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Mouse models are vital for preclinical research on Alzheimer’s disease (AD) pathobiology.
Many traditional models are driven by autosomal dominant mutations identified from
early onset AD genetics whereas late onset and sporadic forms of the disease are
predominant among human patients. Alongside ongoing experimental efforts to improve
fidelity of mouse model representation of late onset AD, a computational framework
termed Translatable Components Regression (TransComp-R) offers a complementary
approach to leverage human and mouse datasets concurrently to enhance translation
capabilities. We employ TransComp-R to integratively analyze transcriptomic data
from human postmortem and traditional amyloid mouse model hippocampi to identify
pathway-level signatures present in human patient samples yet predictive of mouse
model disease status. This method allows concomitant evaluation of datasets across
different species beyond observational seeking of direct commonalities between
the species. Additional linear modeling focuses on decoupling disease signatures
from effects of aging. Our results elucidated mouse-to-human translatable signatures
associated with disease: excitatory synapses, inflammatory cytokine signaling, and
complement cascade- and TYROBP-based innate immune activity; these signatures
all find validation in previous literature. Additionally, we identified agonists of the Tyro3 /
Axl / MerTK (TAM) receptor family as significant contributors to the cross-species innate
immune signature; the mechanistic roles of the TAM receptor family in AD merit further
dedicated study. We have demonstrated that TransComp-R can enhance translational
understanding of relationships between AD mouse model data and human data, thus
aiding generation of biological hypotheses concerning AD progression and holding
promise for improved preclinical evaluation of therapies.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia,
characterized by loss of cognitive functions such as memory
and the presence of hallmark amyloid and tau histopathologies
in the brain. AD is associated with aging, with the majority
of patients presenting with disease after the age of 65. In
2018, there were approximately 30 million diagnosed cases of
AD worldwide, with 82 million cases projected by 2030 (von
Schaper, 2018). The projected increase in cases is, in part,
indicative of the increase of AD prevalence coming about with
increased age of the global population. Understanding of disease
progression is currently limited, and the majority of existing,
FDA-approved therapies for AD only provide symptomatic relief
(von Schaper, 2018).

AD mouse models are an important piece of both research
toward understanding AD pathobiology and preclinical
evaluation of resulting therapies. However, there are limitations
with the existing AD mouse model landscape. The majority of
existing AD mouse models are based on mutations identified
in Early Onset Alzheimer’s Disease (EOAD). EOAD refers
to subtypes of AD that present before the age of 65. Most
EOAD cases can also be classified as familial or dominant
inheritance forms of the disease that commonly involve an
aggressive mutation(s) along the hallmark amyloid cascade
to account for disease onset. Examples of relevant amyloid
mouse model strains include the TAS10 (APP KM670/671NL),
TPM (PSEN1 M146V), TASTPM (APPswe, PSEN1 M146V)
and 5XFAD (APPswe, APP I716V, APP V717I, PSEN1 M146L,
PSEN1 L286V) models (Richardson et al., 2003; Howlett et al.,
2004; Oakley et al., 2006). Additionally, there are mouse models
such as the 3xTg (APPswe, MAPT P301L, PSEN1 M146V)
model which combine amyloid and tau mutations (Oddo et al.,
2003). Each of these individual mouse models incompletely
recapitulates known AD outcomes. For example, amyloid
precursor protein (APP) models demonstrate amyloid plaque
deposition and peri-plaque synapse disruption, but there is
generally a lack of other critical features of the disease such as
neurofibrillary tangle (NFT) formation and loss of synapses and
neurons. Tau models show aggregated mutant tau, which has
a different conformation than the wild type tau that makes up
Alzheimer tangles, and neuronal loss but an absence of amyloid
plaque deposition.

Amyloid and tau are necessary features of AD, and there is
utility resulting from the decoupled amyloid and tau phenomena
in amyloid-specific and tau-specific mouse models. However,
the clinical reality is that EOAD comprises only a very
small percent of human AD cases (Holtzman et al., 2011).
The more common forms of AD are classified as late onset
(after the age of 65) and sporadic, meaning that there are
not immediately clear autosomal dominant mutations driving
disease. A major patient risk factor of late onset AD (LOAD)
is considered to be aging itself (De Strooper and Karran, 2016;
Hargis and Blalock, 2017).

To further complicate the utility of amyloid and tau mouse
models, previous literature has shown that the presence of
amyloid plaques and NFTs are insufficient to completely

account for clinical symptoms of cognitive decline. Plaques
correlate quite poorly with cognitive scores; tangles and
their distribution are more closely correlated with both
neuronal loss and cognitive impairment, but there remains
a good deal of unaccounted cognitive decline even after
taking tangles into account. In some instances, Perez-
Nievas et al. (2013) identified resilient individuals who
were histopathologically positive for substantial amyloid
plaques (10D5 antibody) and tau tangles (PHF-1 antibody)
but negative for clinical symptoms of dementia. The authors
found that other markers such as glial activation as measured
by GFAP- and CD86-positive staining better correlated with
clinical outcomes.

There are continued experimental efforts to improve the
fidelity of AD mouse models. For example, Cruz et al. (2003)
developed the CK-p25 mouse, a model with inducible over-
expression of p25 that drives Cdk5 kinase dysregulation and
changes in APP processing. There are also multiple AD mouse
models based on high risk genetic factors identified through
genome-wide association studies (GWAS) for late onset forms of
AD. For example, Model Organism Development and Evaluation
for Late-onset Alzheimer’s Disease (MODEL-AD) is an effort
to generate more publicly available AD mouse models. They
have utilized recent genetic studies suggesting that minor alleles
in dozens of genes contribute to risk of AD. To date, the
consortium has developed mouse models carrying variants of
ABCA7, APOE (e.g., e4), CEACAM1, IL1RAP, PLCG2, and
TREM2 to better mimic human LOAD (Reardon, 2018; Oblak
et al., 2020).

Synergizing with novel mouse model development, there
are experimental efforts to better characterize the effects of
diverse genetic backgrounds on EOAD mutation effects. In
Neuner et al. (2019), the authors generated F1 hybrids by
crossing the EOAD-mutation based 5XFAD mouse with the
BXD reference panel of mice. The resulting F1 mice were
referred to as AD-BXD mice (Neuner et al., 2019). The
authors focused on characterizing the phenotypic variability
that resulted from subtle difference in genetic background.
For example, the authors identified resilience toward AD
transgenes in C57BL/6J background mice. The authors
work points toward understanding the effects of human
genetic variability on AD risk, development, progression,
and presentation.

Computation offers additional avenues to address strengths
and limitations of existing AD mouse models via cross-
species analysis. There is considerable previous work applying
computational analysis toward AD datasets (Miller et al.,
2010; Zhang et al., 2013; Burns et al., 2015; Friedman et al.,
2018; Mostafavi et al., 2018; Wan et al., 2020). Here, we will
discuss studies that specifically combine mouse model and
human postmortem datasets and highlight studies employing
different strategies for cross-species analysis. In Burns et al.
(2015), the authors identified mouse model datasets across
multiple neurodegenerative diseases and compared gene set
enrichment analysis (GSEA) results from each dataset to that
of human datasets for AD, Parkinson’s Disease, Huntington’s
Disease, and Amyotrophic Lateral Sclerosis. The observational
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FIGURE 1 | Interspecies translation modeling identifies synergistic molecular signatures that are important in both human and mouse model datasets. The data are
pre-processed for normalization and matching of cross-species homologs. The mouse and human data are then combined in a two-step process, which is a
modified version of Translatable Components Regression (TransComp-R; Step 1, Step 2). Lastly, the combined data are evaluated to discern the effects of mouse
age from mouse disease state (Step 3).
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comparison found that gene set enrichment signatures were
shared across human neurodegenerative disease datasets but
poorly translated between mouse and human analyses. In
Friedman et al. (2018), the authors leveraged the increased
granularity accessible with mouse model transcriptomics in
their cross-species analysis. The authors used microglia and
myeloid-specific mouse datasets spanning AD and other
acute and chronic CNS disease states. They first applied
statistical meta-analysis, specifically hierarchical clustering
of differentially expressed genes, to identify mouse-specific
modules and then evaluated bulk human transcriptomic data
for these signatures at the level of orthologous genes with
mixed results. In a recently published resource, Wan et al.
(2020) conducted a meta-analysis aggregating publicly available
human and mouse datasets spanning various neurodegenerative
diseases and brain regions in a species specific fashion. The
authors applied multiple co-expression methods including
WGCNA to identify human-specific modules. Mouse datasets
were analyzed for differential gene expression comparisons.
The authors identified human modules that overlapped with
mouse analysis across AD and other neurodegenerative
diseases, and modules were enriched for neuronal genes and
microglial genes.

In this study, we aimed to conduct cross-species analysis
that leverages existing mouse model datasets by modeling
human and mouse data concomitantly in integrated manner.
We employed an interspecies analysis method previously
developed in our group, Translatable Components Regression
(TransComp-R; Brubaker et al., 2020). Using TransComp-R,
we concurrently analyzed transcriptomic data from human
postmortem brain and traditional amyloid AD mouse model
hippocampi to identify pathway-level signatures present
in human patient samples yet predictive of mouse model
disease status. Additionally, we incorporated linear modeling
to discern the effects of disease status from aging. Our
workflow is designed to quantitatively identify synergistic
enrichment across mouse and human datasets that might not
be identified when observationally seeking direct commonalities
between the species.

TransComp-R analysis of amyloid mouse model and
postmortem human hippocampal data resulted in effective
model building and identification of mouse-to-human
translatable signatures associated with disease status. Specifically,
we identified signatures associated with excitatory synapses,
inflammatory cytokine signaling, and complement cascade-
and TYROBP-based innate immune activity. We were able to
validate these four signatures in previous AD literature. We
also noted that mouse model genetics can confound statistical
enrichment of signatures that requires careful delineation
between mathematical and biological enrichment, as seen during
follow-up analysis of the inflammatory cytokine signaling
signature. We also identified agonists of the Tyro3 / Axl /
MerTK (TAM) receptor family as important contributors to
the complement cascade and innate immune signatures; the
TAM family of receptors and ligands is lesser studied in the
AD literature. Ultimately, we demonstrated the translational
utility of TransComp-R for identification of cross-species

signatures, its value toward generating biological hypotheses
in the context of AD progression, and its potential for rational
selection of multiple AD mouse models during preclinical
evaluation of therapies.

MATERIALS AND METHODS

Dataset Selection and Processing
Publicly Available Dataset Selection
Human postmortem brain tissue and mouse model
transcriptomic data used in this study were from publicly
available datasets. We obtained the datasets from the Gene
Expression Omnibus (GEO), and the specific datasets
accession numbers were GSE1297 (human), GSE48350
(human), and GSE64398 (mouse) (Edgar et al., 2002; Blalock
et al., 2004; Berchtold et al., 2008, 2013; Cribbs et al., 2012;
Matarin et al., 2015).

When selecting datasets, we first searched GEO for bulk
transcriptomic datasets from human postmortem brain tissue
and AD mouse models. We used matching brain region, mouse
sample number, sequencing methodology, and sequencing
platform as criteria for evaluating datasets available through
GEO. The ultimate selection of the two human and one
mouse dataset was based on the presence of samples from the
hippocampus across all three studies, the use of microarray as
the common sequencing technique, the availability of multiple
mouse model samples on the same microarray sequencing
platform, and higher sample number per group relative to other
studies satisfying similar other criteria.

For GSE1297, there were 31 total samples submitted by
the original study. Categorical disease status (control, incipient,
moderate, and severe), neurofibrillary tangle score, Braak
score, age, Mini-Mental State Examination score, sex and,
post mortem interval information was provided for each
patient. For GSE48350, there were 253 samples submitted
by the original study. The samples spanned the postcentral
gyrus, the superior frontal gyrus, the hippocampus, and the
entorhinal cortex. Our study used 62 samples specific to the
hippocampus. Binary disease status, sex, and age information
were provided for each patient. For GSE64398, there were
333 samples submitted by the original study. The samples
spanned the cerebellum, cortex, and hippocampus and included
wild-type, TAS, TPM, heterozygous TASTPM, homozygous
TASTPM, and Tau P301L mice. For this study, we selected
hippocampal samples from wild-type, heterozygous TASTPM,
and homozygous TASTPM mice. We selected the TASTPM
mouse based on greater sample number and more pronounced
histopathological progression with age as compared to the
other three mouse models included in the original study.
Genotype, sex, and age (2, 4, 8, 18-months) information were
provided for each mouse.

Data Pre-processing and Normalization
We downloaded the raw gene expression data for each study and
normalized the datasets via robust multichip averaging. In the
case of GSE48350 and GSE64398, we conducted normalization
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using only hippocampal samples and not all samples available in
the original studies; the full datasets included samples from other
brain regions (e.g., entorhinal cortex, postcentral gyrus, superior
frontal gyrus). We retrieved data using GEOquery and conducted
initial data processing using affy and beadarray (Gautier et al.,
2004; Davis and Meltzer, 2007; Dunning et al., 2007).

Differential Gene Expression Analysis
Following normalization, we evaluated human study GSE48350
for differential gene expression to generate a permissive list of
differentially expressed genes (DEGs) for subsequent principal
component analysis (PCA). Genes were considered to be in the
list of DEGs if they had a Benjamini-Hochberg corrected p-value
less than 0.20. We did not use fold change criteria because genes
with a subtle difference between disease and control groups in
one species might have a more pronounced trend in the other,
a potentially biologically meaningful relationship we wanted
to capture with our model. GSE48350 phenotypic and clinical
outcome data provided with the study included age, sex, and
a binary disease identifier (i.e., control or AD). As a result, we
included age, sex, and binary disease status in the model for
DEG evaluation and selected genes based on their differential
expression in disease.

Human and Mouse Homolog Evaluation
The cross-species analysis workflow employed combines mouse
gene expression with human gene loadings from PCA. This
requires that all human genes included in the PCA model have
mouse homologs. As a result, we filtered for human-to-mouse
homologs prior to building the human PCA models using the
Mouse Genome Informatics database and the same homolog
conversion approach described in Kumar et al. (2018) (Blake
et al., 2017). In the case that multiple probes mapped to a gene
within a given species, the median expression across all probes
for the gene was used.

Translatable Component Regression
Brief Overview of the Translatable Components
Regression Workflow
TransComp-R is a method for concomitant evaluation of two
different datasets that was previously developed in the lab
(Brubaker et al., 2020). Code from the initial study is available
via MATLAB File Exchange1, and the TransComp-R-specific
analyses in this study were also conducted using MATLAB
(2018b). We will describe the method here with a focus on
describing (1) changes to the workflow that were unique to this
study and (2) where the human and mouse datasets were utilized
within TransComp-R, since the workflow is directional.

To briefly describe the workflow, we first used a human
dataset to generate a PCA model. Then, we projected a mouse
dataset into the human PCA space. This combined the two
cross-species datasets. The mouse sample scores along the
human principal components (PCs) were then regressed against
the disease status of the mouse samples. The regression step
involved LASSO feature selection followed by linear regression to

1https://www.mathworks.com/matlabcentral/fileexchange/77987-transcompr

identify human model PCs predictive of mouse disease outcomes.
These PCs were considered to be cross-species translatable
components and were the focus of follow-up pathway analysis
and biological interpretation.

Principal Component Analysis
PCA was conducted to generate a separate model for each
human dataset. A permissive list of DEGs was used as input for
GSE48350, and all genes with human-to-mouse homologs were
used as input for GSE1297. Prior to model construction, each
study was internally normalized by z-score. To avoid overfitting,
the final PCA models were capped to fewer PCs than the original
models. We selected the number of PCs in the final models based
on the more restrictive of two criteria – (1) the number of PCs
that cumulatively explained at least 95 percent of the total percent
variance of the model or (2) only PCs that individually each
explained at least one percent of the total percent variance of
the human model.

Linear Model Building With Human Dataset
Phenotypes
Prior to projecting mouse samples into the human PCA space,
we generated linear models to connect the human PCs to the
human phenotypes in the original studies. Age, sex, and disease
status were analyzed alongside human patient scores from PCA
via linear modeling followed by ANOVA analysis (R methods
package). A linear model was constructed for each of the human
principal components to identify PCs that explained the most
variance with regard to each of the three types of patient
identifiers included. Disease outcome was binary for GSE48350
and categorical for GSE1297.

Projecting Mouse Samples Into Human Principal
Component Analysis Space
Mouse samples were projected into the existing human PCA
space, leveraging homolog matches. Prior to projection, the gene
expression for the mouse dataset was internally normalized via
z-scoring. Separate normalization is necessary as the human and
mouse datasets possess differences including but not limited to
species and sequencing platform. This normalization approach
allows for us to evaluate relative separation of mouse samples in
a PCA space generated using data from a different species.

Translatable Component Selection
We sought to identify translatable components by evaluating the
relationship between mouse samples scores along human PCs
and the mouse sample outcomes. This was a two-step process.
First, we conducted LASSO feature selection using a workflow
similar to Ackerman et al. (2018) to regress mouse sample scores
on human PCs against mouse outcomes to reduce the number
of human PC features (Ackerman et al., 2018). We partitioned
the data for 5-fold cross validation using cvpartition (MATLAB),
which divides the data into k-folds with representation of each
phenotype class in each fold when possible. Within each fold,
we conducted LASSO ten times using features (i.e., mouse scores
on human PCs) from only the training set samples. At the end
of 50 runs of LASSO using different subsets of the data, human
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PCs that were selected in at least 40 percent of runs were utilized
for linear model building. In linear model building, only PCs
that were selected via LASSO were included for the final model.
Because of this model criteria, LASSO determined the number of
human PCs that were ultimately included in the final translatable
model, and the number of PCs in the final model could and
did differ between different mouse-to-human case studies. In
order to generate an evaluative metric for the final model, we
conducted leave-one-out cross validation and calculated root
mean square error (RMSE) using the predicted mouse outcome
for each sample when it was held out as the test data.

Translatable component selection requires the use of a
phenotype vector. Mouse sample outcomes were encoded
numerically as follows. The TASTPM mouse samples included
both heterozygous and homozygous samples in the original
study. As such, wild-type control mice were assigned a zero value,
heterozygous TASTPM mice assigned as one, and homozygous
TASTPM mice assigned as two.

Evaluating Statistical Significance
The final model was compared against two types of null
models to determine the statistical significance of the results.
First, we generated random PC models. In this type of null
model, we randomly selected a size-matched set of PCs and
evaluated the RMSE of linear models built using the randomly
selected PCs. We fixed the number of PCs to be identical
to the true model, and, at most, 1000 null models were
generated to evaluate significance. Second, we generated models
to test phenotype permutation. In this type of null model,
we scrambled the phenotype vector and then went through
the full LASSO feature selection and linear model building
process described above using the random phenotype vector.
Since the phenotype vector is comprised of zeroes, ones, and
twos, we evaluated the scrambled phenotype vectors to ensure
that each null model started with a unique phenotype vector.
We generated 100 null models of this type. Null models were
compared to the true model using leave-one-out RMSE values.
The value of the true RMSE relative to the distribution of
null RMSE values was used to assign the true model an
empirical p-value.

Linear Modeling to Account for Age
The TransComp-R workflow as described thus far is supervised
only in the context of mouse disease status. However, the
original mouse model study included samples spanning 2,
4, 8, and 18 months of age. We employed linear modeling
to select translatable PCs that had disease-relevant signatures
distinct from aging. We built models on a PC-by-PC basis
to determine whether mouse disease status could explain
information encoded in the mouse sample scores along a given
PC that was distinct from information already explained by
mouse sample age. Practically, this involved building a pair
of linear models for each PC. The first model, which we
will call the null model, was built using age as the only
factor. In the second model, which we call the alternative
model, age and disease status were encoded as factors. We

then compared the null and alternative models using an
F-statistic test.

Mathematically, this workflow can be represented as follows:

Null : PCij ∼ 1++Agei

Alternative : PCij ∼ 1+ Agei + Diseasei

F =
(RSSnull − RSSalt)/(palt − pnull)

(RSSalt)/(N − palt − 1)

where PCij indicates mouse sample i’s value on human PC j, F
indicates the F-statistic from comparing the null and alternative
models, alt is an abbreviation for alternative model, RSS is
residual sum of squares, N is the number of samples, and p is
the degrees of freedom.

Pathway Enrichment Analyses
Translatable components that were identified via TransComp-
R modeling and linear modeling were then evaluated for
biological interpretation. For pathway enrichment analysis, we
conducted statistical over-representation analysis. We evaluated
the enrichment of pathway members in the genes at the
top and bottom 20 percent of a translatable PC’s loadings
relative to pathway membership in the gene list for the PC
as a whole. We started by evaluating each translatable PC for
enrichment of a list of 68 broad pathways. The pathways, listed
in Supplementary Table 1, included the pre-curated list of
49 Hallmark pathways from MSigDB as well as pathways that
implicated a specific central nervous system cell type, amyloid
cascade processes, or immune system processes. P-values from
the Fisher’s exact test for statistical over-representation were
Benjamini-Hochberg corrected.

When enriched pathways were identified, they were further
evaluated in two ways. First, we generated a follow-up list of
more targeted pathways based on the enriched broad pathway
to derive more detail regarding the enrichment. Additionally,
we looked at the specific genes driving enrichment. Statistical
over-representation analyses provided biological interpretation
specific to the human model, as the PC loadings themselves do
not contain any information derived from the mouse models. As
a result, we looked at mouse gene expression of the genes driving
statistical over-representation.

For gene-level analysis, we focused on specific genes guided
by statistical significance in mouse and therapeutic relevance
in human. For statistical significance, we conducted two-
way t-tests between wild-type, heterozygous TASTPM, and
homozygous TASTPM mice and identified genes that had at
least one intergroup, significant comparison relative to WT
samples following Benjamini-Hochberg correction for multiple
hypothesis testing (FDR < 0.05). For therapeutic relevance
in human, we evaluate genes with 1-to-1 human-to-mouse
homologs using the Universal Protein Resource (UniProt)
database (Bateman et al., 2021). We input statistically significant
genes via ‘Gene Name’ and filtered the resulting, mapped
entries to those that were ‘Reviewed’ and specific to human.
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We exported results with ‘Subcellular Location’ to identify
secreted factors as a proxy for therapeutically relevant receptor-
ligand interactions.

RESULTS

Interspecies Translation Successfully
Separates Mouse Samples in Human
Principal Component Analysis Space
We obtained publicly available human hippocampal postmortem
brain tissue transcriptomics (GSE48350, GSE1297) and mouse
model hippocampal transcriptomics (GSE64398) for cross-
species analysis. The publicly available mouse model dataset
included transcriptomics for both heterozygous and homozygous
mice with APP K670N/M671L and PSEN1 M146V mutations
at 2, 4, 8, and 18 months of age (Matarin et al., 2015). The
mouse model with APP and PSEN1 mutations was the TASTPM
model specifically and demonstrated robust histopathological
progression with age. Homozygous TASTPM mice were reported
to show amyloid plaque development by 4 months and
demonstrated faster histopathological progression of amyloid
deposition as compared to heterozygous TASTPM mice in the
original study. The TASTPM mouse model samples evaluated
in this study are driven by mutations identified in dominantly
inherited forms of AD, as a goal of this study was to leverage the
existing wider availability of EOAD mouse models as compared
to LOAD mouse models.

To perform cross-species analysis, we utilized a modified
version of the translatable component regression (TransComp-
R) modeling methodology (Brubaker et al., 2020). The integrative
analysis tool involves a multi-part workflow that is conceptually
illustrated in Figure 1. As compared to previous approaches that
employed observational comparison between separate human
and mouse analyses, TransComp-R allows for concomitant
analysis of a human and mouse dataset and leverages synergy
across cross-species datasets.

In order to combine a human and a mouse dataset for
concurrent analysis, we generated a human principal component
analysis (PCA) space and subsequently projected in a mouse
dataset (Figure 1, Step 1). We selected this TransComp-R
directionality such that we could identify biological signatures
present in human patient samples and effective for the separation
of mouse samples based on disease status. This translationally
points us toward rational selection of multiple disparate mouse
models for preclinical evaluation of therapies.

Implementing Step 1 (Figure 1) of the TransComp-R pipeline,
we generated human PCA spaces for each of the two publicly
available human transcriptomic datasets used in this study. PCA
is an unsupervised technique that collapses a high dimensional
dataset such that samples can be represented using a smaller
set of principal components (PCs). For GSE48350, which will
be referred to as human cohort 1 and abbreviated as h1
hence forth, the high dimensional input to PCA was a study-
specific list of differentially expressed genes (DEGs). Samples
were identified categorically as control or AD in the original

study, and DEGs were defined as those different between
control and AD patients based on the criteria described in
the Methods section. The DEG workflow generated 14,698
features (genes), which is beyond two orders of magnitude
greater than the number of hippocampal samples available
in the study. As a result, the final DEG list for this
study was trimmed to 6,200 genes, on sorting by adjusted
p-value. Following human-to-mouse homolog matching, there
were 4,033 genes.

We generated a PCA model for the first human cohort and
reduced the dimensionality of the dataset from 4,033 DEGs such
that we could represent the 62 human samples along 13 PCs.
The 62 human samples are visualized in a biplot along the two
highest variance PCs, PC1_h1 and PC2_h1 (Figure 2A). There
is loose separation of the samples based on binary disease status
along PC1_h1, with disease samples trending toward the left
of the PC. The disease relevance of PC1_h1 was confirmed via
linear modeling. We constructed a linear model to explain patient
sample scores for each of the 13 PCs based on patient age, sex,
and disease status. The resulting t-values for each of the three
patient outcomes are shown alongside the associated ANOVA-
derived p-values in Figure 2B. In addition to PC1_h1, PC11_h1
is statistically significant with regard to sample disease status
information encoded on the PC.

We analyzed transcriptomic data from a second, independent
patient cohort (GSE1297), which will henceforth be referred
to as human cohort 2 and abbreviated as h2. For the
second human cohort, we initialized the PCA space using
all genes with human-to-mouse homologs as inputs (8,882
genes). This allowed for a more exploratory analysis compared
to the cohort 1 PCA space in which the permissive DEGs
introduced a supervised, disease bias in the initial gene input.
We reduced the dimensionality of this dataset and generated
a PCA model with 17 PCs. The 31 human samples are
visualized in a biplot using the two highest variance PCs,
PC1_h2 and PC2_h2 (Figure 2C). There is not pronounced
separation of the human samples based on disease category on
PC1_h2 and PC2_h2, although regression suggests that there
is some categorical separation along the PCs (Figure 2D).
Linear model building using age, sex, and categorical disease
status for each of the PCs additionally identified PC7_h2 as
important in disease. There is more pronounced separation of
the samples on a categorical basis along PC1_h2 and PC7_h2
(Supplementary Figure 1B).

Having generated human PCA spaces with each of the cohorts,
we proceeded to the dataset combination portion of Step 1 of the
TransComp-R pipeline and projected the mouse samples into the
PCA space (Figure 1, Step 1). Proper normalization of the data
is important at this point of the TransComp-R pipeline. Since
the mouse model transcriptomics were obtained in a separate
study and using a different microarray sequencing platform, we
normalized the mouse model data separately prior to projection.
As such, Step 1 of the TransComp-R pipeline combines z-scored
mouse model expression data with the PCA loading values for
each of the corresponding genes from the human data. This
keeps the normalization steps separate for each study while still
allowing their combination.
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FIGURE 2 | Postmortem hippocampal brain tissue transcriptomics used to generate human Principal Component Analysis models. (A) Principal component biplot
showing 62 hippocampal human samples (GSE48350, human cohort 1) in PC1_h1, PC2_h1 space. The original, feature-level input to the PCA was genes
differentially expressed between control (blue) and disease (red) patients at a permissive threshold of Benjamini-Hochberg adjusted p-value < 0.20 with no fold
change criteria. (B) Linear regression relating human sample scores along each human PC with age, sex, and disease reported for human cohort 1 identified PCs
associated with patient outcomes. A positive t-value indicates association with higher numerical age and males for the age and sex categories, respectively.
(C) Principal component biplot showing 31 hippocampal human samples (GSE1297, human cohort 2) in PC1_h2, PC2_h2 space. The original, feature-level input to
the PCA was all genes with human-to-mouse homologs. (D) Linear regression relating human sample scores along each human PC with age, sex, and disease
reported for human cohort 2 identified PCs associated with patient outcomes. A positive t-value indicates association with higher numerical age and males for the
age and sex categories, respectively. * < 0.05, ** < 0.01, *** < 0.001.

Many previous cross-species analyses implement meta-
analysis by aggregating datasets on a species-specific basis. We
avoid combining datasets within a given species. Instead, we
concurrently analyze a single human dataset and a single mouse
dataset in their relatively normalized states within each iteration
of TransComp-R. This results in separate case studies on a
dataset-by-dataset basis and focuses on comparison of biological
signature enrichment across cross-species case studies.

As such, we projected samples from the TASTPM mouse and
corresponding controls into the PCA space for the first human
cohort for our first TransComp-R case study. In Figure 3A,
the percent variance explained by each of the 13 human PCs
for the original human data is illustrated. The percentage of
explained variance decreases with increasing PC number. We also
calculated the variance of the matrix of mouse gene expression
combined with human PC loadings and determined the percent
accounted for by each of the human PCs within the projected
matrix. The variance explained by each human PC within

the projected mouse matrix does not monotonically decrease
with increasing PC number. For example, focusing on PC2_h1,
PC3_h1, and PC4_h1, we see that the PCs explain decreasing
percent variance for the human dataset and increasing percent
variance in the projected mouse matrix. We also see that there are
intermediate PCs such as PC8_h1, PC9_h1, and PC10_h1, that
explain a sizable amount of projected mouse dataset variance.

Using the projected mouse samples, we proceeded to Step 2
of the TransComp-R workflow to identify translatable human
PCs (Figure 1). We undertook a two-step selection process to
determine which human PCs encoded information that was
both human disease relevant and important for mouse model
outcomes. First, we used LASSO feature selection to identify a
subset of human PCs that, when combined with mouse sample
expression, were important for delineating categorical mouse
sample outcome. Specifically, we looked to identify human PCs
that effectively separated wild-type (WT) control mice, TASTPM
mice that were heterozygous for APPswe and PSEN1 mutations
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FIGURE 3 | TransComp-R modeling successfully identifies translatable, human principal components that are important for TASTPM mouse outcomes. (A) Percent
variance explained by each human PC for the original human dataset used to generate the PCA model (GSE48350, cohort 1; green) and the projected mouse
dataset (turquoise). (B) Frequency of human PC (PC_h1) selection across ten rounds of 5-fold cross validation (CV) using LASSO feature selection based on mouse
sample outcome. Human PCs that satisfied the 40 percent selection frequency threshold are highlighted in magenta with the significance of the linear regression
model weights provided (*** < 0.001). (C) Visualizing linear model predictions on a mouse sample-by-sample basis from the final linear model with four PC inputs
across the wild type (WT), heterozygous TASTPM (HET), and homozygous TASTPM (HO) groups. (D) Results from linear modeling evaluating which PCs contain
information that is relevant for disease-status, in addition to the information encoded by sample age.

(HET), and TASTPM mice that were homozygous for the same
mutations (HO). We then used LASSO-selected PCs as the input
for the final linear model.

The two-step selection process was successfully able to identify
translatable PCs, as shown in Figure 3B. The heatmap shows
the frequency of a given PC being selected across multiple
rounds and cross validation folds of LASSO. Using a cut-off of
40 percent cumulative selection frequency, we identified 4 of
the original 13 PCs are translatable. PC2_h1, PC5_h1, PC9_h1,
and PC11_h1 (Figure 3B, highlighted in magenta), all had
significant coefficients in the final linear model as well. Since
LASSO can vary between different rounds of feature selection,
Figure 3B illustrates representative results from a single round
of feature selection. A more complete illustration of LASSO
across ten rounds of feature selection is shown in Supplementary
Figure 2F. This shows that the four translatable features that
were ultimately selected are robust between different rounds of
feature selection.

We visualized the predictions from the final linear model for
each of mouse samples used (Figure 3C). The average, linear

model predicted value for the samples increases between the
WT, HET, and HO groups and qualitatively aligns with the
true mouse sample categorical values. We do see that there is
overlap in sample prediction values between the different groups
and note that the homozygous TASTPM mice in particular
exhibit larger within group variance compared to the WT and
HET mice. Although this final linear model is not robustly
predictive of disease model state, the interspecies model still
has utility toward biological interpretation of cross-species
translatable signatures.

Furthermore, we evaluated the final model and confirmed
that the selected PCs were statistically robust and biologically
meaningful using two evaluation procedures: size-matched
models and phenotype permutation testing. Using leave-one-
out cross validation (LOO CV), we calculated an RMSE value
for the true translatable model built using PC2_h1, PC5_h1,
PC9_h1, and PC11_h1. We then compared the true RMSE
metric against null models. First, we generated size-matched
models using random combinations of PCs and found our
true model to be statistically significant (p-value < 0.014;
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Supplementary Figure 2E). This type of random test shows that
the four PCs selected by the true model encode meaningful and
unique information with regard to the disease outcome. Second,
we generated permuted phenotype models for which we shuffled
the original phenotype vector and repeated the full two-step
feature selection process. We conducted a second type of null
model building 100 times, and all 100 random runs failed at the
LASSO feature selection step. With scrambled phenotype vectors,
PCs were never selected frequently enough across runs and cross
validation folds to satisfy the 40 percent selection threshold.
Although we could not assign an empirical p-value to this second
type of model, the result still meaningfully shows that the shape
of the data is unique with regard to disease outcome. If many of
the random phenotype models had low RMSE values, we would
have to consider whether the shape of the data allows for easy
prediction of categorical outcomes.

Identification of Cross-Species Disease
Signatures, Distinct From Aging
We identified four human PCs as encoding human disease
relevant information also important for predicting mouse
sample disease status. However, mice of four different ages
were present in the dataset (2, 4, 8, and 18-months). The
original mouse model study focused age-based evaluation
on identifying transcriptomic signatures that were detectable
early relative to histopathological phenotype and evaluating
the temporal dynamics of transcriptomic signatures generally,
and this age information was not explicitly accounted for in
the TransComp-R framework alone (Matarin et al., 2015).
As such, we utilized the age information in the mouse
model dataset to evaluate the effects of age on the selected
translatable components.

To determine whether the four translatable components
identified thus far encoded disease-relevant information relative
to age, we employed linear modeling (LM) (Figure 1, Step
3). We built a pair of linear models for each component:
the first model was trained to predict mouse sample scores
on the projected component using age alone as a factor,
and the second model was trained to predict mouse sample
score using both age and disease as factors. Comparing the
two models allowed us to discern whether disease encoded
information that was unique relative to differences resulting from
sample age, resulting in a statistically significant improvement
in the second model. AD is strongly associated with aging,
and unlike in other disease areas where sample age could
be treated as a confounding factor, modeling age-dependent
effects is particularly important for AD. Thus, this modeling
step is a relevant addition to the TransComp-R workflow
in an AD context.

The results from LM analysis are shown in Figure 3D.
Of the four translatable components identified based on
mouse and human disease status, two components (PC9_h1
and PC11_h1) were also identified at a p-value threshold
of 0.01 through LM analysis. PC9_h1 and PC11_h1 are
considered to have disease-relevant information encoded
in addition to information encoded by sample age. LM

analysis does not preclude the importance of PC2_h1
and PC5_h1. Given the increased prevalence of human
AD with age and its importance in disease progression,
it is likely that there are disease relevant signatures that
tightly associate with aging. We ultimately chose to focus
on translatable components that encoded disease-relevant
information separate from changes in mouse sample age for
initial biological interpretation, as we suggested that these
components would encode particularly robust cross-species
disease signatures.

Having identified and prioritized translatable components of
interest, we next interpreted the biological signatures encoded
in these components at a model-level and a sample-level
(Figure 4A). The original PC space was generated only
using the human data, and gene loading (loosely related to
“weights”) interpretation could be viewed as a human AD-
leaning interpretation (Figure 4A, left). As such, we also
included sample-level evaluation that focused on mouse sample
expression of genes that were important within the human model
(Figure 4A, right).

Starting with model-level pathway analysis, we conducted
statistical over-representation analysis comparing all genes
in the model to genes found in the top 20 percent and
bottom 20 percent of the genes for each PC. We looked
for over-representation of gene set members at the top and
bottom of the PC relative to the full list, and we started
with a list of 68 broad pathways. The pathway list included
MSigDB’s Hallmark gene sets, gene sets implicating specific
CNS cell types, gene sets relating to the amyloid cascade
in light of the TASTPM mouse model we analyzed, and
gene sets representing both arms of the immune system
(Supplementary Table 1). The methods section details this
original list further, but an overarching goal was to start with
broad, relatively non-overlapping categories that could guide
further biological interpretation.

Figure 4B shows the results of this initial pathway enrichment
analysis. We conducted pathway enrichment analysis for all
four PCs identified through TransComp-R and first focused
on PC9_h1 and PC11_h1, which were further identified
through linear modeling. Focusing on PC9_h1 and PC11_h1,
we saw that one of the neuron-oriented gene sets, Synapse
(GO), was enriched at both the top and bottom of PC9_h1.
On PC11_h1, TNFα signaling via NFκβ was enriched at
the top of the PC.

Excitatory Synapse Pathways Are
Human Disease-Relevant and Classify
TASTPM-vs-Control Mice
Focusing on PC9_h1, we found it curious that the Synapse (GO)
gene set was enriched at both the top and the bottom of the gene
set. We curated a second list of synapse-focused gene sets. We
included gene sets for neurotransmitter-specific synapses as well
as negative and positive regulation of synaptic processes, and the
full list can be found in Supplementary Table 2. Conducting a
second statistical over-representation analysis with this targeted
list, we were able to understand that different categories of genes
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FIGURE 4 | (Continued)

Frontiers in Neuroscience | www.frontiersin.org 11 September 2021 | Volume 15 | Article 727784

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-727784 September 29, 2021 Time: 12:56 # 12

Lee et al. Cross-Species Analysis in Alzheimer’s Disease

FIGURE 4 | Biological interpretation of translatable signatures identifies excitatory synapse and TNFα signaling pathways. (A) Biological interpretation of
TransComp-R modeling results spans model- and sample-level evaluation as outlined in the workflow shown. (B) Dot plot heatmap showing pathways that are
statistically enriched at the top and bottom 20 percent of each principal component’s loadings relative to all the gene loadings for the PC. The full list of original
pathways evaluated is in Supplementary Table 1. A pathway is included in the figure if it was enriched at an FDR < 0.20 in any of the eight groups (four PCs, top
and bottom) evaluated. Dot size for pathway enrichment indicates the number of genes from the original gene set list that are also present in the PCA model and
thus available for potential enrichment. (C) PC9_h1 is enriched for the Synapse (GO) pathway at both the top and the bottom of the PC. Conducting a secondary
pathway enrichment analysis with synapse-specific pathways (full list in Supplementary Table 2) shows that glutamatergic and excitatory synapses are enriched at
the bottom of the PC while GABAergic (inhibitory) synapses are enriched at the top of the PC. Negative log10 FDR values are shown for each pathway, and
pathways are colored based on whether they were enriched at the top of PC9_h1 (red) or the bottom of PC9_h1 (blue). (D–H) TNFα signaling via NFκβ is enriched at
the top of PC11_h1. Genes that contributed to the enrichment of the pathway were evaluated in terms of z-scored mouse gene expression. Of the 20 genes driving
pathway enrichment, five genes had at least one significant t-test comparison between either the wild type (WT) and heterozygous TASTPM (HET) or WT and
homozygous TASTPM (HO) samples (* adjusted p-value < 0.05; Benjamini-Hochberg corrected for multiple hypothesis testing). The median of each group is
indicated in addition to the values for each sample.

were driving enrichment of the broad Synapse (GO) category at
the top and bottom of PC9_h1.

Glutamatergic (GO) and excitatory (GO) synapse gene sets
were enriched at the bottom of PC9_h1 while the GABAergic
(GO) synapse gene set was enriched at the top of PC9_h1
(Figure 4C). Looking at mouse samples projected onto PC9_h1,
we determined that the top of PC9_h1 was associated with
progressed disease in mice (Supplementary Figure 2A). There
was minimal overlap between the gene set members driving
the enrichment of the glutamatergic (GO) and excitatory (GO)
synapse categories (five overlapping genes relative to 47 and nine
enriched genes, respectively).

In the original study analyzing the human dataset used here,
Berchtold et al. (2013) reported extensive changes in synapse-
related genes in human AD patient samples, predominantly
trending toward down-regulation. Specifically, glutamate and
GABA receptor associated genes showed declining expression
in both AD patients and older patients. Glutamate receptor
trafficking genes were also affected. Multiple other subclasses of
neurotransmitter receptors, not all of which were identified in our
analysis, were also implicated.

The original mouse study identified synapse related changes
as associating with plaque burden (Cummings et al., 2015;
Matarin et al., 2015). Synapse-related changes at the gene level
were detectable starting at 2 months and significant starting at
4 months. The authors utilized WGCNA to identify synaptic
changes as a module of interest, and synaptic transmission,
cell-cell signaling, and transmission of nerve impulses were
subsequently identified pathways within the module. These
changes were functionally validated via patch-clamp recordings
of mouse hippocampal CA1 pyramidal neurons, and the original
work noted glutamate release probability and spontaneous
action-potential mediated activity were compromised.

Prior AD literature further confirms this biological inference.
Synapse loss and loss of synaptic gene expression have
been extensively correlated with cognitive impairment and
AD progression (DeKosky and Scheff, 1990; Terry et al.,
1991; Scheff and Price, 2003; Spires et al., 2005). Focusing
on excitatory synapses specifically, there exists excitotoxicity
theories positing that aberrant and excessive synapse excitation
via glutamate and N-methyl-D-aspartate (NMDA) receptors
results in localized neurotoxicity and could serve as an initiator
in early AD progression (Esposito et al., 2013). The interplay
and known causalities of excitotoxicity and the amyloid cascade

have been reviewed in the literature (Hynd et al., 2004).
Furthermore, Memantine is an existing FDA-approved therapy
that works as a non-competitive NMDA antagonist for AD
(Esposito et al., 2013).

Looking at the original human study, the original mouse
study, and the AD literature broadly, we were able to conclude
the following about our biological inference on synapses. This
signature was strongly present in both the original human
and original mouse studies, suggesting it is a signature that
could have been identified via observational comparison of the
datasets. This signature is also known to be AD associated
and has been considerably explored in research and therapeutic
development. While the identification of this signature via
observational comparison does not showcase the unique utility
of TransComp-R for cross-species analysis, we did consider
identification of well-known AD signatures to be positive
validation of TransComp-R as a methodology. Lastly, we note
that enrichment of these signatures here is driven by synergistic
gene expression in the human and mouse datasets, and the
mathematically identified glutamatergic and excitatory synapse
signatures directionally align with functional changes in AD
reported in the literature.

TNFα Signaling via NFκβ Is a
Cross-Species Signature Potentially
Confounded by Mouse Model Genetics
Focusing on PC11_h1 identified at the intersection of
TransComp-R and LM analysis, we saw that TNFα signaling
via NFκβ was enriched on PC11_h1. Since statistical over-
representation analysis focuses on the human data-based model,
we followed up by looking at the mouse sample expression
of genes driving enrichment of the inflammatory cytokine
signature. We first identified all 20 genes that were members of
the TNFα signaling via NFκβ gene set and had loadings in the
top 20 percent of PC11_h1. We then looked at mouse sample
gene expression for each of these genes. Conducting two-way
t-tests between WT, HET, and HO mice, we highlighted all genes
that had at least one intergroup, significant comparison relative
to WT samples in Figures 4D–H. These five genes could be
considered mouse-to-human synergistically identified genes
as they were important in the human PCA model and had
statistically significant differences in expression in mouse based
on disease status.
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In the original human cohort study, inflammatory innate
immune response was identified as a signature associated
with disease (Cribbs et al., 2012). It is worth noting that
these signatures were more pronounced in general aging
as compared to AD. Focusing specifically on members of
the TNFα signaling via NFκβ gene set, TNFα specifically
was not detected in the original microarray dataset due
to sensitivity but measured as being increased, albeit not
significantly, in both AD and aging through qPCR. In the
original mouse study, immune response as a general category
had increased hippocampal expression in the 8 and 18-
month TASTPM samples. TNFα signaling via NFκβ was not
explicitly identified.

TNFα signaling via NFκβ is a cytokine-initiated inflammatory
signaling cascade that is well documented in the AD literature
(Akiyama et al., 2000; Cheng et al., 2014). Interestingly,
multiple of the five genes identified via synergistic mouse-
to-human expression are also shown in the literature to
have direct interactions with the amyloid cascade. EHD1
encodes an ATP- and membrane-binding protein (Figure 4D).
EHD1 and other members of the EHD protein family
are necessary for unidirectional dendritic transport, affect
axonal transport, and modulate levels of the enzyme beta
secretase (BACE1) in both compartments (Buggia-Prévot et al.,
2013). PLK2 encodes the serine/threonine protein kinase
PLK2 (Figure 4E). PLK2 has been reported to phosphorylate
amyloid precursor protein (APP) in vitro (Lee et al., 2017)
and reduce plaque levels upon inhibition in vivo in mouse
(Lee et al., 2019).

In the datasets used for this case study, there was decreased
EHD1 and PLK2 expression in AD patients relative to controls
and decreased Ehd1 and Plk2 expression in homozygous
TASTPM mice relative to wild-type mice. Interestingly,
EHD1 shows increases in AD patients relative to non-
cognitively impaired controls across different cortical regions
in multiple human studies aggregated through the Alzheimer
DataLENS project (Bihlmeyer et al., 2019). PLK2 showed
decreased expression across multiple brain regions within
the same database.

TNFα signaling in general has been reported to directly
affect APP processing so perhaps the interactions of our
mouse-to-human synergistic genes with the amyloid cascade is
unsurprising (He et al., 2007; Cheng et al., 2014). Nonetheless,
it is important to underscore previously reported ties between
the specific genes we highlight and APP processing. Given that
the TASTPM mouse is driven by mutations in the amyloid
cascade and that numerical significance in the TransComp-
R workflow is derived from a signature’s importance across
both species, we speculate that statistical significance of
this result could be confounded by TASTPM mouse model
genetics despite the signature’s validated biological significance
in both AD mouse models and human AD. Additionally,
we note some differences in directionality of gene expression
changes between the datasets used in this TransComp-
R case study and those in the broader literature. This
could be explained in part by the different brain regions
being profiled but globally does suggest further limitations

with regard to the genes contributing to this signature’s
mathematical enrichment.

Identification in a Second Independent
Cohort of Human Pathways Important
for TASTPM Mouse Outcomes
In the first case study, we combined a single mouse and
single human dataset, and we demonstrated that TransComp-
R can successfully identify cross-species signatures using a
permissive list of human DEGs as input. The biological inferences
included a well-established excitatory synapse signature and
an inflammatory cytokine signature that is documented in the
AD literature but could have been numerically confounded
by mouse mechanisms in this particular study. Taking these
lessons from the first study, we constructed a second case
study using the same mouse model samples and incorporating
the second human cohort that was discussed during PCA
model construction (Figures 2C,D). This second human cohort
included more granularity in terms of patient outcomes, and we
hoped to incorporate the increased clinical information into the
case study workflow for biological inference. A second goal of
conducting TransComp-R with a second, independent human
cohort was to assess the reproducibility and robustness of the
TransComp-R pipeline for cross-species analysis using a broader
list of input genes.

To initiate a new TransComp-R case study, we generated a
PCA model for the new human cohort where there was weaker
categorical disease separation between patients on PC1_h2
compared to the first case study described (Figures 2C,D). We
next projected the same TASTPM and wild type control mouse
samples into the new human PCA space. Mathematically, this
projection involved combining mouse gene expression with the
‘weights’ (loadings) calculated using the second human cohort.
The variance accounted for by mouse sample scores on each
PC within the projected mouse matrix is shown in Figure 5A.
The percent variance of the human dataset in the original
human PCA model is also shown. We see monotonic decrease
in percent variance explained for the human data with increasing
PC number, as inherent to PCA. The projected mouse data do
not follow this monotonic trend. We see that PC3_h2 explained
less percent variance of the projected variance relative to both
PC2_h2 and PC4_h2. We were also surprised to see PC9_h2 and
PC14_h2 show a strong jump in percent variance explained for
the projected mouse data matrix.

Having projected the mouse samples for concomitant
cross-species analysis, we proceeded to identify translatable
components. We conducted LASSO feature selection and linear
modeling using the mouse samples projected into human PC
space and the mouse sample outcomes. The results of this
feature selection process are shown in Figure 5B. LASSO feature
selection selected a greater number of features compared to the
first case study. Given the greater number of input features to
the linear model, not all PCs selected via LASSO were statistically
significant in the final translatable model. Additional results from
LASSO are shown in Supplementary Figure 3.
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FIGURE 5 | With a second, independent human cohort, TransComp-R modeling successfully identifies translatable, human principal components that are important
for TASTPM mouse sample outcomes. (A) Percent variance explained by each human PC for the original human dataset used to generate the PCA model
(GSE1297, cohort 2; green) and the projected TASTPM mouse dataset (turquoise). (B) Frequency of human PC (PC_h2) selection across ten rounds of 5-fold cross
validation using LASSO feature selection. PCs selected at the selection frequency threshold of 40 percent are highlighted in magenta with the significance of the
linear model coefficient weight provided (* < 0.05, ** < 0.01, *** < 0.001). (C) Visualizing the linear model predictions on a mouse sample-by-sample basis from the
final translatable model across the wild type (WT), heterozygous TASTPM (HET), and homozygous TASTPM (HO) groups. (D) Results from linear modeling evaluating
which PCs contain information that is relevant for disease-status, in addition to the information encoded by sample age.

We visualized the predicted value for each mouse sample using
the 11-component linear model, and the sample predictions
are shown in Figure 5C. Similar to the first case study,
the average predicted value for samples increases from WT
to HET to HO groups and qualitatively aligns with the
true mouse sample categorical values initially assigned. There
is overlap in sample predictions between the groups. The
homozygous TASTPM mice again exhibit the greater within
group variance, and the homozygous TASTPM sample predicted
to be similar to WT samples was from the 2-month time point
(Supplementary Figure 3G).

As a result, we followed up with linear modeling to
identify translatable components that encoded disease-
relevant information separate from age. Multiple PCs encoded
information that was relevant for delineating samples based
on disease status in a way that was separate from sample age.
Specifically, PC1_h2, PC2_h2, PC8_h2, PC9_h2, and PC16_h2
had p-values less than 0.01 from linear modeling (Figure 5D).

There were three translatable components that were selected
via LASSO feature selection, statistically significant in the mouse-
to-human translatable model, and explained disease-relevant
information distinct from aging in a separate linear model:
PC2_h2, PC9_h2, and PC16_h2. Mouse samples are visualized
along these three human PCs in Supplementary Figures 3A,B.

We compared the true linear model against null models.
For the first of two null model comparisons, we compared the
LOO RMSE value for the true model against null, random PC
models. Our true model had an empirical p-value less than 0.067
(Supplementary Figure 3E). For the second of two null model
comparisons, we sought to compare the LOO RMSE value for the
true model against null, random phenotype models. Of 100 null
model initializations, no null models succeeded in selecting any
components at the LASSO step.

Complement and TAMR Agonist
Signatures Identified From LOAD Human
Patient and TASTPM Mouse Data
Turning toward biological interpretation of the models,
we conducted pathway analysis on the three translatable
components that were identified separately through both
TransComp-R and linear modeling delineating aging and disease
progression. Innate immune system activation was strongly
enriched at the top of both PC2_h2 and PC9_h2, associating with
disease (Figure 6A).

On PC9_h2, there was a robust, coordinated enrichment
of multiple immune-related pathways. Specifically, the most
numerically significant pathways enriched at the top of the PC
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FIGURE 6 | TransComp-R identifies complement and TAM receptor agonist signatures from LOAD human patient and TASTPM mouse samples. (A) Dot plot
heatmap showing pathways that are statistically enriched at the top and bottom 20 percent of each principal component’s loadings relative to all genes present in the
PC. The full list of original pathways evaluated in Supplementary Table 1. A pathway is included in the figure if it was enriched at an FDR < 0·05 in any of the six
groups (three PCs, top and bottom) evaluated. Dot size for pathway enrichment indicates the number of genes from the original gene set list that are also present in
the PCA model and thus available for potential enrichment. Color intensity represents the -log10(FDR) value and is normalized to the maximum -log10(FDR) value on a
PC-by-PC basis. (B–M) The Innate Immune System (Reactome) pathway is enriched at the top of PC9_h2. Genes that contributed to the enrichment of the pathway
were evaluated in terms of z-scored mouse gene expression. Genes that had a significant t-test comparison between either the wild type (WT) and heterozygous
TASTPM (HET) or WT and homozygous TASTPM (HO) samples and were associated with a secreted protein in the UniProt database are shown. (* < 0.05, ** < 0.01,
*** < 0.001, Benjamini-Hochberg corrected for multiple hypothesis testing; the median of each group is indicated in addition to the values for each sample).
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were the Innate Immune System (Reactome), Interferon Gamma
Response (Hallmark), Interferon Alpha Response (Hallmark),
TNFα signaling via NFκβ (Hallmark), and Complement
(Hallmark) pathways. The same immune pathways were enriched
on PC2_h2, and we see mouse sample score similarity along
PC2_h2 and PC9_h2 as compared to PC16_h2 (Supplementary
Figures 3A,B). On PC2_h2, there was also enrichment of
oligodendrocyte pathways (e.g., Oligodendrocyte Differentiation
(GO)) and the Adaptive Immune System (Reactome) alongside
innate immune system pathways. Full pathway enrichment
information for all three translatable components in available in
Supplementary Table 3. Given the concurrent enrichment of a
unified block of innate immune pathways on PC9_h2, we chose
to focus on PC9_h2 for initial biological analysis of cross-species
disease inferences.

It is worth noting that pathway enrichment is a model-level
analysis, which is human-leaning. As a result, we introduced
sample-level analysis to identify pathway member genes that
were important in mouse as well. 196 genes contributed
to the enrichment of the Innate Immune System signature
on human PC9_h2, and 46 of these genes had statistically
significant differences in expression in mouse based on disease
status. 25 of the 46 genes were also significant via the same
analysis on PC2_h2.

We were interested in evaluating genes that could aid in
hypothesis generation for potential therapeutics. We utilized the
Universal Protein Resource (UniProt) database to identify genes
with an associated, secreted protein, reasoning that receptor-
ligand interactions could be more readily targeted via therapy.
Evaluating the list of synergistic mouse-and-human genes using
the criteria fully described in the Methods, we identified 12
genes of interest. Mouse gene expression for these genes is
shown in Figures 6B–M. Three genes identified are components
of the complement cascade (C1qa, C1qb, C3; Figures 6C–E),
in alignment with enrichment of the Complement (Hallmark)
pathway. The LOAD-relevant genes Trem2 and Tyrobp were also
significant (Figures 6L,M). Lastly, we identified two ligands for
the Tyro3 / Axl / MerTK (TAM) receptor family: Galectin-3
(Lgals3) and Protein S (Pros1) (Figures 6I,K).

Classical complement activation was enriched among up-
regulated AD-associated genes in the original human studies,
although in Cribbs et al. (2012), complement and other innate
immune signatures were much more strongly associated with
normal aging as compared to AD. In the oldest homozygous
TASTPM mice and oldest tau mice in the original mouse model
study, immune system involvement was a shared signature.
WGCNA identified multiple hub genes – C1aq, C1qb, C1qg,
Fcer1g, Hcph, and Trem2 – multiple of which were identified in
our study (Matarin et al., 2015).

Turning from observational comparison to the broader
AD literature, we find validation of our complement cascade
and TYROBP inferences. The complement cascade has been
reported to mediate microglial pruning of neuronal synapses
in development and behaves aberrantly in neurodegenerative
disease (Schafer et al., 2012; Hong and Stevens, 2016; Hong
et al., 2016). Specific to genes enriched in our analysis, elevation
of C1q has been reported to precede plaque deposition in AD

mouse models. While inhibition of C1q or other members of the
complement cascade attenuates synapse loss, it is not yet clear if
initial synaptic pruning is a neuroprotective or aberrant response
(Hong et al., 2016; Bartels et al., 2020).

TYROBP is an adapter protein that forms a signaling complex
with TREM2, which has gained significant attention stemming
from the identification of a rare, risk-associated variant of
TREM2 through genome wide association studies (Gratuze et al.,
2018). TYROBP itself has been reported to be upregulated in
LOAD patient brains at the transcript level across multiple
brain regions (Zhang et al., 2013). In a previous integrative
computational analysis of human brain tissue gene expression,
innate immune and microglial processes were identified as the
most important. TYROBP was identified as a potential causal
regulator through Bayesian inference within the module (Zhang
et al., 2013). Multiple other studies have reported TYROBP and
TREM2 to occupy ‘hub gene’ roles (Holtman et al., 2015; Matarin
et al., 2015) and single cell transcriptomic profiling of microglia
identified a TREM2-dependent step in the transition of microglia
to a disease associated state (Keren-Shaul et al., 2017).

We noted that two of the 12 genes encoded agonists for the
TAM family of receptors (Figures 6I,K). Specifically, Protein
S is a ligand for Mer and Tyro3, and Galectin-3 has thus far
been reported to interact with Mer (Pierce and Keating, 2014).
Interestingly, many members of the broader TAM family were
polarized along translatable component PC9_h2. We examined
the PCA model loadings for all TAM family receptors and
ligands. We found that Tubby (TUB), Galectin-3 (LGALS3), Axl
(AXL), and Protein S (PROS1) all had strong positive loadings on
PC9_h2 associating with disease (ranked loadings in the second,
third, ninth, and tenth percentile, respectively). Conversely,
Tyro3 (TYRO3) and Mer (MERTK) had strong negative loadings
that associated with control samples along the same translatable
component (88th and 89th loading percentile, respectively). Gas6
(GAS6) and Tubby-like Protein 1 (TULP1) were not strongly
ranked along PC9_h2 in the model.

The TAM receptor family has been reported to play a role
in regulating microglial phagocytosis (Fourgeaud et al., 2016;
Butovsky and Weiner, 2018; Burstyn-Cohen and Hochberg,
2021; Huang et al., 2021). Canonical TAMR ligands such
as Gas6 and Protein S bind TAM receptors through the
C-terminal region and phosphatidylserine via the N-terminal
region, bridging TAM expressing cells with phagocytic targets
such as apoptotic bodies (Lemke and Rothlin, 2008). Protein
S is frequently described as a ligand for the TAMR family,
while Galectin-3 interactions with the TAMR family have been
lesser characterized. Galectin-3 was identified to bind Mer via
functional cloning and co-immunoprecipitation, and Galectin-
3 treatment resulted in Mer auto-phosphorylation in vitro
(Caberoy et al., 2012). Subsequently, Galectin-3 has been shown
to opsonize cells and modulate mouse microglial phagocytosis
involving Mer (Nomura et al., 2017).

Protein S and Galectin-3 both have other known functions
outside of the TAMR family. Protein S has functions in
the coagulation and complement cascades, and Protein S
knockout in mice results in embryonic lethality (Burstyn-
Cohen et al., 2009). In addition to interacting with Mer,
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Galectin-3 has also been shown to bind TREM2 in vitro and
activate TLR4 (Thomas and Pasquini, 2018; Boza-Serrano et al.,
2019; Puigdellívol et al., 2020). In cell line and mouse model
contexts, microglia have been shown to increase Galectin-3
expression in response to inflammatory stimuli and when plaque-
associated (Nomura et al., 2017; Boza-Serrano et al., 2019;
Puigdellívol et al., 2020). Galectin-3 knockout (Gal3KO) also
has varied impacts on 5XFAD mouse outcomes. Specifically,
5XFAD/Gal3KO mice showed decreased plaque burden, plaque
perimeter, and soluble Aβ40 compared to 5XFAD mice while
soluble Aβ42 increased relative to 5XFAD mice, all with age
specificity (Boza-Serrano et al., 2019).

Transitioning to omics studies, Axl and Lgals3bp were
identified as upregulated in the late-stage, disease-associated
microglial cluster from CK-p25 mouse single cell RNA-
sequencing (Mathys et al., 2017). Axl was identified as being
upregulated in late stage disease associated microglia in single
cell RNA-sequencing of 5XFAD mice (Keren-Shaul et al., 2017).
Proteomic comparison of homeostatic and amoeboid-phagocytic
mice microglia identified increased Galectin-3 in phagocytic
microglia (Krasemann et al., 2017). Protein S was also identified
in proteomic evaluation of 5XFAD mouse hippocampi and
increase was subsequently validated in human AD patient serum
(Kim et al., 2019). In human studies, Galectin-3 has been found at
the protein level to be increased in AD patients relative to controls
in serum profiling as well as in the cortex (Wang et al., 2015;
Tao et al., 2020).

Currently, mechanistic roles of the TAM family of receptors
and ligands are lesser studied in AD. Mer and Axl specifically have
been implicated in regulating phagocytic functions in microglia,
and, specific to AD, Mer, Axl, and TREM2 co-expression has
been observed on activated macrophages near plaques (Savage
et al., 2015; Fourgeaud et al., 2016). Interestingly, we found
a recent study investigating TAM family expression at the
mRNA level in human patients in relation to TLR signaling.
Herrera-Rivero et al. (2019) reported that TAM receptor levels
were relatively unchanged in the frontal cortex across different
stages of AD but also identified Protein S and Galectin-3
as ligands of interest. Specifically, Protein S and Galectin-
3 were increased at the mRNA level in moderate but not
late stage AD patients, and the two ligands showed similar
expression profiles across different stages of disease (control,
incipient, moderate, severe AD). The authors proceeded to
validate their findings with a focus on TLR signaling via
combination ligand treatments in Thp-1 culture. Huang et al.
(2021) recently evaluated the role of TAM receptors Axl and
Mer in an APP/PS1 mouse model and postmortem human
brain tissue. The authors identified Gas6 coating of amyloid
plaques and upregulation of Axl at the protein level in plaque-
adjacent microglia with consistent Mer. Crossing Axl and Mer
knockout mice with APP/PS1 mice, the authors determined
that Mer was particularly critical for facilitating phagocytic
functions in microglia while both Axl and Mer were important
for sensing and migrating to amyloid plaques. The unique
roles of Axl and Mer in microglial response is intriguing,
given that both TAMR agonists identified in our study bind
Mer but not Axl.

All mouse-to-human biological inferences and associated
literature validation are summarized in Table 1.

DISCUSSION

In this study, we applied a novel computational framework,
TransComp-R and mixed linear modeling, to concomitantly
analyze human and mouse AD transcriptomics and identify
translationally relevant signatures, distinct from changes in
age. An advantage of this framework is the capability to
obtain insights beyond the typical observational comparison of
human versus mouse datasets which can only find apparent
commonalities. At the same time, our method also ascertains
signatures found in the traditional observational approach, as
should be expected: signatures strongly enriched in each dataset
separately can readily exhibit strong numeric synergy in the
concomitant analysis. Our approach thus represents a significant
advance beyond previous cross-species analyses in the field.
Typically, such studies have considered animal and human data
sequentially and with focus on directly observed commonalities.
That is, the mouse model and human datasets are analyzed
separately and sometimes using different methodologies, with
differential expression and pathway enrichment results then
compared in a Venn Diagram-like fashion to identify what is
clearly shared between both species.

We identified multiple mouse-to-human translatable
signatures that found validation in the literature. Excitatory
synapse signatures were identified via observational comparison
between the original human and mouse studies, further validated
in older AD literature, and have been targeted via existing AD
therapies (DeKosky and Scheff, 1990; Terry et al., 1991; Scheff
and Price, 2003; Hynd et al., 2004; Spires et al., 2005; Berchtold
et al., 2013; Esposito et al., 2013; Cummings et al., 2015;
Matarin et al., 2015). TNFα signaling via NFκβ is a signature
that was validated in literature observing cytokine-mediated
inflammation as a component of AD progression (Akiyama
et al., 2000; Cheng et al., 2014). It is possible that TASTPM
mouse model genetics confounded the numeric significance of
this finding, and in response, we noted the need to consider
both the mathematical model and the biology when interpreting
TransComp-R outcomes (He et al., 2007; Buggia-Prévot et al.,
2013; Lee et al., 2017, 2019).

Complement cascade and TREM2/TYROBP inferences from
our study were validated in integrative computational AD
literature and in literature oriented toward LOAD (Cribbs
et al., 2012; Schafer et al., 2012; Zhang et al., 2013; Hong
and Stevens, 2016; Hong et al., 2016; Keren-Shaul et al.,
2017; Gratuze et al., 2018; Bartels et al., 2020). The ability of
TransComp-R to identify well-known hub genes, such as TREM2
and TYROBP, identified through other computational methods
provided a positive confirmation of our modeling methodology,
especially given analysis using a traditional amyloid mouse
model dataset. TREM2 and TYROBP are not directly modulated
by TASTPM transgenes, and identification of this AD-relevant
signature in TransComp-R analysis suggests that the TASTPM
model embodies these translational mechanisms. This suggests
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TABLE 1 | Biological inference summary from mouse-to-human cross-species analysis.

Biological Inference References

Excitatory and Glutamatergic synapse enrichment anti-correlates with disease DeKosky and Scheff, 1990; Terry et al., 1991; Scheff and Price,
2003; Hynd et al., 2004; Berchtold et al., 2013; Esposito et al.,
2013; Matarin et al., 2015

TNFα signaling via NFκ β is a cross-species translatable signature that
contributes to separation of control and disease mice

Akiyama et al., 2000; Cribbs et al., 2012; Cheng et al., 2014

Microglial Activity
• Innate immune activity is a cross-species translatable signature.
• TYROBP, TREM2, and complement cascade genes (C1QA, C1QB, C3)

contribute to the human disease signature and are significantly increased in
TASTPM heterozygous and homozygous mice

Akiyama et al., 2000; Cribbs et al., 2012; Schafer et al., 2012;
Zhang et al., 2013; Holtman et al., 2015; Matarin et al., 2015; Hong
and Stevens, 2016; Hong et al., 2016; Keren-Shaul et al., 2017;
Gratuze et al., 2018; Salih et al., 2019; Bartels et al., 2020

TAM family receptor agonists (Protein S and Galectin-3) associate with disease Pierce and Keating, 2014; Savage et al., 2015; Wang et al., 2015;
Fourgeaud et al., 2016; Keren-Shaul et al., 2017; Krasemann et al.,
2017; Mathys et al., 2017; Butovsky and Weiner, 2018;
Boza-Serrano et al., 2019; Herrera-Rivero et al., 2019; Kim et al.,
2019; Puigdellívol et al., 2020; Tao et al., 2020; Burstyn-Cohen and
Hochberg, 2021; Huang et al., 2021

the TASTPM mouse model could be suitable as a preclinical
model targeting associated microglial pathways. We suggest that
TransComp-R could be useful for rational selection of mouse
models in this way – the TransComp-R case study workflow
we present in this study could be expanded to multiple AD
mouse models. We could envision conducting cross-species
analyses with expanded coverage of multiple mouse models to
identify those that demonstrate robust translational enrichment
of pathways relevant for a therapeutic mechanism of action.
Rational selection could entail selecting several mouse models
driven by different transgenes but sharing therapeutic target-
relevant dysregulation for preclinical evaluation of therapies. For
example, previous literature demonstrating increased TREM2
expression in other amyloid mouse models suggests that
evaluating additional amyloid mouse models with a TREM2
focus could be a potential next step (Ulrich et al., 2017;
Karanfilian et al., 2020).

Lastly, we identified purported agonists (Protein S and
Galectin-3) of the TAM receptor family through cross-species
analysis. Previous literature has described the TAM receptor
family, especially the receptor Axl and Galectin-3/Galectin-3
binding protein, as being upregulated in disease and in disease-
associated microglia (Holtman et al., 2015; Krasemann et al.,
2017; Yin et al., 2017; Butovsky and Weiner, 2018; Boza-Serrano
et al., 2019; Puigdellívol et al., 2020). However, mechanistic roles
for TAM family receptors and agonists have been lesser studied in
the AD literature. In a recent study, Huang et al. (2021) generated
crosses between APP/PS1 and Axl-/-, Mertk-/- knockout mice.
The authors demonstrated that both Axl and Mer are important
for microglial sensing and migration toward amyloid plaques
while Mer is particularly important in facilitating microglial
phagocytosis of and processing of plaques into dense-core form.
In our study, Protein S and Galectin-3, two TAMR agonists that
have not been shown bind Axl, are significantly disease associated
while TAM receptors Tyro3 and Mer were strongly control
associated along the same translatable principal component. We
hypothesize that TAMR ligands with greater affinities to Mer
could alter the relative and absolute expression of the three

TAM receptors on microglia to preferentially push microglia into
a therapeutically beneficial plaque-sensing, non-inflammatory,
and competent-phagocyte state. It is worth noting that Protein
S and Galectin-3 have other known functions apart from the
TAMR family, such as Protein S’s interaction with members of
the coagulation and complement cascades. Thus, future work is
required to evaluate the mechanistic relationship between Protein
S, Galectin-3, and the TAM receptor family in the context of
microglial state and function.

We focused our case study framework on individual datasets
that were matched by brain region. This study-by-study
analysis framework, as opposed to aggregating datasets, could
facilitate rational selection of specific mouse models in a
mechanism-dependent fashion, as described immediately above.
However, TransComp-R does not preclude comparisons across
datasets with further differentiating factors. Presuming effective
aggregation and normalization of data, the initial human or
initial mouse matrix could combine data from multiple studies
to increase sample number and heterogeneity captured.

Furthermore, TransComp-R is methodologically amenable
to data types beyond the microarray datasets leveraged in this
study. Comparing different transcriptomic data types, RNA-
sequencing data has a broader dynamic range compared to
microarray data. As such, we expect that the findings in this
study represent a conservative set of cross-species results. We
hypothesize that many of our findings could be validated in RNA-
sequencing datasets and that additional signatures beyond the
limit of detection for microarray data could be inferred using
RNA-sequencing datasets. Additionally, the initial TransComp-
R study (Brubaker et al., 2020) involved concomitant analysis
of proteomic and transcriptomic data. This study demonstrated
that TransComp-R is effective for other omics data not
highlighted in our study, as the computational workflow does
not mathematically preclude its application to various data
types. Furthermore, Brubaker et al. (2020) demonstrated that
TransComp-R can be applied across omics platforms and
methodologies. In the case of cross-data type analysis, we can
envision that that differences in data type such as coverage and
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dynamic range could affect the types of genes and pathways
amenable to enrichment.

The mouse dataset utilized in this study included heterozygous
and homozygous TASTPM samples. We encoded the disease
status of the mouse samples in a linearly increasing fashion
between wild-type, heterozygous, and homozygous mice. The
transcriptomic data need not differ in a linear fashion, especially
between the heterozygous and homozygous disease mice, and
encoding disease status in this fashion could favor specific types
of mRNA expression profiles for TransComp-R selection. There
are alternate modeling strategies that could be employed. For
example, we could employ one hot encoding to differentiate the
three disease categories in a more independent fashion. We could
also envision assigning mouse samples a continuous disease score
based on sample-specific histopathological burden or behavioral
examination scores. We could also envision combining the
heterozygous and homozygous mice into a single category.
Each of these three alternate strategies would preferentially
identify genes that differentiate disease and control mice in a
different, nuanced way as compared to this study. Additionally,
TransComp-R could be applied with more granular disease
outcomes such as a behavioral test score in mice or a cognitive
exam score for human patients.

TransComp-R is a directional workflow that begins with
constructing a PCA space. In this study, we first constructed
a human PCA space using a permissive list of differentially
expressed genes based on binary disease status and then
constructed a separate human PCA space with an exploratory
list of human-to-mouse homologous genes. Were our interest
in a specific clinical outcome, we could envision generating a
list of DEGs specific to the outcome (i.e., genes selected by
regressing against Mini-Mental State Examination scores over
time or against NFT score in postmortem histopathology) for a
more supervised initial PCA space.

In summary, this analysis provides proof-of-concept for
the utility of TransComp-R in translational analysis of mouse
and human AD datasets. By integrating mouse and human
datasets within the same analysis framework, we have shown that
TransComp-R can identify important cross-species signatures
that do not necessarily dominate in at least one of the datasets
separately. We identified multiple biological inferences that
were present at the signature level in human postmortem data
and important in the context of mouse model disease status,
including insights validated by previous literature as well as
lesser studied insights worth further dedicated investigation,
specifically the enrichment of TAM receptor family agonists.
Furthermore, we were able to identify human AD-relevant
signatures using existing, publicly available mouse model data

from a traditional AD mouse model. Future work applying this
case study framework to multiple AD mouse models could guide
rational selection of models of preclinical evaluation of therapies.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. All
gene expression datasets analyzed in this study were previously
published and publicly available through Gene Expression
Omnibus. They are available with the following specific
datasets accession numbers were GSE1297 (human), GSE48350
(human), and GSE64398 (mouse). The analysis code for this
work is available in a Github at https://github.com/meejlee/
ADCrossSpeciesAnalysis.

AUTHOR CONTRIBUTIONS

ML, DB, and DL designed the study in association with
BH. ML conducted publicly available data curation, formal
analysis, and visualization. ML, MC, and CW contributed to
methodology development. ML and CW wrote analysis software.
CW contributed to software validation. ML and DL wrote the
manuscript. All authors contributed to the article and approved
the submitted version.

FUNDING

This work was partially supported by the US Army Research
Office Cooperative Agreement W911NF-19-2-0026 for the
Institute for Collaborative Biotechnologies to DL, the National
Science Foundation Graduate Research Fellowship Program
(Award #1745302) to ML, and National Institutes of Health grant
P30AG062421 to BH.

ACKNOWLEDGMENTS

We thank members of the Lauffenburger Research Group for
valuable feedback and discussions.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2021.727784/full#supplementary-material

REFERENCES
Ackerman, M. E., Das, J., Pittala, S., Broge, T., Linde, C., Suscovich, T. J.,

et al. (2018). Route of immunization defines multiple mechanisms of vaccine-
mediated protection against SIV. Nat. Med. 24, 1590–1598. doi: 10.1038/
s41591-018-0161-0

Akiyama, H., Barger, S., Barnum, S. C., Bradt, B., Bauer, J., Cole,
G. M., et al. (2000). Inflammation and Alzheimer’s disease.
Neurobiol. Aging 21, 383–421. doi: 10.1016/S0197-4580(00)00
124-X

Bartels, T., De Schepper, S., and Hong, S. (2020). Microglia modulate
neurodegeneration in Alzheimer’s and Parkinson’s diseases. Science 370, 66–69.
doi: 10.1126/science.abb8587

Bateman, A., Martin, M. J., Orchard, S., Magrane, M., Agivetova, R., Ahmad, S.,
et al. (2021). UniProt: the universal protein knowledgebase in 2021. Nucleic
Acids Res. 49, D480–D489.

Berchtold, N. C., Coleman, P. D., Cribbs, D. H., Rogers, J., Gillen, D. L., and
Cotman, C. W. (2013). Synaptic genes are extensively downregulated across
multiple brain regions in normal human aging and Alzheimer’s disease.
Neurobiol. Aging 6, 1653–1661. doi: 10.1016/j.neurobiolaging.2012.11.024

Frontiers in Neuroscience | www.frontiersin.org 19 September 2021 | Volume 15 | Article 727784

https://github.com/meejlee/ADCrossSpeciesAnalysis
https://github.com/meejlee/ADCrossSpeciesAnalysis
https://www.frontiersin.org/articles/10.3389/fnins.2021.727784/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2021.727784/full#supplementary-material
https://doi.org/10.1038/s41591-018-0161-0
https://doi.org/10.1038/s41591-018-0161-0
https://doi.org/10.1016/S0197-4580(00)00124-X
https://doi.org/10.1016/S0197-4580(00)00124-X
https://doi.org/10.1126/science.abb8587
https://doi.org/10.1016/j.neurobiolaging.2012.11.024
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-727784 September 29, 2021 Time: 12:56 # 20

Lee et al. Cross-Species Analysis in Alzheimer’s Disease

Berchtold, N. C., Cribbs, D. H., Coleman, P. D., Rogers, J., Head, E., Kim, R.,
et al. (2008). Gene expression changes in the course of normal brain aging
are sexually dimorphic. Proc. Natl. Acad. Sci. U.S.A. 105, 15605–15610. doi:
10.1073/pnas.0806883105

Bihlmeyer, N. A., Merrill, E., Lambert, Y., Srivastava, G. P., Clark, T. W., Hyman,
B. T., et al. (2019). Novel methods for integration and visualization of genomics
and genetics data in Alzheimer’s disease. Alzheimers Dement. 15, 788–798.
doi: 10.1016/j.jalz.2019.01.011

Blake, J. A., Eppig, J. T., Kadin, J. A., Richardson, J. E., Smith, C. L., Bult, C. J.,
et al. (2017). Mouse genome database (MGD)-2017: community knowledge
resource for the laboratory mouse. Nucleic Acids Res. 45, D723–D729. doi:
10.1093/nar/gkw1040

Blalock, E. M., Geddes, J. W., Chen, K. C., Porter, N. M., Markesbery, W. R., and
Landfield, P. W. (2004). Incipient Alzheimer’s disease: microarray correlation
analyses reveal major transcriptional and tumor suppressor responses.
Proc. Natl. Acad. Sci. U.S.A. 101, 2173–2178. doi: 10.1073/pnas.03085
12100

Boza-Serrano, A., Ruiz, R., Sanchez-Varo, R., García-Revilla, J., Yang, Y., Jimenez-
Ferrer, I., et al. (2019). Galectin-3, a novel endogenous TREM2 ligand,
detrimentally regulates inflammatory response in Alzheimer’s disease. Acta
Neuropathol. 138, 251–273. doi: 10.1007/s00401-019-02013-z

Brubaker, D. K., Kumar, M. P., Vega, P. N., Southard-Smith, A. N., Simmons,
A. J., Scoville, E. A., et al. (2020). An inter-species translation model implicates
integrin signaling in infliximab-resistant colonic Crohn’s disease. Sci Sig.
13:eaay3258. doi: 10.1126/scisignal.aay3258

Buggia-Prévot, V., Fernandez, C. G., Udayar, V., Vetrivel, K. S., Elie, A., Roseman,
J., et al. (2013). A function for EHD family proteins in unidirectional retrograde
dendritic transport of BACE1 and Alzheimer’s disease Aβ production. Cell Rep.
5, 1552–1563. doi: 10.1016/j.celrep.2013.12.006

Burns, T. C., Li, M. D., Mehta, S., Awad, A. J., and Morgan, A. A. (2015).
Mouse models rarely mimic the transcriptome of human neurodegenerative
diseases: a systematic bioinformatics-based critique of preclinical models. Eur.
J. Pharmacol. 759, 101–117. doi: 10.1016/j.ejphar.2015.03.021

Burstyn-Cohen, T., Heeb, M. J., and Lemke, G. (2009). Lack of Protein S in mice
causes embryonic lethal coagulopathy and vascular dysgenesis. J. Clin. Invest.
119, 2942–2953. doi: 10.1172/JCI39325

Burstyn-Cohen, T., and Hochberg, A. (2021). TAM signaling in the nervous system.
Brain Plast. 7, 33–46. doi: 10.3233/BPL-210125

Butovsky, O., and Weiner, H. L. (2018). Microglial signatures and their role in
health and disease. Nat. Rev. Neurosci. 19, 622–635. doi: 10.1038/s41583-018-
0057-5

Caberoy, N. B., Alvarado, G., Bigcas, J.-L., and Li, W. (2012). Galectin-3 is a new
MerTK-specific eat-me signal. J. Cell Physiol. 227, 401–407. doi: 10.1002/jcp.
22955

Cheng, X., Shen, Y., and Li, R. (2014). Targeting TNF: a therapeutic strategy for
Alzheimer’s disease. Drug Discov. Today 19, 1822–1827. doi: 10.1016/j.drudis.
2014.06.029

Cribbs, D. H., Berchtold, N. C., Perreau, V., Coleman, P. D., Rogers, J., Tenner,
A. J., et al. (2012). Extensive innate immune gene activation accompanies brain
aging, increasing vulnerability to cognitive decline and neurodegeneration: a
microarray study. J. Neuroinflammation 9, 1–18. doi: 10.1186/1742-2094-9-
179

Cruz, J. C., Tseng, H. C., Goldman, J. A., Shih, H., and Tsai, L. H. (2003).
Aberrant Cdk5 activation by p25 triggers pathological events leading to
neurodegeneration and neurofibrillary tangles. Neuron 40, 471–483. doi: 10.
1016/S0896-6273(03)00627-5

Cummings, D. M., Liu, W., Portelius, E., Bayram, S., Yasvoina, M., Ho, S. H., et al.
(2015). First effects of rising amyloid-β in transgenic mouse brain: synaptic
transmission and gene expression. Brain 138, 1992–2004. doi: 10.1093/brain/
awv127

Davis, S., and Meltzer, P. S. (2007). GEOquery: a bridge between the gene
expression omnibus (GEO) and BioConductor. Bioinformatics 23, 1846–1847.
doi: 10.1093/bioinformatics/btm254

De Strooper, B., and Karran, E. (2016). The cellular phase of Alzheimer’s disease.
Cell 164, 603–615. doi: 10.1016/j.cell.2015.12.056

DeKosky, S. T., and Scheff, S. W. (1990). Synapse loss in frontal cortex biopsies
in Alzheimer’s disease: correlation with cognitive severity. Ann. Neurol. 27,
457–464. doi: 10.1002/ana.410270502

Dunning, M. J., Smith, M. L., Ritchie, M. E., and Tavare, S. (2007). beadarray: R
classes and methods for Illumina bead-based data. Bioinformatics 23, 2183–
2184. doi: 10.1093/bioinformatics/btm311

Edgar, R., Domrachev, M., and Lash, A. E. (2002). Gene expression omnibus: NCBI
gene expression and hybridization array data repository. Nucleic Acids Res. 30,
207–210. doi: 10.1093/nar/30.1.207

Esposito, Z., Belli, L., Toniolo, S., Sancesario, G., Bianconi, C., and Martorana, A.
(2013). Amyloid β, glutamate, excitotoxicity in Alzheimer’s disease: are we on
the right track? CNS Neurosci. Ther. 19, 549–555. doi: 10.1111/cns.12095

Fourgeaud, L., Través, P. G., Tufail, Y., Leal-Bailey, H., Lew, E. D., Burrola, P. G.,
et al. (2016). TAM receptors regulate multiple features of microglial physiology.
Nature 532, 1–15. doi: 10.1038/nature17630

Friedman, B. A., Srinivasan, K., Ayalon, G., Meilandt, W. J., Lin, H., Huntley,
M. A., et al. (2018). Diverse brain myeloid expression profiles reveal distinct
microglial activation states and aspects of Alzheimer’s disease not evident in
mouse models. Cell Rep. 22, 832–847. doi: 10.1016/j.celrep.2017.12.066

Gautier, L., Cope, L., Bolstad, B. M., and Irizarry, R. A. (2004). Affy–analysis
of affymetrix GeneChip data at the probe level. Bioinformatics 20, 307–315.
doi: 10.1093/bioinformatics/btg405

Gratuze, M., Leyns, C. E. G., and Holtzman, D. M. (2018). New insights into
the role of TREM2 in Alzheimer’s disease. Mol. Neurodegener. 13, 1–16. doi:
10.1186/s13024-018-0298-9

Hargis, K. E., and Blalock, E. M. (2017). Transcriptional signatures of brain aging
and Alzheimer’s disease: what are our rodent models telling us? Behav. Brain
Res. 322, 311–328. doi: 10.1016/j.bbr.2016.05.007

He, P., Zhong, Z., Lindholm, K., Berning, L., Lee, W., Lemere, C., et al. (2007).
Deletion of tumor necrosis factor death receptor inhibits amyloid β generation
and prevents learning and memory deficits in Alzheimer’s mice. J. Cell Biol. 178,
829–841. doi: 10.1083/jcb.200705042

Herrera-Rivero, M., Santarelli, F., Brosseron, F., Kummer, M. P., and Heneka,
M. T. (2019). Dysregulation of TLR5 and TAM Ligands in the Alzheimer’s
brain as contributors to disease progression. Mol. Neurobiol. 56, 6539–6550.
doi: 10.1007/s12035-019-1540-3

Holtman, I. R., Raj, D. D., Miller, J. A., Schaafsma, W., Yin, Z., Brouwer, N.,
et al. (2015). Induction of a common microglia gene expression signature by
aging and neurodegenerative conditions: a co-expression meta-analysis. Acta
Neuropathol. Commun. 3, 1–18. doi: 10.1186/s40478-015-0203-5

Holtzman, D. M., Morris, J. C., and Goate, A. M. (2011). Alzheimer ’s disease?:
the challenge of the second century. Sci. Transl. Med. 3, 1–17. doi: 10.1126/
scitranslmed.3002369

Hong, S., Beja-Glasser, V. F., Nfonoyim, B. M., Frouin, A., Li, S., Ramakrishnan,
S., et al. (2016). Complement and microglia mediate early synapse loss in
Alzheimer mouse models. Science 352, 712–716. doi: 10.1126/science.aad8373

Hong, S., and Stevens, B. (2016). Microglia: phagocytosing to clear, sculpt, and
eliminate. Dev. Cell 38, 126–128. doi: 10.1016/j.devcel.2016.07.006

Howlett, D. R., Richardson, J. C., Austin, A., Parsons, A. A., Bate, S. T., Davies,
D. C., et al. (2004). Cognitive correlates of Aβ deposition in male and female
mice bearing amyloid precursor protein and presenilin-1 mutant transgenes.
Brain Res. 1017, 130–136. doi: 10.1016/j.brainres.2004.05.029

Huang, Y., Happonen, K. E., Burrola, P. G., O’Connor, C., Hah, N., Huang, L., et al.
(2021). Microglia use TAM receptors to detect and engulf amyloid β plaques.
Nat. Immunol. 22, 586–594. doi: 10.1038/s41590-021-00913-5

Hynd, M. R., Scott, H. L., and Dodd, P. R. (2004). Glutamate-mediated
excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem. Int.
45, 583–595. doi: 10.1016/j.neuint.2004.03.007

Karanfilian, L., Tosto, M. G., and Malki, K. (2020). The role of TREM2 in
Alzheimer’s disease; evidence from transgenic mouse models. Neurobiol. Aging
86, 39–53. doi: 10.1016/j.neurobiolaging.2019.09.004

Keren-Shaul, H., Spinrad, A., Weiner, A., Matcovitch-Natan, O., Dvir-Szternfeld,
R., Ulland, T. K., et al. (2017). A unique microglia type associated with
restricting development of Alzheimer’s disease. Cell 169, 1276–1290.e17. doi:
10.1016/j.cell.2017.05.018

Kim, D. K., Han, D., Park, J., Choi, H., Park, J. C., Cha, M. Y., et al. (2019). Deep
proteome profiling of the hippocampus in the 5XFAD mouse model reveals
biological process alterations and a novel biomarker of Alzheimer’s disease. Exp.
Mol. Med. 51, 1–17. doi: 10.1038/s12276-019-0326-z

Krasemann, S., Madore, C., Cialic, R., Baufeld, C., Calcagno, N., El Fatimy, R.,
et al. (2017). The TREM2-APOE pathway drives the transcriptional phenotype

Frontiers in Neuroscience | www.frontiersin.org 20 September 2021 | Volume 15 | Article 727784

https://doi.org/10.1073/pnas.0806883105
https://doi.org/10.1073/pnas.0806883105
https://doi.org/10.1016/j.jalz.2019.01.011
https://doi.org/10.1093/nar/gkw1040
https://doi.org/10.1093/nar/gkw1040
https://doi.org/10.1073/pnas.0308512100
https://doi.org/10.1073/pnas.0308512100
https://doi.org/10.1007/s00401-019-02013-z
https://doi.org/10.1126/scisignal.aay3258
https://doi.org/10.1016/j.celrep.2013.12.006
https://doi.org/10.1016/j.ejphar.2015.03.021
https://doi.org/10.1172/JCI39325
https://doi.org/10.3233/BPL-210125
https://doi.org/10.1038/s41583-018-0057-5
https://doi.org/10.1038/s41583-018-0057-5
https://doi.org/10.1002/jcp.22955
https://doi.org/10.1002/jcp.22955
https://doi.org/10.1016/j.drudis.2014.06.029
https://doi.org/10.1016/j.drudis.2014.06.029
https://doi.org/10.1186/1742-2094-9-179
https://doi.org/10.1186/1742-2094-9-179
https://doi.org/10.1016/S0896-6273(03)00627-5
https://doi.org/10.1016/S0896-6273(03)00627-5
https://doi.org/10.1093/brain/awv127
https://doi.org/10.1093/brain/awv127
https://doi.org/10.1093/bioinformatics/btm254
https://doi.org/10.1016/j.cell.2015.12.056
https://doi.org/10.1002/ana.410270502
https://doi.org/10.1093/bioinformatics/btm311
https://doi.org/10.1093/nar/30.1.207
https://doi.org/10.1111/cns.12095
https://doi.org/10.1038/nature17630
https://doi.org/10.1016/j.celrep.2017.12.066
https://doi.org/10.1093/bioinformatics/btg405
https://doi.org/10.1186/s13024-018-0298-9
https://doi.org/10.1186/s13024-018-0298-9
https://doi.org/10.1016/j.bbr.2016.05.007
https://doi.org/10.1083/jcb.200705042
https://doi.org/10.1007/s12035-019-1540-3
https://doi.org/10.1186/s40478-015-0203-5
https://doi.org/10.1126/scitranslmed.3002369
https://doi.org/10.1126/scitranslmed.3002369
https://doi.org/10.1126/science.aad8373
https://doi.org/10.1016/j.devcel.2016.07.006
https://doi.org/10.1016/j.brainres.2004.05.029
https://doi.org/10.1038/s41590-021-00913-5
https://doi.org/10.1016/j.neuint.2004.03.007
https://doi.org/10.1016/j.neurobiolaging.2019.09.004
https://doi.org/10.1016/j.cell.2017.05.018
https://doi.org/10.1016/j.cell.2017.05.018
https://doi.org/10.1038/s12276-019-0326-z
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-727784 September 29, 2021 Time: 12:56 # 21

Lee et al. Cross-Species Analysis in Alzheimer’s Disease

of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–
581.e9. doi: 10.1016/j.immuni.2017.08.008

Kumar, M. P., Du, J., Lagoudas, G., Jiao, Y., Sawyer, A., Drummond, D. C.,
et al. (2018). Analysis of single-cell RNA-Seq identifies cell-cell communication
associated with tumor characteristics. Cell Rep. 25, 1458–1468.e4. doi: 10.1016/
j.celrep.2018.10.047

Lee, J. S., Lee, Y., André, E. A., Lee, K. J., Nguyen, T., Feng, Y., et al. (2019).
Inhibition of Polo-like kinase 2 ameliorates pathogenesis in Alzheimer’s disease
model mice. PLoS One 14:e0219691. doi: 10.1371/journal.pone.0219691

Lee, Y., Lee, J. S., Lee, K. J., Turner, R. S., Hoe, H. S., and Pak, D. T. S. (2017). Polo-
like kinase 2 phosphorylation of amyloid precursor protein regulates activity-
dependent amyloidogenic processing. Neuropharmacology 117, 387–400. doi:
10.1016/j.neuropharm.2017.02.027

Lemke, G., and Rothlin, C. V. (2008). Immunobiology of the TAM receptors. Nat.
Rev. Immunol. 8, 327–336. doi: 10.1038/nri2303

Matarin, M., Salih, D. A., Yasvoina, M., Cummings, D. M., Guelfi, S., Liu, W., et al.
(2015). A Genome-wide gene-expression analysis and database in transgenic
mice during development of amyloid or tau pathology. Cell Rep. 10, 633–644.
doi: 10.1016/j.celrep.2014.12.041

Mathys, H., Adaikkan, C., Gao, F., Young, J. Z., Manet, E., Hemberg, M.,
et al. (2017). Temporal tracking of microglia activation in neurodegeneration
at single-cell resolution. Cell Rep. 21, 366–380. doi: 10.1016/j.celrep.2017.
09.039

Miller, J. A., Horvath, S., and Geschwind, D. H. (2010). Divergence of human and
mouse brain transcriptome highlights Alzheimer disease pathways. Proc. Natl.
Acad. Sci. U.S.A. 107, 12698–12703. doi: 10.1073/pnas.0914257107

Mostafavi, S., Gaiteri, C., Sullivan, S. E., White, C. C., Tasaki, S., Xu, J., et al.
(2018). A molecular network of the aging human brain provides insights into
the pathology and cognitive decline of Alzheimer’s disease. Nat. Neurosci. 21,
811–819. doi: 10.1038/s41593-018-0154-9

Neuner, S. M., Heuer, S. E., Huentelman, M. J., O’Connell, K. M. S., and
Kaczorowski, C. C. (2019). Harnessing genetic complexity to enhance
translatability of Alzheimer’s disease mouse models: a path toward precision
medicine. Neuron 101, 399–411.e5. doi: 10.1016/j.neuron.2018.11.040

Nomura, K., Vilalta, A., Allendorf, D. H., Hornik, T. C., and Brown, G. C.
(2017). Activated microglia desialylate and phagocytose cells via neuraminidase,
Galectin-3, and Mer tyrosine kinase. J. Immunol. 198, 4792–4801. doi: 10.4049/
jimmunol.1502532

Oakley, H., Cole, S. L., Logan, S., Maus, E., Shao, P., Craft, J., et al. (2006).
Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in
transgenic mice with five familial Alzheimer’s disease mutations: potential
factors in amyloid plaque formation. J. Neurosci. 26, 10129–10140. doi: 10.
1523/JNEUROSCI.1202-06.2006

Oblak, A. L., Forner, S., Territo, P. R., Sasner, M., Carter, G. W., Howell, G. R., et al.
(2020). Model organism development and evaluation for late-onset Alzheimer’s
disease: MODEL-AD. Alzheimers Dement. Transl. Res. Clin. Interv. 6, 1–8.

Oddo, S., Caccamo, A., Shepherd, J. D., Murphy, M. P., Golde, T. E., Kayed,
R., et al. (2003). Triple-transgenic model of Alzheimer’s disease with plaques
and tangles: intracellular Aβ and synaptic dysfunction. Neuron 39, 409–421.
doi: 10.1016/S0896-6273(03)00434-3

Perez-Nievas, B. G., Stein, T. D., Tai, H. C., Dols-Icardo, O., Scotton, T. C.,
Barroeta-Espar, I., et al. (2013). Dissecting phenotypic traits linked to human
resilience to Alzheimer’s pathology. Brain 136, 2510–2526. doi: 10.1093/brain/
awt171

Pierce, A. M., and Keating, A. K. (2014). TAM receptor tyrosine kinases: expression,
disease and oncogenesis in the central nervous system. Brain Res. 1542, 206–
220. doi: 10.1016/j.brainres.2013.10.049

Puigdellívol, M., Allendorf, D. H., and Brown, G. C. (2020). Sialylation and
Galectin-3 in microglia-mediated neuroinflammation and neurodegeneration.
Front. Cell Neurosci. 14:162. doi: 10.3389/fncel.2020.00162

Reardon, S. (2018). Frustrated Alzheimer’s researchers seek better
lab mice. Nature 563, 611–612. doi: 10.1038/d41586-018-
07484-w

Richardson, J. C., Kendal, C. E., Anderson, R., Priest, F., Gower, E., Soden, P., et al.
(2003). Ultrastructural and behavioural changes precede amyloid deposition
in a transgenic model of Alzheimer’s disease. Neuroscience 122, 213–228. doi:
10.1016/S0306-4522(03)00389-0

Salih, D. A., Bayram, S., Guelfi, S., Reynolds, R. H., Shoai, M., Ryten, M., et al.
(2019). Genetic variability in response to amyloid beta deposition influences

Alzheimer’s disease risk. Brain Commun. 1, 1–21. doi: 10.1093/braincomms/
fcz022

Savage, J. C., Jay, T., Goduni, E., Quigley, C., Mariani, M. M., Malm, T., et al.
(2015). Nuclear receptors license phagocytosis by Trem2+ myeloid cells in
mouse models of Alzheimer’s disease. J. Neurosci. 35, 6532–6543. doi: 10.1523/
JNEUROSCI.4586-14.2015

Schafer, D. P., Lehrman, E. K., Kautzman, A. G., Koyama, R., Mardinly, A. R.,
Yamasaki, R., et al. (2012). Microglia sculpt postnatal neural circuits in an
activity and complement-dependent manner. Neuron 74, 691–705. doi: 10.
1016/j.neuron.2012.03.026

Scheff, S. W., and Price, D. A. (2003). Synaptic pathology in Alzheimer’s disease: a
review of ultrastructural studies. Neurobiol. Aging 24, 1029–1046. doi: 10.1016/
j.neurobiolaging.2003.08.002

Spires, T. L., Meyer-Luehmann, M., Stern, E. A., McLean, P. J., Skoch, J., Nguyen,
P. T., et al. (2005). Dendritic spine abnormalities in amyloid precursor protein
transgenic mice demonstrated by gene transfer and intravital multiphoton
microscopy. J. Neurosci. 25, 7278–7287. doi: 10.1523/JNEUROSCI.1879-05.
2005

Tao, C. C., Cheng, K. M., Ma, Y. L., Hsu, W. L., Chen, Y. C., Fuh, J. L., et al. (2020).
Galectin-3 promotes Aβ oligomerization and Aβ toxicity in a mouse model of
Alzheimer’s disease. Cell Death Differ. 27, 192–209. doi: 10.1038/s41418-019-
0348-z

Terry, R. D., Masliah, E., Salmon, D. P., Butters, N., DeTeresa, R., Hill, R., et al.
(1991). Physical basis of cognitive alterations in Alzheimer’s disease: synapse
loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580.
doi: 10.1002/ana.410300410

Thomas, L., and Pasquini, L. A. (2018). Galectin-3-mediated glial crosstalk drives
oligodendrocyte differentiation and (Re)myelination. Front. Cell Neurosci.
12:297. doi: 10.3389/fncel.2018.00297

Ulrich, J. D., Ulland, T. K., Colonna, M., and Holtzman, D. M. (2017). Elucidating
the role of TREM2 in Alzheimer’s disease. Neuron 94, 237–248. doi: 10.1016/j.
neuron.2017.02.042

von Schaper, E. (2018). Everything but amyloid: new thinking prompts
FDA revamp. Nat. Biotechnol. 36, 483–484. doi: 10.1038/nbt06
18-483

Wan, Y.-W., Al-Ouran, R., Mangleburg, C. G., Perumal, T. M., Lee, T. V.,
Allison, K., et al. (2020). Meta-analysis of the Alzheimer’s disease human brain
transcriptome and functional dissection in mouse models. Cell Rep. 32:107908.
doi: 10.1016/j.celrep.2020.107908

Wang, X., Zhang, S., Lin, F., Chu, W., and Yue, S. (2015). Elevated
Galectin-3 levels in the serum of patients with Alzheimer’s disease. Am.
J. Alzheimers Dis. Other Demen. 30, 729–732. doi: 10.1177/15333175134
95107

Yin, Z., Raj, D., Saiepour, N., Van Dam, D., Brouwer, N., Holtman, I. R.,
et al. (2017). Immune hyperreactivity of Aβ plaque-associated microglia
in Alzheimer’s disease. Neurobiol. Aging 55, 115–122. doi: 10.1016/j.
neurobiolaging.2017.03.021

Zhang, B., Gaiteri, C., Bodea, L. G., Wang, Z., McElwee, J., Podtelezhnikov, A. A.,
et al. (2013). Integrated systems approach identifies genetic nodes and networks
in late-onset Alzheimer’s disease. Cell 153, 707–720. doi: 10.1016/j.cell.2013.03.
030

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Lee, Wang, Carroll, Brubaker, Hyman and Lauffenburger. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 21 September 2021 | Volume 15 | Article 727784

https://doi.org/10.1016/j.immuni.2017.08.008
https://doi.org/10.1016/j.celrep.2018.10.047
https://doi.org/10.1016/j.celrep.2018.10.047
https://doi.org/10.1371/journal.pone.0219691
https://doi.org/10.1016/j.neuropharm.2017.02.027
https://doi.org/10.1016/j.neuropharm.2017.02.027
https://doi.org/10.1038/nri2303
https://doi.org/10.1016/j.celrep.2014.12.041
https://doi.org/10.1016/j.celrep.2017.09.039
https://doi.org/10.1016/j.celrep.2017.09.039
https://doi.org/10.1073/pnas.0914257107
https://doi.org/10.1038/s41593-018-0154-9
https://doi.org/10.1016/j.neuron.2018.11.040
https://doi.org/10.4049/jimmunol.1502532
https://doi.org/10.4049/jimmunol.1502532
https://doi.org/10.1523/JNEUROSCI.1202-06.2006
https://doi.org/10.1523/JNEUROSCI.1202-06.2006
https://doi.org/10.1016/S0896-6273(03)00434-3
https://doi.org/10.1093/brain/awt171
https://doi.org/10.1093/brain/awt171
https://doi.org/10.1016/j.brainres.2013.10.049
https://doi.org/10.3389/fncel.2020.00162
https://doi.org/10.1038/d41586-018-07484-w
https://doi.org/10.1038/d41586-018-07484-w
https://doi.org/10.1016/S0306-4522(03)00389-0
https://doi.org/10.1016/S0306-4522(03)00389-0
https://doi.org/10.1093/braincomms/fcz022
https://doi.org/10.1093/braincomms/fcz022
https://doi.org/10.1523/JNEUROSCI.4586-14.2015
https://doi.org/10.1523/JNEUROSCI.4586-14.2015
https://doi.org/10.1016/j.neuron.2012.03.026
https://doi.org/10.1016/j.neuron.2012.03.026
https://doi.org/10.1016/j.neurobiolaging.2003.08.002
https://doi.org/10.1016/j.neurobiolaging.2003.08.002
https://doi.org/10.1523/JNEUROSCI.1879-05.2005
https://doi.org/10.1523/JNEUROSCI.1879-05.2005
https://doi.org/10.1038/s41418-019-0348-z
https://doi.org/10.1038/s41418-019-0348-z
https://doi.org/10.1002/ana.410300410
https://doi.org/10.3389/fncel.2018.00297
https://doi.org/10.1016/j.neuron.2017.02.042
https://doi.org/10.1016/j.neuron.2017.02.042
https://doi.org/10.1038/nbt0618-483
https://doi.org/10.1038/nbt0618-483
https://doi.org/10.1016/j.celrep.2020.107908
https://doi.org/10.1177/1533317513495107
https://doi.org/10.1177/1533317513495107
https://doi.org/10.1016/j.neurobiolaging.2017.03.021
https://doi.org/10.1016/j.neurobiolaging.2017.03.021
https://doi.org/10.1016/j.cell.2013.03.030
https://doi.org/10.1016/j.cell.2013.03.030
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Computational Interspecies Translation Between Alzheimer's Disease Mouse Models and Human Subjects Identifies Innate Immune Complement, TYROBP, and TAM Receptor Agonist Signatures, Distinct From Influences of Aging
	Introduction
	Materials and Methods
	Dataset Selection and Processing
	Publicly Available Dataset Selection
	Data Pre-processing and Normalization
	Differential Gene Expression Analysis
	Human and Mouse Homolog Evaluation

	Translatable Component Regression
	Brief Overview of the Translatable Components Regression Workflow
	Principal Component Analysis
	Linear Model Building With Human Dataset Phenotypes
	Projecting Mouse Samples Into Human Principal Component Analysis Space
	Translatable Component Selection
	Evaluating Statistical Significance
	Linear Modeling to Account for Age
	Pathway Enrichment Analyses


	Results
	Interspecies Translation Successfully Separates Mouse Samples in Human Principal Component Analysis Space
	Identification of Cross-Species Disease Signatures, Distinct From Aging
	Excitatory Synapse Pathways Are Human Disease-Relevant and Classify TASTPM-vs-Control Mice
	TNF Signaling via NF Is a Cross-Species Signature Potentially Confounded by Mouse Model Genetics
	Identification in a Second Independent Cohort of Human Pathways Important for TASTPM Mouse Outcomes
	Complement and TAMR Agonist Signatures Identified From LOAD Human Patient and TASTPM Mouse Data

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


