommodation is a very rate event, and s5 is

irrelevant for a population of L-F players taking place for psee = 0.5). (C) Entries s9, . . ., s12 are irrelevant for psee = 0. The decrease of the s10/s11 ratio

for psee = 0.1, . . ., 0.4 reflects the transition of the dominant strategy from challenging to turn-taking.

https://doi.org/10.1371/journal.pcbi.1007588.g007

Emergence and suppression of cooperation by action visibility in transparent games

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007588 January 9, 2020 13 / 32

https://doi.org/10.1371/journal.pcbi.1007588.g007
https://doi.org/10.1371/journal.pcbi.1007588


cooperation in the more competitive iPD. Different transparency levels also bring qualitatively

different strategies to success. In particular, in both games for high transparency a new class

of strategies, which we termed “Leader-Follower” strategies, evolves. Although frequently

observed in humans and animals (see, for instance, [5, 13], these strategies have up to now

remained beyond the scope of game-theoretical studies, but naturally emerge in our transpar-

ent games framework. Note that here we focused on memory-one strategies for the reasons of

better tractability, results for strategies with longer memory can differ considerably [37].

Our approach is similar to the continuous-time approaches suggested in [38] and [39].

However, in these studies the game is played continuously, without any rounds at all, while

here we suppose that the game consists of clearly specified rounds, although the time within

each round is continuous. This assumption can be considered naturalistic, since many real

world interactions and behaviours are episodic, have clear starting and end points, and hence

are close to distinct rounds [4, 14, 40, 41]. Transparent games to some degree resemble ran-

dom games (see e.g. [42, 43]) since in both settings the outcome of the game depends on a sto-

chastic factor. However in random games randomness immediately affects the payoff, while

in transparent games it determines the chance to learn the partner’s choice. While this chance

influences the payoff of the players, the effect depends on their strategies, which is not the case

Fig 8. Analytical pairwise comparison of i(A)CG strategies. For each pair of strategies the maps show if the first of the two strategies

increases in frequency (up-arrow), or decreases (down-arrow) depending on visibility of the other player’s action and the already existing

fraction of the respective strategy. The red lines mark the invasion thresholds, i.e. the minimal fraction of the first strategy necessary for

taking over the population against the competitor second strategy. Solid-line invasion thresholds show the stable equilibrium fraction which

allows coexistence of both strategies (see “Methods”). Dashed-line invasion thresholds indicate dividing lines above which only the first,

below only the second strategy will survive. In all strategies, 1 stands for 0.999 and 0—for 0.001, the entries s9 = . . . = s12 = 1 are the same for

all strategies and are omitted. (A) Turn-taker (q01q; 0000) with q = 5/8 for psee > 0 outperforms Aggressive Challenger 11 1

5
1; 1

2

1

2

1

5

1

2

� �
, (B) but

not Challenger 9

10
101; 1

2

1

2
0 1

2

� �
. (C) Challenger can coexist with Aggressive Challenger for low transparency, but is dominated for psee > 1/3.

(D) Leader-Follower (1111; 0000) clearly outperforms Turn-taker for psee > 0.4 and (E,F) other strategies for psee > 1/3.

https://doi.org/10.1371/journal.pcbi.1007588.g008
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in random games. Transparent games are also related to Bayesian games (see e.g. [44–47]),

where players are uncertain about the rules of the game (payoff, information possessed by

other players, etc.) but have subjective probability distributions over the possible alternatives

(beliefs). While in Bayesian games players dynamically update their beliefs by learning [45,

48], in this manuscript we consider static agents, and the dynamics happens only on the popu-

lation level. Yet, introducing learning mechanisms [49] into the framework of transparent

games could be an interesting direction for future work. More generally, transparent games

can be considered as a special case of games with imperfect or asymmetric information, which

have been studied before, mainly in economics (see [50–54] for recent examples). In games

with private monitoring, for example (see [55] for a review), each player gets imperfect infor-

mation on the actions of other players at the end of every round. Different players may get dif-

ferent information, which is similar to our transparent games. Yet, our approach differs from

those developed in economic game theory, since in the transparent games players have differ-

ent information about the immediately relevant present actions, while in games with imperfect

private monitoring players have different information about the past actions [50, 53–55]. This

difference is intended and important, since reaction times and direct action visibility are rele-

vant in natural interactive behaviours as studied in biology and neuroscience, while it might

be of less importance in economics. However, the relation of transparent games to games with

imperfect private monitoring helps to make an interesting observation: The information avail-

able to the players in the transparent games is inherently asymmetric in those rounds where

choice of one player is visible to the other (although here we consider players as getting the

same amount of information on on average, across many rounds). Thus, high transparency

also means high asymmetry of the access to the information in each specific round. This asym-

metry (and not the amount information per se) may be the actual cause of the shift in the opti-

mal behaviour observed for the high transparency.

The value of probability psee strongly affects the evolutionary success of strategies. In partic-

ular, in the transparent i(A)CG even moderate psee helps to establish cooperative turn-taking,

while high psee brings about a new successful strategy, Leader-Follower (L-F). For the transpar-

ent iPD we have shown that for psee > 0 the Generous tit-for-tat strategy is unsuccessful and

Win–stay, lose–shift (WSLS) is an unquestionable evolutionary winner for 0< psee� 0.4.

However, WSLS is not evolutionary stable (see the caption of Fig 5); our results indicate that in

general there are no evolutionary stable strategies in the transparent iPD, which was already

known to be the case for the simultaneous iPD [9, 56]. Moreover, if reward for mutual cooper-

ation R� 3, for high transparencies (psee� 0.4) all strategies become quite unstable and coop-

eration is hard to establish (Fig 6). Finally, for psee = 0.5, L-F becomes successful in iPD and

is more frequent than WSLS for R� 3.2. For such a payoff, mutual cooperation is not much

more beneficial than the alternating unilateral defection resulting from the L-F strategy. It

brings a payoff of (S + T)/2 = 2.5, but is generally less susceptible to exploitation by defecting

strategies. This explains the abrupt drop of cooperation in the transparent iPD with psee� 0.4

for R = 3.0 (S2 Note), while such a drop is less prominent for R> 3.2 (Fig 6). Note that R> 3

> (T + P)/2 promotes mutual cooperation among memory-one strategies since it results in

higher payoff than defecting a cooperator (resulting in a payoff T) followed by mutual defec-

tion (payoff P), which is a natural response of any cautious strategy like TFT or WSLS. There-

fore the case R> 3.2 is perhaps less interesting than the classic payoff matrix with R = 3.

Although resulting in a lower payoff than explicit cooperation, L-F can be also seen as a

cooperative strategy for iPD. While the choice of Leaders (defection) is entirely selfish, Follow-

ers “self-denyingly” cooperate with them. Importantly, the L-F strategy is not beneficial for

some of the players using it in any finite perspective, which distinguishes this strategy from

most cooperative strategies. Let us explain this point by comparing L-F with WSLS. In a game
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between two WSLS-players, neither benefits from unilaterally switching to defection even in a

short term for R� (T + P)/2. While the defecting player gets T = 5 in the first round, its payoff

in the next round is P = 1, which makes the average payoff over two rounds less than or equal

to the reward for cooperation R. Thus for the iPD with standard payoff R = 3 = (T + P)/2

WSLS players do not benefit from defecting their WSLS-partners already for the two-round

horizon. (Note that for R< (T + P)/2 defection is effective against WSLS, which explains the

low frequency of WSLS for R< 3 in Fig 6). Now, assume that one is playing the transparent

iPD with psee = 0.5 against a partner with a pure L-F strategy (0000; 1111; 1111) and has to

choose between L-F and AllD strategies. In a single round using AllD is (strictly) better with

probability p = 1/2 (probability of being a Follower). From the two-round-perspective using

AllD is beneficial with p = 1/4 (the probability of being a Follower in both rounds). For n = 6

rounds, AllD is still better than L-F with p = 7/64 (the probability of being a Follower in 5 or 6

rounds out of 6, which results in an average payoff equal to either 5/6 or 0). In general, for any

finite number n of rounds, there is a risk to suffer from using the L-F strategy instead of AllD,

and the probability of this is given by
XdnP=Te

k¼0

Cn
k , where dnP/Te is the integer part of nP/T and

Cn
k ¼

n!

k!ðn� kÞ! is a binomial coefficient. That is adhering to L-F is not beneficial for some of the

L-F players in any finite horizon, which makes their behaviour in a sense altruistic. Our results

for the transparent iPD demonstrate that such “altruistic-like” behaviour may evolve in a pop-

ulation even without immediate reciprocation. The inherently unequal payoff distribution

among L-F players for a final number of rounds opens interesting perspectives for research,

but is outside the scope of this manuscript.

The lack of stability in the transparent iPD renders the analysis of the strategy dynamics for

this game non-trivial. Therefore we do not provide here an exhaustive description of strategies

in iPD and content ourselves with general observations and explanations. An in-depth analysis

of strategy dynamics in the transparent iPD will be provided elsewhere as a separate, more

technical paper [57].

Despite the clear differences between the two games, predominant strategies evolving in

iPD and i(A)CG have some striking similarities. First of all, in both games, L-F appears to be

the most successful strategy for high psee (although for iPD with R� 3 the share of Leader-

Followers in the population across all generations is only about 20%, other strategies are

even less successful as most of them appear just transiently and rapidly replace each other).

This prevalence of the L-F strategy can be explained as follows: in a group where the behav-

iour of each agent is visible to the others and can be correctly interpreted, group actions

hinge upon agents initiating these actions. In both games these initiators are selfish, but see

S2 Note for an example of an “altruistic” action initiation. For low and moderate values of

psee the similarities of the two games are less obvious. However, the Challenger strategy in

i(A)CG follows the same principle of “Win–stay, lose–shift” as the predominant strategy

WSLS in iPD, but with modified definitions of “win” and “lose”. For Challenger winning is

associated with any outcome better than the minimal payoff corresponding to the mutual

accommodation. Indeed, a Challenger accommodates until mutual accommodation takes

place and then switches to insisting. Such behaviour is described as “modest WSLS” in [35,

58] and is in-line with the interpretation of the “Win–stay, lose–shift” principle observed in

animals [59].

The third successful principle in the transparent iPD is “Tit-for-tat”, embodied in Generous

tit-for-tat (GTFT), TFT and Firm-but-fair (FbF) strategies. This principle also works in both

games since turn-taking in i(A)CG is nothing else but giving tit for tat. In particular, the TFT

and FbF strategies, which occur frequently in iPD for psee� 0.4, are partially based on taking
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turns and are similar to the Turn-Taker strategy in i(A)CG. The same holds to a lesser extent

for the GTFT strategy.

The success of specific strategies for different levels of psee makes sense if we understand

psee as a species’ ability to signal intentions and to interpret these signals when trying to coordi-

nate (or compete). The higher psee, the better (more probable) is the explicit coordination.

This could mean that a high ability to explicitly coordinate actions leads to coordination based

on observing the leader’s behaviour. In contrast, moderate coordination ability results in some

form of turn-taking, while low ability leads to simple strategies of WSLS-type. In fact, an agent

utilizing the WSLS principle does not even need to comprehend the existence of the second

player, since WSLS “embodies an almost reflex-like response to the pay-off” [24]. The ability

to cooperate may also depend on the circumstances, for example, on the physical visibility of

partner’s actions. In a relatively clear situation, following the leader can be the best strategy.

Moderate uncertainty requires some (implicit) rules of reciprocity embodied in turn-taking.

High uncertainty makes coordination difficult or even impossible, and may result in a seem-

ingly irrational “challenging behaviour” as we have shown for the transparent i(A)CG. How-

ever, when players can succeed without coordination (which was the case in iPD), high

uncertainty about the other players’ actions does not cause a problem.

While we focused here on the iterated Prisoner’s Dilemma and on the specific formulation

of iterative (Anti-)Coordination Game, the transparent games framework can be applied to

treatment of other two-player, two-action transparent games. In particular, we have shown

that the structure of the Nash equilibria for the Hawk-Dove and Leader games is identical to

that of (Anti-)Coordination Game (see Methods, Proposition 8), which suggests that the trans-

parency has a strong effect on successful strategies in these games as well. As a future work, it

would also be interesting to extend the transparent game framework to N-agent interactions

[60–62], to provide an account of naturalistic dynamics in groups.

By taking the visibility of the agents’ actions into account, transparent games may offer a

compelling theoretical explanation for a range of biological, sociological and psychological

phenomena. One potential application of transparent games is related to experimental

research on social interactions, including the emerging field of social neuroscience that seeks

to uncover the neural basis of social signalling and decision-making using neuroimaging

and electrophysiology in humans and animals [63–66]. So far, most studies have focused on

sequential [67, 68] or simultaneous games [69]. One of the main challenges in this field is

extending these studies to direct real-time interactions that would entail a broad spectrum of

dynamic competitive and cooperative behaviours. In line with this, several recent studies also

considered direct social interactions in humans and non-human primates [12–14, 41, 70–74]

during dyadic games where players can monitor actions and outcomes of each other. Trans-

parent games allow modelling the players’ access to social cues, which is essential for the analy-

sis of experimental data in the studies of this kind [8]. This might be especially useful when

behaviour is explicitly compared between “simultaneous” and “transparent” game settings, as

in [12, 14, 70, 74]. In particular, the enhanced cooperation in the transparent i(A)CG for high

psee provides a theoretical explanation for the empirical observations in [14], where humans

playing an i(A)CG-type game demonstrated a higher level of cooperation and a fairer payoff

distribution when they were able to observe the actions of the partner while making their own

choice. In view of the argument that true cooperation should benefit from enhanced commu-

nication [8], the transparent i(A)CG can in certain cases be a more suitable model for studying

cooperation than the iPD (see also [75, 76] for a discussion of studying cooperation by means

of i(A)CG-type games).

In summary, transparent games provide a theoretically attractive link between classical con-

cepts of simultaneous and sequential games, as well as a computational tool for modelling real-
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world interactions. This approach allows integrating work on sensorimotor decision-making

under uncertainty with economic game theory. We thus expect that the transparent games

framework can help to establish a deeper understanding of social behaviour in humans and

animals.

Methods

Transparent games between two players

In this study, we focus on iterated two-player (dyadic) two-action games: in every round both

players choose one of two possible actions and get a payoff depending on the mutual choice

according to the payoff matrix (Fig 2). A new game setting, transparent game, is defined by a

payoff matrix and probabilities pi
see (i = 1, 2) of Player i to see the choice of the other player,

0 � p1
see; p

2
see � 1. Note that p1

see þ p2
see � 1, and ð1 � p1

see � p2
seeÞ is the probability that neither

of players knows the choice of the partner because they act sufficiently close in time so that nei-

ther players can infer the other’s action prior to making their own choice. The probabilities pi
see

can be computed from the distributions of reaction times for the two players, as shown in S1

Note for reaction times modelled by exponentially modified Gaussian distribution [77, 78].

In this figure, reaction times for both players have the same mean, which results in symmetric

distribution of reaction time differences (SN1 Fig. 1B in S1 Note) and p1
see ¼ p2

see � 0:5. Here

we focus only on this case since for both games considered in this study, unequal mean reac-

tion times provide a strong advantage to one of the players (see below). However, in general

p1
see 6¼ p2

see.

To illustrate how transparent, simultaneous and sequential games differ, let us consider

three scenarios for a Prisoner’s Dilemma (PD):

1. If prisoners write their statements and put them into envelopes, this case is described by

simultaneous PD.

2. If prisoners are questioned in the same room in a random or pre-defined order, one after

another, this case is described by sequential PD.

3. Finally, in a case of a face-to-face interrogation where prisoners are allowed to answer the

questions of prosecutors in any order (or even to talk simultaneously) the transparent PD

comes into play. Here prisoners are able to monitor each other and interpret inclinations of

the partner in order to adjust their own choice accordingly.

While the transparent setting can be used both in zero-sum and non-zero-sum games, here

we concentrate on the latter class where players can cooperate to increase their joint payoff.

We consider the transparent versions of two classic games, the PD and the (Anti-)Coordina-

tion Game ((A)CG). We have selected PD and (A)CG as representatives of two distinct types

of symmetric non-zero-sum games [30, 31]: maximal joint payoff is awarded when players

select the same action (cooperate) in PD, but complementary actions in (A)CG (one insists

on own preferred option, and the other accommodates this option, to achieve common goal).

In games of (A)CG type, one of the two coordinated choices is more beneficial for Player 1

(Player 1 insists, Player 2 accommodates), and the other for Player 2 (Player 1 accommodates,

Player 2 insists), thus to achieve fair cooperation players should alternate between these two

states.

Another important difference between the two considered games is that in (A)CG a player

benefits from acting before the partner, while in PD it is mostly preferable for a player to act

after the partner. Indeed, in (A)CG the player acting first has good chances to get the maximal

payoff of S = 4 by insisting: when the second player knows that the partner insists, it is better
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to accommodate and get a payoff of T = 3, than to insist and get R = 2. In PD, however, defec-

tion is less beneficial if it can be discovered by the opponent and acted upon (for details, see

Subsection “One-shot transparent Prisoner’s Dilemma with unequal reaction times” below).

Therefore, in PD most players prefer acting later: defectors to have a better chance of getting

T = 5 for a successful defection, and cooperators to make sure that the partners are not defect-

ing them. The only exception from this rule is the Leader-Follower strategy, but as we show in

S1 Note this special case does not change the overall situation for the simulations. Therefore,

the optimal behaviour in PD is generally to wait as long as possible, while in (A)CG a player

should act as quickly as possible. Consequently, when the time for making choice is bounded

from below and from above, evolution in these games favours marginal mean reaction times:

maximal allowed reaction time in PD and minimal allowed reaction time in (A)CG. Player

types with different behaviour are easily invaded. Therefore we assumed in all simulations that

the reaction times have a constant and equal mean. We also assumed that reaction times for all

players have an equal non-zero variance and that the difference of the reaction time distribu-

tions for two types of players is always symmetric (see S1 Note). This results in pi
see being the

same for all types, thus all players have equal chances to see the choices of each other.

Analysis of one-shot transparent games

Consider a one-shot transparent game between Player 1 and Player 2 having strategies

s1 ¼ ðs1
1
; s1

2
; s1

3
Þ and s2 ¼ ðs2

1
; s2

2
; s2

3
Þ, and probabilities to see the choice of the partner p1

see and

p2
see, respectively. An expected payoff for Player 1 is given by

Eðs1; s2Þ ¼ ð1 � p1
see � p2

seeÞðs
1
1
s2

1
Rþ s1

1
ð1 � s2

1
ÞSþ ð1 � s1

1
Þs2

1
T þ ð1 � s1

1
Þð1 � s2

1
ÞPÞ

þp2
sees

1
1
ðs2

2
Rþ ð1 � s2

2
ÞSÞ þ p2

seeð1 � s1
1
Þðs2

3
T þ ð1 � s2

3
ÞPÞ

þp1
sees

2
1
ðs1

2
Rþ ð1 � s1

2
ÞTÞ þ p1

seeð1 � s2
1
Þðs1

3
Sþ ð1 � s1

3
ÞPÞ;

ð1Þ

where the first line describes the case when neither player sees partner’s choice, the second line

describes the case when Player 2 sees the choice of Player 1, and the third—when Player 1 sees

the choice of Player 2.

Let us provide two definitions that will be used throughout this section.

Definition 1. Strategies s1 and s2 are said to form a Nash Equilibrium if neither player

would benefit from unilaterally switching to another strategy, that is E(s1, s2)� E(r1, s2) and

E(s2, s1)� E(r2, s1) for any alternative strategies r1 and r2 of Players 1 and 2, respectively.

Definition 2. Let us denote Eij = E(si, sj). Strategy s1 is said to dominate strategy s2 if E11�

E21 and E12� E22. If both inequalities are strict, s1 strictly dominates s2. Strategies s1 and s2 are

said to be bistable when E11 > E21 and E12 < E22. Strategies s1 and s2 co-exist when E11 < E21

and E12 > E22.

Some intuition on these notions is provided below in subsection “Evolutionary dynamics of

two strategies”. We refer to [9] for details.

For the sake of simplicity, we assume for the rest of this section that 0 < p1
see; p

2
see < 1, other-

wise the game is equivalent to the classic sequential or simultaneous game. First we consider

the one-shot transparent Prisoner’s dilemma (PD), and then—(Anti-)Coordination Game

((A)CG).

One-shot transparent Prisoner’s Dilemma with equal reaction times. Here we assume

that p1
see ¼ p2

see ¼ psee to simplify the discussion. Similar to the classic one-shot PD, in the trans-

parent PD all Nash Equilibria (NE) correspond to mutual defection. To show this we make an

important observation: in the one-shot PD it is never profitable to cooperate when seeing the

partner’s choice.
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Lemma 1. In one-shot transparent PD with psee > 0 any strategy (s1; s2; s3) with s2, s3 > 0 is
dominated by strategies (s1; 0; s3) and (s1; s2; 0). The dominance of (s1; 0; s3) is strict when s1 > 0,

the dominance of (s1; s2; 0) is strict when s1 < 1.

Proof. Consider the strategies s1 = (s1; s2; 0), s2 = (s1; s2; s3). To show that s1 dominates s2, it

is sufficient to demonstrate that E11 − E21� 0 and E12 − E22� 0. Two following inequalities

can be inferred from (1), from the fact that in PD R< T and from the assumptions that psee, s1,

s2 > 0:

E11 � E21 ¼ psees1T � psees1ðs2Rþ ð1 � s2ÞTÞ ¼ psees1s2ðT � RÞ � 0;

E12 � E22 ¼ psees1T � psees1ðs2Rþ ð1 � s2ÞTÞ ¼ psees1s2ðT � RÞ � 0:

As one can easily see, both inequalities are strict for s1 > 0. The second part of the proof follows

from S< P and (1), and is otherwise identical, therefore we omit it.

Now we can describe the NE strategies in transparent PD:

Proposition 2. In one-shot transparent PD all the Nash Equilibria are comprised by pairs of
strategies (0; x; 0) with 0� x� 1 and

x �
1 � psee

psee

P � S
R � S

: ð2Þ

Proof. First we show that for any x, y satisfying (2), strategies (0; x; 0) and (0; y; 0) form a

Nash Equilibrium. Assume that there exists a strategy (s1; s2; s3), which provides a better payoff

against (0; x; 0) than (0; y; 0). According to Lemma 1, expected payoff of a strategy (s1; 0; 0) is

not less than the payoff of (s1; s2; s3). Now it remains to find the value of s1 maximizing the

expected payoff E of (s1; 0; 0). From (1) we have:

E ¼ ð1 � 2pseeÞðs1Sþ ð1 � s1ÞPÞ þ psees1ðxRþ ð1 � xÞSÞ þ pseeð1 � s1ÞP þ pseeP

¼ P þ s1 pseexðR � SÞ � ð1 � pseeÞðP � SÞð Þ ¼ P þ s1 x �
1 � psee

psee

P � S
R � S

� �

pseeðR � SÞ

Thus the expected payoff is maximized by s1 = 0 if inequality (2) holds and by s1 = 1 otherwise.

In the former case the strategy (s1; 0; 0) results in the same payoff P as the strategy (0; y; 0),

which proves that a pair of strategies (0; x; 0), (0; y; 0) is an NE. If (2) does not hold, strategy (0;

x; 0) is not an NE, since switching to (1; 0; 0) results in a better payoff.

Let us show that there are no further NE. Indeed, according to Lemma 1 if an alternative

NE exists, it can only consist of strategies (1; 0; z) or (u; 0; 0) with 0� z� 1 and 0< u< 1. In

both cases switching to unconditional defection is preferable, which finishes the proof.

The one-shot transparent PD has two important differences from the classic game. First,

the unconditional defection (0; 0; 0) dominates the cooperative strategy (1; 1; 0) only for

psee <
T� R
T� P. Indeed, when both players stick to (1; 1, 0), their payoff is equal to R, while when

switching to (0; 0; 0) strategy, a player gets pseeP + (1 − psee)T. However, (1; 1, 0) is dominated

by a strategy (1; 0; 0) that cooperates when it does not see the choice of the partner and defects

otherwise. This strategy, in turn is dominated by (0; 0; 0).

Second, in transparent PD unconditional defection (0; 0; 0) is not evolutionary stable as

players can switch to (0; x; 0) with x> 0 retaining the same payoff. This, together with Proposi-

tion 3 below, makes possible a kind of evolutionary cycle: (1; 0; 0)! (0; 0; 0)$ (0; x; 0)! (1;

1; 0), (1; 0; 0)! (1; 0; 0).
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Proposition 3. In transparent PD strategies (1; 0; 0) and (0; x; 0) have the following relations:

1. if condition (2) and the following condition

x �
1

psee
� 2þ

P � S
T � R ð3Þ

are satisfied, then (0; x; 0) dominates (1; 0; 0);

2. if neither (2) nor (3) are satisfied, then (1; 0; 0) dominates (0; x; 0);

3. if (2) is satisfied but (3) is not, then the two strategies coexist;

4. if (3) is satisfied but (2) is not, then the two strategies are bistable.

Proof. We prove only the first statement since the proof of the others is almost the same.

Let Player 1 use strategy (1; 0; 0) and Player 2—strategy (0; x; 0). To prove that (0; x; 0)

dominates (1; 0; 0) we need to show that Player 2 has no incentive to switch to (1; 0; 0)

and that Player 1, on the contrary, would get higher payoff if using (0; x; 0). The latter state-

ment follows from Proposition 2. To show that the former also takes place we simply write

down expected payoffs E11 and E21 of strategies (1; 0; 0) and (0; x; 0) when playing against

(1; 0; 0):

E11 ¼ ð1 � 2pseeÞRþ pseeT þ pseeS ¼ Rþ pseeðT � 2RÞ þ pseeS;

E21 ¼ ð1 � 2pseeÞT þ pseeðxR þ ð1 � xÞTÞ þ pseeP ¼ T � pseeT þ pseeP � xpseeðT � RÞ:

Now it can be easily seen that E11� E21 holds whenever inequality (3) is satisfied.

One-shot transparent Prisoner’s Dilemma with unequal reaction times. Here we con-

sider the case when players have unequal probabilities to see partner’s choice. We focus on a

simple example showing why waiting is generally beneficial in the transparent iPD. Assume

that all players in population act as quickly as they can, but cooperation takes on average lon-

ger than defection. Assume further that a player preparing to cooperate may see the partner

defecting and then it is still possible for this player to change decision and defect. Finally let

us consider only pure strategies that is s1, s2, s3 2 {0, 1}. The question now is, which strategy

would win in this case.

From Lemma 1, we know that it is sufficient to consider two strategies: “cooperators” s1 =

(1; 0; 0) and “defectors” s2 = (0; 0; 0) since they dominate all other strategies. Note that the

probability p12
see of cooperative players to see the choice of defectors is higher than the probabil-

ity p21
see of defectors to see the choice of cooperators, resulting in 0 < p21

see < p12
see < 1. Probabili-

ties of a player to see the choice of another player with the same strategy is not higher than

0.5 (since these probabilities are equal for both players and the sum of these probabilities is

not higher than 1), therefore it holds 0 < p11
see; p

22
see � 0:5. Note that, as before, we assume

0 < p11
see; p

12
see; p

21
see; p

22
see < 1.

Then the expected payoff matrix for these two strategies in the one-shot transparent PD is

given by

E ¼
ð1 � 2p11

seeÞRþ p11
seeðSþ TÞ p12

seeP þ ð1 � p12
seeÞS

p12
seeP þ ð1 � p12

seeÞT P

 !

¼
R � p11

seeð2R � S � TÞ p12
seeP þ ð1 � p12

seeÞS

T � p12
seeðT � PÞ P

 !

:

Emergence and suppression of cooperation by action visibility in transparent games

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007588 January 9, 2020 21 / 32

https://doi.org/10.1371/journal.pcbi.1007588


Since p12
seeP þ ð1 � p12

seeÞS < P for p12
see < 1, three variants are possible:

1. cooperative strategy s1 dominates for p12
see ¼ 1;

2. s1 and s2 are bistable for E11 > E21, that is for

p12
see >

T � R
T � P

þ
2R � S � T

T � P
p11

see; ð4Þ

3. defecting strategy s2 dominates otherwise.

For the standard Prisoner’s Dilemma payoff matrix (Fig 2), inequality (4) turns into

p12
see >

1

2
þ 1

4
p11
see. Since p11

see � 0:5, cooperative strategy s1 acting with a delay has a chance to win

over defectors if it can see their actions with probability p12
see > 5=8. This example demonstrates

that cooperation can survive in one-shot Prisoner’s dilemma under certain (artificial) assump-

tions. More importantly, this example shows the importance of seeing partner’s choice in

transparent Prisoner’s Dilemma in general, illustrating the incentive of players to wait for part-

ner’s action.

One-shot transparent (Anti-)Coordination Game. Recall [79] that in the classic one-

shot (A)CG game there are three Nash Equilibria: two pure (Player 1 insists, Player 2 accom-

modates, or vice verse) and one mixed (each player insists with probability S� P
SþT� P� R). The Nash

Equilibria for the transparent (A)CG game are specified by the following proposition.

Proposition 4. Consider one-shot transparent (A)CG between Players 1 and 2 with probabili-
ties to see the choice of the partner p12

see and p21
see, respectively. Let p12

see � p21
see, then this game has the

following pure strategy NE.

1. Player 1 uses strategy (0; 0; 1), Player 2 uses strategy (1; 0; 1)—for

p21
see

1 � p12
see

�
T � R
S � R

; ð5Þ

2. Player 1 uses strategy (1; 0; 1), Player 2 uses strategy (0; 0; 1)—for

p12
see

1 � p21
see

�
T � R
S � R

ð6Þ

3. Both players use strategy (1; 0; 1)—when (6) is not satisfied.

Additionally, if inequality (5) is satisfied, there is also a mixed-strategy NE: Player i uses strategy
ðsi

1
; 0; 1Þ with

s1
1
¼
ð1 � p21

seeÞðS � PÞ � p12
seeðT � PÞ

ð1 � p12
see � p21

seeÞðT þ S � P � RÞ
; s2

1
¼
ð1 � p12

seeÞðS � PÞ � p21
seeðT � PÞ

ð1 � p12
see � p21

seeÞðT þ S � P � RÞ
: ð7Þ

In other words, when (5) holds, there are two pure-strategy and one mixed-strategy NE. Other-
wise there is only one pure-strategy NE: Player 1 uses strategy (1; 0; 1), Player 2 uses strategy (0;

0; 1) when (6) holds, and both Players use (1; 0; 1) when (6) does not hold.

Remark 1. For the correct interpretation of Proposition 4 it is important that inequality (6)

holds automatically whenever (5) holds, since

p12
see

1 � p21
see

�
p21
see

1 � p12
see

:

The latter statement follows from p12
see � p21

see � 0 (assumption of Proposition 4) and the fact
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that 1 � p12
see � p21

see � 0. Indeed, it holds ðp12
see � p21

seeÞð1 � p12
see � p21

seeÞ � 0, and, consequently,

p12
seeð1 � p12

seeÞ � p21
seeð1 � p12

see � p21
seeÞ þ p12

seep
21
see ¼ p21

seeð1 � p21
seeÞ:

To prove Proposition 4, we need two lemmas. First, similar to the Prisoner’s dilemma, for

the transparent (A)CG we have:

Lemma 5. In one-shot transparent (A)CG any strategy (s1; s2; s3) is dominated by strategies
(s1; 0; s3) and (s1; s2; 1). The dominance of (s1; 0; s3) is strict when s1 > 0, the dominance of (s1; s2;

1) is strict when s1 < 1.

The proof is based on the fact that for the (A)CG game hold inequalities R< T and P< S.

Otherwise the proof is identical to the proof of Lemma 1.

Lemma 6. In one-shot transparent (A)CG, when Player 1 uses strategy (1; 0; 1), the best
response for Player 2 is to use strategy (0; 0; 1) for p12

see
1� p21

see
� T� R

S� R and to use (1; 0; 1) otherwise.

Proof. By Lemma 5 the best response for Player 2 is a strategy (s1; 0; 1) with 0� s1� 1.

When Player 2 uses this strategy against (1; 0; 1), the expected payoff of Player 2 is given by

E21 ¼ ð1 � p12
see � p21

seeÞðs1Rþ ð1 � s1ÞTÞ þ p12
seeðs1Sþ ð1 � s1ÞTÞ þ p21

seeT

¼ T þ s1ðp12
seeðS � RÞ þ p21

seeðT � RÞ � ðT � RÞÞ:

Thus the payoff of Player 2 depends linearly on the value of s1 and is maximized by s1 = 0 if

p12
seeðS � RÞ � ð1 � p21

seeÞðT � RÞ < 0 ð8Þ

and by s1 = 1 otherwise. Inequality (8) is equivalent to (6), which completes the proof.

Using Lemmas 5 and 6, we can now compute NE for the one-shot transparent (A)CG:

Proof. Pure strategy NEs are obtained immediately from Lemma 6. To compute the mixed-

strategy NE, recall that Player 1 achieves it when the expected payoff obtained by Player 2 for

insisting and accommodating is equal:

ð1 � p12
see � p21

seeÞðs
1
1
Rþ ð1 � s1

1
ÞSÞ þ p12

seeS ¼ ð1 � p12
see � p21

seeÞðs
1
1
T þ ð1 � s1

1
ÞPÞ þ p12

seeT:

By computing s1
1

from this equation and applying the same argument for Player 2, we get the

strategy entries given in (7).

Corollary 7. Consider one-shot transparent (A)CG with S = 4, T = 3, R = 2, P = 1, where both
players have equal probabilities psee to see the choice of the partner. In this game there are three
NE for psee < 1/3: (a) Player 1 uses strategy (1; 0; 1), Player 2 uses strategy (0; 0; 1); (b) vice
versa; (c) both players use strategy (x; 0; 1), with x ¼ 3

4
þ

psee
4� 8psee

. For psee� 1/3, (1; 0; 1) is the
only NE.

One-shot transparent Hawk-Dove and Leader games. While we consider in Proposition

4 only the (A)CG game for which S> T> R> P, this result is easily generalized to a wider

class of (anti-)coordination games including several other important games, such as Hawk-

Dove and Leader. Together with PD and (A)CG, Hawk-Dove and Leader form the set of

two-player two-action games where players have a conflict of interests [29]. Hawk-Dove (also

known as Chicken or Snowdrift) game is also relevant for studying the evolution of coopera-

tion, competition over a shared resource, and reciprocity [61, 80–82]. Note that in [83], (A)

CG, Leader and Hawk-Dove are grouped into a single category category (category III) that is

referred to as “Hawk-Dove” games. This categorization is based on equilibrium structure of

the simultaneous game: two strict asymmetric NE and one symmetric mixed NE, which is evo-

lutionary stable strategy. This structure is not by default the same for the transparent games,

but the following result takes place.
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Proposition 8. Consider a general one-shot transparent game between Players 1 and 2 with
probabilities to see the choice of the partner p12

see and p21
see satisfying p12

see � p21
see. If the payoff matrix

of the game satisfies inequalities S> T> R and S> P, then the Nash equilibria (NE) of this
game is described by Proposition 4. Namely, when (5) holds, there are two pure-strategy and one
mixed-strategy NE. Otherwise there is only one pure-strategy NE: Player 1 uses strategy (1; 0; 1),

Player 2 uses strategy (0; 0; 1) when (6) holds, and both Players use (1; 0; 1) when (6) does not
hold.

Proof. The proof coincides with the proof of Proposition 4. Indeed, Lemma 5 holds for

any game with T> R and S> P. Lemma 6 holds whenever T> R and S> R. Finally, NE are

described in Proposition 4 for the case S> T.

Two classical games satisfy conditions of Proposition 8. The first is the “Hawk-Dove” game,

where S> P> T> R. To get the classic notation for this game, one needs to replace in Fig 2B

“Insist” by “Hawk” and “Accommodate” by “Dove”.

The second relevant game is Leader, described by S> T> P> R. This game is similar to

the (A)CG game formulated as insisting on own preference or accommodating the other, with

the difference that here if both players insist it is detrimental for both, so it is better to accom-

modate, however the insisting player receives maximal reward if the other player accommo-

dates. An example of a Leader game payoff matrix can be obtained from that in Fig 2B by

setting P = 2, R = 1, while leaving S = 4, T = 3.

The payoff matrices of these games are illustrated in the S2 Fig.

Analysis of iterated transparent games

For the analysis of iterated games we use the techniques described in [9, 24]. Since most of

results for simultaneous and sequential iPD were obtained for strategies taking into account

outcomes of the last interaction (“memory-one strategies”), here we also focus on memory-

one strategies. Note that considering multiple previous round results in very complex strate-

gies. To overcome this, one can, for instance, use pure strategies (see, for instance, [31]), but

we reserve this possibility for future research.

A strategy without memory in transparent games is described by a three-element vector. A

memory-one strategy additionally conditions current choice upon the outcome of the previous

round of the game. Since there are 4 = 2 × 2 possible outcomes, a memory-one strategy for a

player type i is represented by a vector s ¼ ðsi
kÞ

12

k¼1
, where k enumerates the twelve (4 × 3) dif-

ferent combinations of previous outcome and the current probability of choice. The entries si
k

of the strategy thus represent the conditional probabilities to select action A1 (“Cooperate” in

iPD and “Insist” in i(A)CG, see Fig 2), specifically

si
1
; . . . ; si

4
are probabilities to select A1 without seeing the partner’s choice, given that in the pre-

vious round the joint choice of the player and the partner was A1A1, A1A2, A2A1, and A2A2

respectively (the first action specifies the choice of the player, and the second—the choice of

the partner);

si
5
; . . . ; si

8
are probabilities to select A1, seeing the partner selecting A1 and given the outcome

of the previous round (as before).

si
9
; . . . ; si

12
are probabilities to select A1, seeing the partner selecting A2 and given the outcome

of the previous round.

Probabilities to select A2 are given by ð1 � si
kÞ, respectively.

Consider an infinite population of players evolving in generations. For any generation t = 1,

2, . . . the population consists of n(t) player types defined by their strategies si ¼ ðsi
kÞ

12

k¼1
and
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their frequencies xi(t) in the population,
XnðtÞ

i¼1

xiðtÞ ¼ 1. Besides, the probability of a player from

type i to see the choice of a partner from type j is given by pij
see 2 ½0; 1� (in our case pij

see ¼ psee

for all types i and j, but in this section we use the general notation).

Consider a player from type i playing an infinitely long iterated game against a player from

type j. Since both players use memory-one strategies, this game can be formalized as a Markov

chain with states being the mutual choices of the two players and a transition matrix M given

by

M ¼ ð1 � pij
see � pji

seeÞM0 þ pij
seeM1 þ pji

seeM2; ð9Þ

where the matrices M0, M1 and M2 describe the cases when neither player sees the choice of

the partner, Player 1 sees the choice of the partner before making own choice, and Player 2

sees the choice of the partner, respectively. These matrices are given by

M0 ¼

si
1
sj

1 si
1
ð1 � sj

1Þ ð1 � si
1
Þsj

1 ð1 � si
1
Þð1 � sj

1Þ

si
2
sj

3 si
2
ð1 � sj

3Þ ð1 � si
2
Þsj

3 ð1 � si
2
Þð1 � sj

3Þ

si
3
sj

2 si
3
ð1 � sj

2Þ ð1 � si
3
Þsj

2 ð1 � si
3
Þð1 � sj

2Þ

si
4
sj

4 si
4
ð1 � sj

4Þ ð1 � si
4
Þsj

4 ð1 � si
4
Þð1 � sj

4Þ

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

;

M1 ¼

si
5
sj

1 si
9
ð1 � sj

1Þ ð1 � si
5
Þsj

1 ð1 � si
9
Þð1 � sj

1Þ

si
6
sj

3 si
10
ð1 � sj

3Þ ð1 � si
6
Þsj

3 ð1 � si
10
Þð1 � sj

3Þ

si
7
sj

2 si
11
ð1 � sj

2Þ ð1 � si
7
Þsj

2 ð1 � si
11
Þð1 � sj

2Þ

si
8
sj

4 si
12
ð1 � sj

4Þ ð1 � si
8
Þsj

4 ð1 � si
12
Þð1 � sj

4Þ

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

;

M2 ¼

si
1
sj

5 si
1
ð1 � sj

5Þ ð1 � si
1
Þsj

9 ð1 � si
1
Þð1 � sj

9Þ

si
2
sj

7 si
2
ð1 � sj

7Þ ð1 � si
2
Þsj

11 ð1 � si
2
Þð1 � sj

11Þ

si
3
sj

6 si
3
ð1 � sj

6Þ ð1 � si
3
Þsj

10 ð1 � si
3
Þð1 � sj

10Þ

si
4
sj

8 si
4
ð1 � sj

8Þ ð1 � si
4
Þsj

12 ð1 � si
4
Þð1 � sj

12Þ

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

:

The gain of type i when playing against type j is given by the expected payoff Eij, defined by

Eij ¼ yRRþ ySSþ yTT þ yPP; ð10Þ

where R, S, T, P are the entries of the payoff matrix (R = 3, S = 0, T = 5, P = 1 for standard iPD

and R = 2, S = 4, T = 3, P = 1 for i(A)CG, see Fig 2), and yR, yS, yT, yP represent the probabilities

of getting to the states associated with the corresponding payoffs by playing si against sj. This

vector is computed as a unique left-hand eigenvector of matrix M associated with eigenvalue

one [9]:

ðyR; yS; yT; yPÞ ¼ ðyR; yS; yT; yPÞM:

The evolutionary success of type i is encoded by its fitness fi(t): if type i has higher fitness

than the average fitness of the population �f ðtÞ ¼
XnðtÞ

i¼1

xiðtÞfiðtÞ, then xi(t) increases with time,
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otherwise xi(t) decreases and the type is dying out. This evolutionary process is formalized by

the replicator dynamics equation, which in discrete time takes the form

xiðt þ 1Þ ¼ xiðtÞ þ
fiðtÞ � �f ðtÞ

�f ðtÞ
xiðtÞ ¼

fiðtÞ
�f ðtÞ

xiðtÞ: ð11Þ

The fitness fi(t) is computed as the average payoff for a player of type i when playing against

the current population:

fiðtÞ ¼
XnðtÞ

j¼1

xjðtÞEij;

where Eij is given by (10).

Evolutionary dynamics of two strategies. To provide an example of evolutionary dynam-

ics and introduce some useful notation, we consider a population consisting of two types play-

ing iPD with strategies: s1 = (1, 0, 0, 1; 1, 0, 0, 1; 0, 0, 0, 0), s2 = (0, 0, 0, 0; 0, 0, 0, 0; 0, 0, 0, 0)

(recall that we write 0 instead of ε and 1 instead of 1 − ε for ε = 0.001; see Results, section

Transparent games with memory: evolutionary simulations) and initial conditions x1(1) =

x2(1) = 0.5. That is, the first type plays the “Win–stay, lose–shift” (WSLS) strategy, and the sec-

ond type (almost) always defects (uses the AllD strategy). We set p11
see ¼ p12

see ¼ p21
see ¼ p22

see ¼ psee.

Note that since p11
see; p

22
see � 0:5 and p12

see þ p21
see � 1, it holds psee� 0.5. Given psee we can com-

pute a transition matrix of the game using (9) and then calculate the expected payoffs for all

possible pairs of players ij using (10). For instance, for psee = 0 and ε = 0.001 we have

E11 ¼ 2:995;E12 ¼ 0:504;E21 ¼ 2:999;E22 ¼ 1:003:

This means that a player of the WSLS-type on average gets a payoff E11 = 2.995 when playing

against a partner of the same type, and only E12 = 0.504, when playing against an AllD-player.

The fitness for each type is given by

f1ðtÞ ¼ x1ðtÞE11 þ x2ðtÞE12 ¼ 2:995x1ðtÞ þ 0:504x2ðtÞ;

f2ðtÞ ¼ x1ðtÞE21 þ x2ðtÞE22 ¼ 2:999x1ðtÞ þ 1:003x2ðtÞ:

Since f2(t)> f1(t) for any 0< x1(t), x2(t)< 1, the AllD-players take over the whole population

after several generations. Dynamics of the type frequencies xi(t) computed using (11) shows

that this is indeed the case (Fig 9A). Note that since E21 > E11 and E22 > E12, AllD is garanteed

to win over WSLS for any initial frequency of WSLS-players x1(1). In this case one says that

AllD dominates WSLS and can invade it for any x1(1).

As we increase psee, the population dynamics changes. While for psee = 0.2 AllD still takes

over the population, for psee = 0.4 WSLS wins (Fig 9A). This can be explained by computing

the expected payoff for psee = 0.4:

E11 ¼ 2:995;E12 ¼ 0:628;E21 ¼ 2:500;E22 ¼ 1:003:

Hence f1(t)> f2(t) for 0� x2(t)� 0.5� x1(t)� 0, which explains the observed dynamics. Note

that here E11 > E21, while E12 < E22, that is when playing with WSLS- and AllD-players alike

partners of the same type win more than partners of a different type. In this case one says that

WSLS and AllD are bistable and there is an unstable equilibrium fraction of WSLS players

given by

h1 ¼
E22 � E12

E11 � E12 � E21 þ E22

: ð12Þ
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We call hi an invasion threshold for type i, since this type takes over the whole population for

xi(t)> hi, but dies out for xi(t) < hi. To illustrate this concept, we plot in Fig 9A the invasion

threshold h1 as a function of psee for WSLS type playing against AllD.

The third possible case of two-types dynamics is coexistence, which takes place when E11 <

E21, E12 > E22, that is when playing against a player of any type is less beneficial for a partner

of the same type than for a partner of a different type. In this case the fraction of a type given

by (12) corresponds to a stable equilibrium meaning that the frequency of the first type x1(t)
increases for x1(t)< h1, but decreases for x1(t)> h1.

Evolutionary simulations for transparent games. Theoretical analysis of the strategies in

repeated transparent games is complicated due to the many dimensions of the strategy space,

which motivates using of evolutionary simulations. For this we adopt the methods described

in [9, 24]. We do not use here a more modern adaptive dynamics approach [84, 85] since for

high-dimensional strategy space it would require analysis of a system with many equations,

complicating the understanding and interpretation of the results.

Each run of simulations starts with five player types having equal initial frequencies: n(1) =

5, x1(1) = . . . = x5(1) = 0.2. Following [24], strategy entries si
k with k = 1, . . ., 12 for each player

type i are randomly drawn from the distribution with U-shaped probability density, favouring

probability values around 0 and 1:

rðyÞ ¼ pðyð1 � yÞÞ� 1=2 ð13Þ

for y 2 (0, 1). Additionally, we require si
k 2 ½ε; 1 � ε�, where ε = 0.001 accounts for the mini-

mal possible error in the strategies [24]. The fact that players cannot have pure strategies and

are prone to errors is also closely related to the “trembling hand” effect preventing players

from using pure strategies [24, 86]. We performed evolutionary simulations for various trans-

parencies with psee = 0.0, 0.1, . . ., 0.5.

The frequencies of strategies xi(t) change according to the replicator Eq (11). If xi(t)< χ,

the type is assumed to die out and is removed from the population (share xi(t) is distributed

Fig 9. Evolutionary dynamics of iPD-population consisting of two types of players: With WSLS and AllD

strategies. (A) Initially, both types have the same frequency, but after 40 generations the fraction of WSLS-players x1(t)
converges to 0 for probabilities to see partner’s choice psee = 0.0, 0.2 and to 1 for psee = 0.4, 0.5. (B) This is due to the

decrease of the invasion threshold h1 for WSLS: while h1 = 1 for psee = 0 (AllD dominates WSLS and the fraction of

WSLS-players unconditionally decreases), AllD and WSLS are bistable for psee > 0 and WSLS wins whenever x1(t)>h1.

Arrows indicate whether frequency x1(t) of WSLS increases or decreases. Interestingly, h1 = 0.5 holds for psee� 1/3,

which corresponds to the maximal uncertainty since the three cases (“Player 1 knows the choice of Player 2 before

making its own choice”; “Player 2 knows the choice of Player 1 before making its own choice”; “Neither of players

knows the choice of the partner”) have equal probabilities.

https://doi.org/10.1371/journal.pcbi.1007588.g009
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proportionally among the remaining types); we follow [9, 24] in taking χ = 0.001. Occasionally

(every 100 generations on average to avoid strong synchronization), new types are entered in

the population. The strategies for the new types are drawn from (13) and the initial frequencies

are set to xi(t0) = 1.1χ [24].

Supporting information

S1 Note. Transparent games and reaction times distributions.

(PDF)

S2 Note. Transparent iterated Prisoner’s Dilemma with a restricted strategy space.

(PDF)

S1 Fig. Distributions of total shares in the population over all generations for 80 most per-

sistent player types over the 80 runs of evolutionary simulations. (A) for iterated Prisoner’s

Dilemma (iPD) and (B) for iterated (Anti-)Coordination Game (i(A)CG). The central mark

indicates the median, and the bottom and top edges of the box indicate the 25th and 75th per-

centiles, respectively. The whiskers extend to the most extreme data points not considered out-

liers, and the outliers are plotted individually using the ‘+’ symbol. The higher total shares of

the types are, the more stable the dynamics in the population is. While stability varies with

transparency for both games, the drop of stability in iPD for psee� 0.4 is especially noticeable.

Indeed, in highly transparent iPD any strategy is sufficiently “predictable”, which allows a

best-response strategy to replace it in a population. Such best-response strategies can be gener-

ally weak and short-living, see for example treacherous WSLS described in Fig 5 (main text).

Note that stability increases considerably for psee� 0.4 in i(A)CG, which reflects the fact that

Leader-Follower strategy becomes evolutionary stable for high transparency.

(TIF)

S2 Fig. Generalized payoff matrix of (anti-)coordination games and its particular cases:

(A)CG, Leader, and Hawk-Dove, expressed as ordinal payoffs.

(TIF)
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