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In recent years, a number of literatures published large-scale genome-wide association

studies (GWASs) for human diseases or traits while adjusting for other heritable covariate.

However, it is known that these GWASs are biased, which may lead to biased genetic

estimates or even false positives. In this study, we provide a method called “BTOB” which

extends the biased GWAS to bivariate GWAS by integrating the summary association

statistics from the biased GWAS and the GWAS for the adjusted heritable covariate.

We employ the proposed BTOB method to analyze the summary association statistics

from the large scale meta-GWASs for waist-to-hip ratio (WHR) and body mass index

(BMI), and show that the proposed approach can help identify more susceptible genes

compared with the corresponding univariate GWASs. Theoretical results and simulations

also confirm the validity and efficiency of the proposed BTOB method.

Keywords: GWAS, bivariate GWAS, summary association statistics, heritable covariate, biased

1. INTRODUCTION

Genome-wide association studies (GWASs) have been greatly successful in identifying tens of
thousands susceptible genes for complex diseases or traits, revealing the genetic architectures of
complex diseases or traits in question (Visscher et al., 2012, 2017). These large scale studies produce
extremely valuable resource for further studies. However, due to the privacy concerns and other
logistical considerations, most GWASs publish the summary association statistics rather than the
individual-level data. This limitation motivates the rapid development of developing methods for
analyzing the summary association statistics, such as conditional association analysis (Yang et al.,
2012), gene-based association tests (Hu et al., 2013; Lee et al., 2013), jointly analyzingmultiple traits
(Zhu et al., 2015; Liu and Lin, 2018; Ray and Michael, 2018). A recent publication systematically
reviews the development of summary association statistics-based methods (Pasaniuc and Price,
2017).

In this study, we mainly focus on the summary association statistics obtained from the GWASs
of human diseases or traits while adjusting for heritable covariate, such as the GWAS of waist-to-hip
ratio (WHR) after adjusting for BMI (Heid et al., 2010; Randall et al., 2013), the GWAS of fasting
glycemic traits and insulin resistance after adjusting for BMI (Manning et al., 2012). However, it
has been known that the results from these GWASs are biased, which may result in biased genetic
estimates or even false positive genetic discoveries (Aschard et al., 2015). If the aim is to increase
the statistical power, it is suggested to use the bivariate analyse of the trait (or disease) of interest
and the corresponding heritable covariate (Aschard et al., 2015). However, the practical issue is
still under addressed for this suggestion, that is how to extend the existing the biased GWAS to
the bivariate analyse. Recent efforts have indicated that the multivariate GWAS can be conducted
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based on summary association statistics of the univariate GWASs
(Zhu et al., 2015; Liu and Lin, 2018; Ray and Michael,
2018). However, these methods require the summary association
statistics from the unbiased GWASs, that is the univariate
GWASs without adjusting the heritable covariate. In reality,
many studies only have the results from theGWAS after adjusting
the heritable covariate. For example, in the GIANT (Genetic
Investigation of ANthropometric Traits) consortium website, we
can only download the summary association statistics for WHR
adjusted BMI stratified by sex and age (Winkler et al., 2015).
To obtain the results for WHR without adjusting for BMI, it
needs to re-run a GWAS, which needs a great effort. To our best
knowledge, there are no literatures addressing how to extend the
biased GWAS to the bivariate GWAS.

In this paper, we develop a simple integration method called
BTOB which extends the Biased GWAS TO Bivariate GWAS.
We assess the valid and efficiency of BTOB using theoretical
arguments and simulation studies. Finally, we apply the BTOB
method to analyze the data downloaded from the GIANT
consortium website.

2. METHOD

2.1. BTOB: Extending the Biased GWAS to
Bivariate GWAS
Mathematically, the model used in the biased GWAS can be
formulated as Y2 = Gβ2 + Y1γ1 + Z2ς2 + ε2, where Y2 is the
trait or disease of interest, Y1 is the adjusted heritable covariate,
G is the genotype score, and Z2 is the adjusted non-heritable
covariates. In reality, many studies also had conducted additional
GWAS for Y1, that is Y1 = Gβ1 + Z1ς1 + ε1. For example, the
GIANT consortium had conducted the GWASs for WHR while
adjusting for BMI, and the GWASs of BMI (Winkler et al., 2015).
In addition, it is common that partial sample overlap between
these two GWASs. For example, the sample size of the GWAS for
BMI inmen cohort with age greater than 50 is about 90,000, while
the corresponding GWAS for WHR after adjusting BMI only use
a sub-sample with about 60,000 sample. And the two studies may
use different covariates adjustment strategies. In conclusion, the
above real scenarios can be formulated as follows
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Where Yc
1 and Yc

2 are the overlap sample of two phenotypes with
genotypes Gc, Yu1

1 is the unique sample only used in first model
with genotypes Gu1 , and Yu2

2 and Yu2
1 are the unique sample only

used in second model with genotypes Gu2 . Z1 and Z2 includes
the intercept and covariates, which may consider different
covariates for different GWAS. In Supplementary Theorem 1,
we show that the estimates of the genetic effects β̂1 and β̂∗
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Therefore, we can simply integrate the summary association
statistics in model (1) and (2), that is

( β̂1

se(β̂1)

)2
+

( β̂∗
2
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2 )

)2
∼ χ2

2 (3)

which is a test statistics about testing the null hypothesisH0: none
of Y1 and Y2 associates with G. Hence the proposed procedure
extends the biased GWAS to bivariate analyse, which is termed
BTOB (extends the Biased GWAS to Bivariate GWAS).

2.2. Simulations
We simulate 1,000 replicates of correlated traits, the causal SNP
G is generated with minor allele frequency of 0.3 assuming the
Hardy Weinberg equilibrium. The traits are generated using a
linear additive model

Yk = βkG+ εk, k = 1, . . . ,K

where (ε1, . . . , εK)⊤ follows multivariate normal distribution
with mean 0 and covariance matrix 6. We set the sample size
of Y1 to be 5,000, and then vary the sample size of Y2 to be
5,000, 4,000, and 3,000. We consider three scenarios:(1) The
tested variant affects the bivariate traits in the same direction.
The tested variant explains 0.5% of the variance of Y1 and 0 to
0.5% of the variance of Y2, or the tested variant explains 0.5%
of the variance of Y2 and 0 to 0.5% of the variance of Y1. The
correlation was set to be low (ρ = 0.4), moderate (ρ = 0.6), or
high (ρ = 0.8), where ρ was the correlation coefficient between
Y1 and Y2. (2) The tested variant affects one phenotype only.
Specifically, we considered the following two scenarios: the tested
variant explains 0.5% of the variance of Y1 and 0% of the variance
of Y2, or the tested variant explains 0.5% of the variance of Y2

and 0% of the variance of Y1. The correlation coefficient between
Y1 and Y2 is varied from −0.9 to 0.9. (3) The test variant affects
the bivariate traits in the opposite directions. The tested variant
explains 0.3% of the variance of Y1 and 0.4% of the variance of Y2

with the opposite directions, or the tested variant explains 0.4%
of the variance of Y1 and 0.3% of the variance of Y2 with the
opposite direction. The correlation between Y1 and Y2 is varied
from 0 to 0.9.

2.3. Study Decription
We download the gender and age specific summary association
statistics for WHR after adjustment for BMI, and the marginal
summary association statistics of BMI by the GIANT consortium
from website http://portals.broadinstitute.org/collaboration/
giant/index.php/GIANT_consortium_data_files (Winkler et al.,
2015). We integrated the summary association statistics from
the following univariate GWASs stratified by age and gender:
BMI∼SNP, WHR∼SNP+BMI, resulting in the bivariate analysis
of WHR and BMI. The aim of this study is to assess whether the
proposed BTOB approach can contribute novel gene compared
with the corresponding univariate GWASs. Hence, the gene is
considered to be novel if the lead SNP in (or 400 KB flanking)
a gene is genome-wide significant in the bivariate analysis,
whereas none of the lead SNPs in (or 400 KB flanking) this
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FIGURE 1 | Power comparison of BTOB, MANOVA, and the univariate analysis. The test variant explains 0.5% of the variance of Y1, and the proportion of the test

variant’s variance for Y2 varies from 0 to 0.5%. The genetic effects of Y1 and Y2 are with the same direction. The sample size of Y1 is 5,000, and the sample size of Y2
is set to be 5,000, 4,000 and 3,000, respectively. Three levels of correlation between Y1 and Y2 are investigated: low correlation with ρ = 0.4 (A), moderate correlation

with ρ = 0.6 (B), and high correlation with ρ = 0.8 (C).

gene reach genome-wide significance in the corresponding
univariate GWASs. As we can only assess the HapMap II allele
frequencies instead of pooled allele frequencies across all cohorts,
we only included SNPs with sample size greater than 30,000,
for which the HapMap allele frequencies may be representative.

3. RESULT

3.1. The Performance of BTOB in
Integrating the Summary Association
Statistics
For illustrate purpose, we conducted simulation studies to
investigate the validity and efficiency of the proposed BTOB. As
a comparison, we include the MANOVA method (Ray et al.,
2016). Since MANOVA is not directly applicable to the summary
association data, we use the overlap sample and re-run the
multivariate association analysis using the MANOVA.

Supplementary Table 1 presents the type 1 error for BTOB,
which shows that the proposed BTOB can control the type 1
error rate quite well. Figure 1 presents the power comparisons
when the tested variant affects the bivariate phenotypes in the
same direction. The tested variant explains 0.5% of the variance
of Y1 and 0 to 0.5% of the variance of Y2. We can observe
from Figure 1 that BTOB and MANOVA have nearly the same
power when both phenotypes have the sample size 5,000, which
indicates the validity and efficiency for BTOB. However, as the
overlap sample size is set to be 4,000, BTOB performs much
better than MANOVA. When the overlap sample size is set to
be 3,000, the power discrepancy between BTOB and MANOVA
is more obvious. This is expected as the sample size used in
GWAS: Y1 = µ1 + β1G + Z1ς1 + ε1 is often larger than the
sample size used in GWAS: Y2 = β2G + Y1γ1 + Z2ς2 + ε2.
Traditional multivariate approaches, such as MANOVA, are only
applicable to the overlap sample between Y1 and Y2. However,
the proposed BTOB canmake full use of the whole sample for Y1,
hence boosting the power compared with MANOVA. The same
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TABLE 1 | The novel Genome-wide Significant loci which were identified by the proposed combining method but not found by the standard univariate approach for the

analysis of WHR and BMI.

BMI WHR∼BMI BTOB

Cohort SNP Chr Gene Beta SE P − valuea N1 Beta SE P − valuea N2 P − valueb

Men(Age>50) rs10923746 1 WARS2 –0.020 0.0051 5.3e-05 90,515 0.029 0.0063 4.4e-06 56,398 5.405e-09

Men(Age>50) rs12073056 1 TBX15 –0.022 0.0049 6.7e-06 90,142 0.030 0.0062 9.9e-07 55,682 1.774e-10

Men(Age>50) rs3817973 6 HCG23 –0.018 0.005 2.7e-04 91,470 0.031 0.0062 4.7e-07 56,924 3.019e-09

Men(Age>50) rs9378213 6 HLA-DRA –0.022 0.0051 1.6e-05 89,222 0.03 0.0063 3.2e-06 56,647 1.264e-09

Women(Age>50) rs12998590 2 SLC38A11 –0.022 0.0054 6.3e-05 88,374 0.031 0.0067 3.2e-06 57,158 4.702e-09

Women(Age>50) rs253393 5 POC5 –0.026 0.0058 8.40E-06 88,423 -0.026 0.0072 0.00024 57,159 4.24E-08

Women(Age>50) rs6971365 7 KLF14 –0.017 0.0052 0.0013 104,946 0.033 0.0062 1.00E-07 71,909 3.09E-09

Women(Age>50) rs11191295 10 TMEM180 0.017 0.0049 4.1e-04 97,313 –0.027 0.0058 3.3e-06 66,010 2.898e-08

aThe results for univariate phenotypes approach. The genome-wide Significant level is set to be 2.5E-08 with the Bonferroni correction. bThe results for the BTOB approach. The

genome-wide Significant level is set to be 5E-08. Chr, chromosome; N1, the sample size of GWAS for BMI; N2, the sample size of GWAS for WHR adjusting for BMI.

phenomenons can be observed in Figures 1B,C with median
and high correlation. In Figure 1, we also compare the power
between the bivariate analysis and the univariate analysis after
the Bonferroni correction. We can observe from Figure 1 that
BTOB approach performs better than the univariate approach
in most scenarios. It should be noted that there is a decrease
of power for BTOB when the proportion of the test variant’s
variance for Y2 varies from 0 to a reasonably small value. This
counterintuitive phenomenon can be explained by using the
theoretical results given in a recent work (Guo et al., 2018).
Supplementary Figures 1–3 present the power comparison for
two other scenarios: the tested variant affects one trait only,
and the tested variant affects the bivariate traits in the opposite
direction. All of the simulated results indicate the superior
performance for BTOB compared with MANOVA when the
overlap sample size is set to be 4,000 and 3,000, and the
superior power for BTOB compared with univariate analysis in
most scenarios.

3.2. Real Data Analysis
In total, 8 loci are novel compared with the univariate GWASs:
4 for bivariate analysis of WHR and BMI in the cohort of men
aged over 50, and 4 for bivariate analysis of WHR and BMI in the
cohort of women aged over 50 (Table 1). The genomic control
(GC) inflation factors of these 4 bivariate analyses is presented in
Supplementary Table 2.

Firstly, for the analyses of WHR and BMI in the cohort
of women aged over 50, we identified 4 novel genes
compared with the univariate GWASs (WARS2, leading
SNP: rs10923746, p-value = 5.405E-09; TBX15, leading
SNP: rs10923715, p-value = 4.88E-11; HCG23, leading SNP:
rs3817973, p-value = 3.019e-09; HLA-DRA, leading SNP:
rs9378213, p-value = 1.264e-09) (Table 1). Even though these
4 leading SNPs show evidence of association in the univariate
analyses: GWAS for WHR after adjusting BMI and GWAS for
BMI, these univariate analyses have no enough power to reach
the genome-wide significance. What is more, for the analyse of
WHR and BMI in the cohort of women aged over 50, BTOB
method identified 4 novel loci compared with the univariate

GWASs (SLC38A11, leading SNP: rs12998590, p-value = 4.702e-
09; POC5, leading SNP: rs253393, p-value = 4.24E-08; KLF14,
leading SNP: rs6971365, p-value = 3.09E-09; TMEM180, leading
SNP: rs11191295, p-value = 2.898e-08) (Table 1). The real data
analysis suggested that the BTOB method is capable to integrate
moderate signals from the corresponding univariate analyses,
hence leading to the identification of novel genetic signals
compared with the univariate analyses. Further, six identified
loci from the BTOB method, including TBX15, WARS2, POC5,
KLF14, HLA-DRA, SLC38A11, were confirmed in the follow-up
GWASs with at least ten times larger sample size (Pulit et al.,
2019; Zhu et al., 2020), suggesting BTOB can help identify novel
genes in the GWASs when the sample size is limited.

Finally, several studies have suggested a potential causal role of
these identified genes in adipose development and function. For
example, animal models have demonstrated that the important
role of WARS2 in regulating brown adipose tissue function
and consequently lipid and glucose metabolism, by regulating
mitochondrial respiration, leading to the increased glucose
oxidation in brown adipose tissues (Pravenec et al., 2017; Ejarque
et al., 2019). TBX15 encodes a T-box transcription factor (TF)
that has shown to be involved in various aspects of adipose
development and maintenance, also to be associated with body
fat distribution (Singh et al., 2005; Zhang et al., 2020). It has
also been implicated the transcription factor KLF14, a member
of the Krupple-like factor family (KLF), plays a key role in energy
homeostasis by regulating lipid and glucose metabolism, and
adipogenesis via promoting adipocyte differentiation (Chen et al.,
2005; Birsoy et al., 2008).

4. DISCUSSION

There are several concerns that should be noted about
multivariate approaches in GWAS. First, the proposed bivariate
method or other multivaraite methods for summary association
statistics from univariate GWASs have been shown to help
identify novel genes compared with univariate GWASs. While
the multivariate approaches can also fails some genes identified
in the univariate GWASs. Hence, the multivaraite GWASs
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should be considered as a valuable compensation rather
substitution for univariate GWASs. Second, there is no single
multivariate method that is uniformly most powerful in all
scenarios. Hence, it is valuable to try several candidate methods
in real case.

In summary, our proposed approach provides an efficient
shortcut for extending the existing biased GWASs to the bivariate
GWAS. Considering a great amount of large scale biased GWASs
have been published (Hancock et al., 2010; Kaplan et al., 2011;
Randall et al., 2013; Loth et al., 2014; Winkler et al., 2015; Pulit
et al., 2019; Zhu et al., 2020), the proposed BTOB method is
expected to be of great practical utility.
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