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Large-Scale Analyses Provide No Evidence for Gene-Gene
Interactions Influencing Type 2 Diabetes Risk
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A growing number of genetic loci have been shown to
influence individual predisposition to type 2 diabetes
(T2D). Despite longstanding interest in understanding
whether nonlinear interactions between these risk var-
iants additionally influence T2D risk, the ability to detect
significant gene-gene interaction (GGlI) effects has been
limited to date. To increase power to detect GGl effects,
we combined recent advances in the fine-mapping of
causal T2D risk variants with the increased sample size
available within UK Biobank (375,736 unrelated European
participants, including 16,430 with T2D). In addition to
conventional single variant-based analysis, we used
a complementary polygenic score-based approach,
which included partitioned T2D risk scores that capture
biological processes relevant to T2D pathophysiology.
Nevertheless, we found no evidence in support of GGl
effects influencing T2D risk. The current study was
powered to detect interactions between common var-
iants with odds ratios >1.2, so these findings place limits
on the contribution of GGls to the overall heritability of
T2D.

Genome-wide association studies (GWAS) have provided
a detailed inventory of genetic loci conferring susceptibil-
ity to type 2 diabetes (T2D). A study of ~900,000 indi-
viduals of European descent identified >400 association
signals (1). To date, most studies of T2D predisposition
have focused on the detection of main effects attributable
to individual genetic variants. However, there has been
longstanding interest in understanding the contributions
of gene-gene interactions (GGIs) to individual predis-
position to T2D. This interest was initially driven by
the possibility that non-log-additive interactions might

explain the apparent failure of main effects to account
for the observed heritability of T2D (2). More recently, the
search for GGIs has been motivated by the desire to
establish whether second-order genetic effects could im-
prove disease prediction models on the basis of genotype
data and by the potential for statistical interactions to
provide clues to underlying disease mechanisms (3). To
date, there has been little evidence to indicate that GGIs
have any appreciable impact on T2D risk (4,5).

However, it is clear that detection of all but the largest
GGI effects require sample sizes substantially larger than
those used to identify the main effects (1,6,7). Further-
more, the sample sizes necessary to detect GGI scale
exponentially (precisely, to the fourth power of the cor-
relation coefficient) when the variants being tested are
only partially correlated with the (often unknown) causal
variant (3).

The UK Biobank study, which provides genetic data for
~500,000 individuals, offers a singular opportunity to
advance the exploration of GGIs in T2D. We sought to
capitalize on recent advances in the characterization of
T2D risk loci resulting from fine-mapping efforts that
have improved localization of the causal variant at many
risk loci (1).

RESEARCH DESIGN AND METHODS

UK Biobank Study Population

The UK Biobank (8) is a prospective cohort study of
~500,000 individuals from across the U.K. We used
imputed genetic data from the March 2018 release (ver-
sion 3); details regarding quality control and imputation
are provided elsewhere (9). We generated discrete geno-
types using a genotype probability threshold of 0.8 and
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excluded variants with info score <0.5 and Hardy-Weinberg
disequilibrium (P < 10 9). Individuals with discordant sex,
putative sex chromosome aneuploidy, withdrawal of con-
sent, and diagnosis of another form of diabetes, such as type
1 or gestational diabetes mellitus, were excluded. We further
selected a subset of 375,736 individuals (16,430 T2D cases,
359,306 controls) who were 1) unrelated (up to second-
degree relatives determined using the KING toolset
[https://people.virginia.edu/~wc9c/KING/manual. html]
[10]) and 2) of European ancestry (determined using
a combination of 15 principal components [PCs] provided
by UK Biobank and self-reported white British ancestry).
Variance-weighted PC scores were used to calculate the
“genetic distance” with a hypothetical median white British
participant to identify European individuals (genetic dis-
tance <60 units) (11). Prevalent T2D status was defined
using self-reported medical history and medication infor-
mation (12).

Prioritization of Variants for GGl Analysis

We used the following two approaches. The first approach
was to select variants associated with T2D risk (the T2D
risk set). We selected the index variant at each of the 403
conditionally independent association signals reported in
the largest T2D GWAS in Europeans (1).

The second approach was to select variants associated
with heterogeneity in T2D variance (the T2D variance set):
variants that demonstrate marked heterogeneity in phe-
notype variance across genotypes represent potential
candidates for GGI effects (13-15). To detect such var-
iants, we selected a random subset of 100,000 unrelated
European subjects (4,284 T2D cases, 95,716 controls),
adjusted their T2D status for age, sex, genotyping batch,
and 10 PCs; standardized the residuals; and used Levene
test to assess equality of variance across genotypes (in-
cluding only variants with minor allele frequency
[MAF] >5%). For each 1-Mb block of the genome, we
identified the variant most significantly associated with
T2D variance (index variant). Finally, we selected the
100 most significant index variants that did not overlap
with variants in the T2D risk set (Supplementary Table 1).
The union of T2D risk and T2D variance sets provided
a T2D joint set of 503 variants.

Analysis of GGls for T2D

GGI effects were sought using two complementary
strategies (Supplementary Fig. 1). The first strategy was
single variant-based GGI analysis. We tested for interac-
tions between individual variants using the —epistasis
function in PLINK (https://www.cog-genomics.org/
plink2) (16), which fits a logistic regression model (as-
suming a log-additive model of disease risk), as follows:
In(P [T2D] / P [control]) = B + B1SNP; + B-SNP, + B3SNP;SNP,,
where SNP; and SNP, refer to the variants being tested, 31
and B, refer to their main effects, and B3 refers to their
interaction effect on T2D.
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We deployed two analytical approaches: in the T2D
joint set pairwise analysis, interaction was tested between
each pair of variants in the T2D joint set; and, in the T2D
joint set-versus-genome set analysis, interaction testing
for the T2D joint set variants was extended to variants in
the remainder of the genome (the genome set). Power
calculations were performed (17) to estimate the MAF
threshold (10%) for a variant in the genome set above which
there was adequate power (>75%) to detect a substantial
interaction effect (which we defined as an odds ratio
[OR] >1.5) with a variant of MAF = 5% from the T2D
joint set on the basis of the following parameters: 1) main
effect OR on T2D for T2D joint set variant = 1.1; 2) main
effect OR on T2D for genome set variant = 1.0; 3) interaction
effect OR between the variants = 1.5; 4) sample size =
375,736, with a T2D case:control ratio (per UK Biobank) of
0.044; and 5) single test @« = 0.05, with Bonferroni adjust-
ment for 503 genome-wide analyses. Since the presence of
linkage disequilibrium (LD) can confound interaction tests,
we removed variants in the genome set in LD (> > 0.1 within
1 Mb) with a given T2D joint set index variant.

The second strategy was polygenic score (PS)-based GGI
analysis. Compared with the single variant-based ap-
proach, the PS-based approach for testing GGIs offers
greater statistical power if the underlying interaction
effects for multiple T2D risk alleles are shared across
alleles. We aggregated effects of the 403 variants in the
T2D risk set to construct an overall T2D PS using the
—score function in PLINK (16). The risk allele dosage for
each variant was weighed by the effect size obtained from
a T2D meta-analysis of 455,302 European individuals
that included all studies from Mahajan et al. (1) except
UK Biobank.

Similarly, a set of 93 T2D variants, which were either
members of the T2D risk set or proxies (median 7> =0.91)
thereof, was used to construct six (weighted) partitioned
PS (pPS) that captured biological processes relevant to T2D
pathophysiology (18,19) (Supplementary Table 2). These
pPS are referred to as pPS;s1, pPSisy (both reflecting pro-
cesses involved in insulin secretion), pPSy (insulin action),
PPS.diposity (overall adiposity), pPSaysipidemia (Predomi-
nantly affecting liver metabolism), and pPS;, (a mixture
of the above). The overall PS and the pPS were standardized
to represent SD units. For the PS-based interaction analysis,
we tested interactions between each PS (overall PS and six
pPS) and genome-wide variants (MAF =1%; ~6 million)
variants.

Data Resource and Availability

The summary statistics of genome-wide analyses per-
formed in this study are available at https://zenodo.org/
record/3978776#.Xz1AzC3MzRY.

RESULTS

The approaches deployed to characterize GGIs in T2D are
summarized in Supplementary Fig. 1. These analyses were
performed in 375,736 unrelated European individuals
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from UK Biobank (16,430 T2D cases, 359,306 controls)
(RESEARCH DESIGN AND METHODS).

Analysis of GGls for T2D

Since testing all genome-wide variants for interaction
presents computational and statistical challenges, we pri-
oritized two sets of variants for single variant analysis: the
T2D risk set of 403 index variants, representing condi-
tionally independent association signals for T2D risk in
Europeans (1), and the T2D variance set, a nonoverlapping
set of 100 index variants selected for the most extreme
effects on T2D variance within UK Biobank (indicative of
possible interaction effects) (13-15). Our primary analyses
considered the combined T2D joint set of 503 variants
(RESEARCH DESIGN AND METHODS).

We first sought pairwise interactions between variants in
the T2D joint set. None of the pairwise interactions crossed
the Bonferroni-corrected significance threshold (a0 = 4 X
107, correcting for 126,253 pairwise tests) (Supplemen-
tary Table 3). We estimate >70% power to detect an
interaction effect of OR =1.5 between two variants in
the T2D joint set, when both have an MAF at the lower
end of the common variant range (5%) and main effect T2D
OR = 1.1 (Supplementary Fig. 2). For more common
variants (MAF = 50%), we were powered for interaction
effects OR >1.2. The quantile-quantile plot provided no
evidence that the distribution of GGI effects departed from
the null (Fig. 1A). The strongest signal in this pairwise GGI
analysis, involving rs629137 (near UVRAG, T2D variance
set) and rs76011118 (near CDKN2A/B, T2D risk set), had an
interaction OR of 1.24 (95% CI 1.21-1.27; P =1 X 10 °).
No significant pairwise interactions were observed when
analyses were restricted to just the T2D risk set (81,003
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tests, « = 6 X 10~ 7) or the T2D variance set (4,950 tests,
a =1 X 107°) (Fig. 14).

Next, we tested interactions between T2D joint set
variants and the remainder of the genome. For the latter,
we focused on ~3.2 million variants with MAF >10%,
since power calculations indicated >75% power to detect
an interaction effect of OR =1.5 for variants above this
MATF threshold, given a joint set MAF at the lower end of
the common variant range (5%) (Supplementary Fig. 3).
Again, we found no evidence for significant interactions at
a =1 X 10~ '° (accounting for 503 genome-wide analyses)
(Figs. 1B and 2 and Supplementary Table 4). The strongest
signal involved two variants near TCF7L2: rs184509201,
a T2D risk set variant corresponding to one of seven
secondary signals at this locus, and rs10885397, a variant
from the genome set (interaction OR 1.55 [1.51-1.59]; P =
2 X 10~ %). These two variants, located ~28 kb apart, are
not in LD (** = 0.0). Genome-wide interaction analyses
with variants exclusive to the T2D risk set (@ = 1 X 10~ 1)
or the T2D variance set (@ = 5 X 107 %% were similarly
negative.

Since the power to detect GGI effects for individual
variants can be limited even with large sample sizes, we
sought to bolster GGI detection by aggregating T2D risk
variants into PS. In addition to an overall PS generated
from the 403 variants in the T2D risk set, we constructed
six additional pPS using a subset of 93 T2D risk variants
that were stratified into physiological clusters capturing
biological processes relevant to T2D pathophysiology (E-
SEARCH DESIGN AND METHODS).

Analyses evaluating GGIs using a PS-based approach
failed to detect significant interactions between these PS
and variants in the genome set (@ = 7 X 10~ °, accounting
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Figure 1—Quantile-quantile (Q-Q) plots for the GGl analyses. A: Pairwise interaction analysis for T2D joint set variants. The figure shows the
Q-Q plot for the pairwise interaction analysis for the index variants in the T2D joint set. In addition, the Q-Q plots when the pairwise interaction
analysis was restricted to the index variants in the T2D risk set and to the index variants in the T2D variance set are shown. B: Interaction
analysis between variants in the T2D joint set and the genome set. The Q-Q plot for the interaction analysis between variants in the T2D joint
set and the genome set is shown as two separate curves: the red curve demonstrates the results of the genome-wide interaction with T2D risk
set variants, and the blue curve demonstrates the results for T2D variance set variants. For simplicity, the results shown are restricted to the
10 variants in each set with the strongest associations for the respective measure (T2D risk or T2D variance).
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Figure 2—Manhattan plot for the GGl analysis between variants in the T2D joint set and the genome set. The figure demonstrates the results
of 503 genome-wide interaction analyses, where each genome-wide analysis corresponds to interaction testing between a variant in the T2D
joint set (N = 503) and the genome set variants. The dotted line demarcates the conventional genome-wide significance threshold (P = 5 X
10~%), and the red line demarcates the Bonferroni-corrected significance threshold for 503 genome-wide analyses (P = 1 x 10~ '°). The gray
zone at the bottom of the plot represents association P values that were not plotted (P > 0.001).

for seven GWAS) (Supplementary Table 5 and Supplemen-
tary Figs. 4 and 5). The strongest signal from this analysis
was between variants at the CHN2 locus and pPSayslipidemia
(interaction OR 1.22; P = 1 X 10~ 7); this locus has
previously been associated with diabetic retinopathy and
development of severe insulin resistance (20).

DISCUSSION

By addressing several limitations of previous analyses, the
current study offers substantially improved power for
detecting GGI effects influencing T2D risk. First, we con-
ducted GGI analyses in a much larger sample size than
earlier efforts (4,5). Second, we prioritized sets of genetic
variants likely to be enriched for interaction effects. Third,
we leveraged improved fine-mapping of association signals,
avoiding the attrition of power for signals only partially
correlated with the causal variant. Fourth, we imple-
mented a PS-based approach to complement the single
variant-based interaction analysis. Despite using all these
measures, we found no credible evidence either in the
overall distribution of interaction effects or in individual
signals meeting study-wide significance for GGI effects
influencing T2D risk.

There are some clear limitations to this analysis. For
computational and statistical reasons, we chose not to test
all genome-wide variants for interaction (requiring ~10"°
tests). Nevertheless, the sets of variants prioritized were
those most likely to demonstrate interaction effects, and
the lack of significant associations within this subset

should be indicative of patterns seen more broadly. Addi-
tionally, our study did not rule out the possibility of
higher-order interactions and interactions detectable on
a scale of disease-risk other than log-additive.

We are unable to determine the extent to which more
subtle or infrequent GGI effects, singly or in combination,
contribute to the residual heritability not attributable to
known T2D risk variants. Nevertheless, the absence of
detectable major GGI effects on T2D risk implies that for
many practical clinical and epidemiological purposes, the
joint effects of multiple genetic risk factors for T2D can
be derived purely from the combination of main effects.
Although it has been suggested that statistical GGIs
might be indicative of functional interactions (3) and,
thereby, provide mechanistic insights into disease biol-
ogy, the extent to which this holds for common variants
influencing complex human diseases remains to be

established.
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