
Age-related macular degeneration (AMD) is a progres-
sive disease of the posterior pole, and its onset is influenced 
by various genetic and nongenetic risk factors [1,2]. The 
progression of AMD represents an enormous burden because 
the late stage of the disease is associated with severe visual 
impairment [3,4]. Although the presence of reticular pseu-
dodrusen (RPD) has been increasingly recognized as a risk 
factor for AMD progression [5-8], recent AMD classification 

and grading schemes do not include RPD as a biomarker for 
AMD [9].

RPD were initially described as an ill-defined yellowish 
interlacing network on color fundus photography [10]. 
However, advances in retinal imaging over the years have 
allowed more accurate visualization and better detection of 
RPD via near-infrared (NIR) reflectance images and spectral-
domain optical coherence tomography (SD-OCT) compared 
with their sensitivity on color fundus photographs (FPs; sensi-
tivity on FPs, 29%–88% vs. sensitivity on NIR or SD-OCT, 
71%–100%) [11]. With the use of multimodal imaging, it 
has become apparent that in contrast to soft drusen, RPD 
are located in the subretinal space [12]. Nevertheless, RPD 
share compositional similarities with soft drusen, such as 
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Purpose: The purpose of this study was to analyze genetic and nongenetic associations with reticular pseudodrusen 
(RPD) in patients with and without age-related macular degeneration (AMD).
Methods: This case-control study included 2,719 consecutive subjects from the prospective multicenter European Ge-
netic Database (EUGENDA). Color fundus photographs and optical coherence tomography (OCT) scans were evaluated 
for the presence of AMD and RPD. Association of RPD with 39 known AMD polymorphisms and various nongenetic 
risk factors was evaluated. Stepwise backward variable selection via generalized linear models (GLMs) was performed 
based on models including the following: a) age, sex, and genetic factors and b) all predictors. Receiver operating char-
acteristic (ROC) curves and the areas under the curve (AUCs) were determined.
Results: RPD were present in 262 cases (no AMD, n = 9 [0.7%; early/intermediate AMD, n = 75 [12.4%]; late AMD, n = 
178 [23.8%]). ROC analysis of the genetic model including age, APOE rs2075650, ARMS2 rs10490924, CFH rs800292, 
CFH rs12144939, CFI rs10033900, COL8A1 rs13081855, COL10A1 rs3812111, GLI3 rs2049622, and SKIV2L rs4296082 
revealed an AUC of 0.871. Considering all possible predictors, backward selection revealed a slightly different set of ge-
netic factors, as well as the following nongenetic risk factors: smoking, rheumatoid arthritis, steroids, antiglaucomatous 
drugs, and past sunlight exposure; the results showed an AUC of 0.886.
Conclusions: RPD share a variety of genetic and nongenetic risk factors with AMD. Future AMD grading systems 
should integrate RPD as an important risk phenotype.
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membranous debris, complement components, lipids, vitro-
nectin, and extracellular matrix proteins [13-19].

In recent years, several studies have evaluated the asso-
ciations of RPD with known AMD risk polymorphisms. A 
strong association of ARMS2 polymorphism with RPD has 
repeatedly been reported; however, the association of CFH 
variants with RPD is controversial [6,11,20-29]. Nevertheless, 
most of these studies have focused on the association of major 
AMD risk polymorphisms in CFH and ARMS2 genes.

In this study, we aimed to conduct a comprehensive 
analysis of the association of various risk factors with RPD 
in patients with and without AMD in a cohort of 2,783 indi-
viduals. For this purpose, we evaluated the association of 
RPD with 39 polymorphisms known to be associated with 
AMD and several AMD-associated nongenetic risk factors 
and used NIR, SD-OCT, and FP images for the detection of 
RPD and staging of AMD. Furthermore, we aimed to create 
a multivariable prediction algorithm for the presence of RPD.

METHODS

This case-control study evaluated 2,783 consecutive 
cases from the European Genetic Database (EUGENDA). 
EUGENDA is a multicenter prospective epidemiological 
study enrolling patients with AMD, as well as healthy control 
individuals ≥ 55 years of age (Department of Ophthalmology, 
University of Cologne, Faculty of Medicine and University 
Hospital Cologne, Cologne, Germany; and Department of 
Ophthalmology, Donders Institute for Brain, Cognition and 
Behavior, Radboud University Medical Center, Nijmegen, the 
Netherlands). The database included prospectively collected 
questionnaires, retinal imaging data, and blood samples to 
evaluate genetic and nongenetic risk factors. The study was 

performed according to the Declaration of Helsinki and the 
Medical Research Involving Human Subjects Act (WMO); it 
was approved by the local ethics committee of each university 
hospital. Before enrollment in EUGENDA, written informed 
consent was obtained from all participants. Patients with 
confounding macular and retinal diseases and insufficient 
image quality were excluded from the analysis.

Questionnaires: Collected patient information included 
age, gender, body mass index (BMI), family history of 
AMD, marital status, highest education level, and iris color. 
Medical history for arterial hypertension, cardiovascular 
diseases (CVDs, including myocardial infarction, angina 
pectoris, stroke/transient ischemic attack, congestive heart 
failure, vascular bypass surgery, and blood clotting disorder), 
diabetes, rheumatoid arthritis, thyroid disease, cancer, 
migraine, and history of allergy were documented. Further-
more, the daily use of acetylsalicylic acid (ASA), nonste-
roidal anti-inflammatory drugs (NSAIDs), corticosteroids, 
coumarin derivates, and antiglaucomatous drugs was evalu-
ated (daily vs. nondaily use). Documented lifestyle factors 
included smoking (never vs at some point); regular alcohol 
use (regular vs. almost never); intake of fruit, vegetables, fish, 
and red meat (≥2 times a week vs. almost never); physical 
exercise (≥2 times a week vs. almost never); and current and 
past sunlight exposure (≥8 h a day).

Imaging data and grading: Retinal images, including 
SD-OCT volume scans registered over NIR images 
(Spectralis SDOCT, Heidelberg Engineering, Heidelberg, 
Germany) and stereo color FP (FP, Cologne: Canon UVI 
fundus camera using 40° field of view; Canon, Tokyo, Japan, 
and Nijmegen: Topcon TRC 50IX fundus camera using 50° 
field of view; Topcon, Tokyo, Japan), were collected from 

Figure 1. Imaging of reticular pseudodrusen. Example of reticular pseudodrusen (RPD) visible via fundus autofluorescence (A), infrared 
imaging (B) and spectral-domain optical coherence tomography (SD-OCT; C).
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each participant. In cases of suspected macular neovascu-
larization (MNV), additional fluorescein angiography was 
performed (Spectralis HRA2, Heidelberg Engineering). 
AMD staging was performed for both eyes of all cases based 
on evaluation of FP, fluorescein angiograms (if available), and 
SD-OCT volume scans according to the standard protocol 
of the Cologne Image Reading Center (CIRCL) by certified 
Reading Center graders (TS, LA).

Early AMD was defined as the presence of pigmentary 
changes together with more than 10 small drusen (<64 µm) or 
the presence of <15 intermediate drusen (64-125 µm). Inter-
mediate AMD was defined by the presence of large drusen 
(>125 µm) or by presence of > 15 intermediate drusen (inter-
mediate AMD) in the early treatment diabetic retinopathy 
study (ETDRS) grid centered on fovea. Late forms of AMD 
included the presence of MNV (neovascular AMD [nAMD]) 
or geographic atrophy (GA). AMD staging of individuals was 
performed based on AMD staging of both eyes as described. 
The presence of RPD was evaluated on SD-OCT volume 
scans and NIR imaging. RPD were considered present if 
subretinal drusenoid deposits were visible in at least one eye, 
appearing as subretinal cones or flattened roundish lesions 
above the RPE in the OCT or as discrete hyporeflective dots 
with a central reflective round area and a surrounding hypo-
reflective annulus (Figure 1) [12].

Genetic data: Genomic DNA was extracted from peripheral 
blood samples using standard procedures. Single-nucleotide 
polymorphisms (SNPs) in or near AMD-associated risk genes 
that were available in the EUGENDA cohort were chosen for 
analysis (39 SNPs in 31 AMD risk–associated genes). Geno-
typing of SNPs in the ARMS2 (rs10490924), CFH (rs1061170, 
rs800292, rs12144939), CFI (rs10033900, rs141853578), 
C3 (rs2230199, rs1047286, rs433594), CFB (rs4151667, 
rs641153), TIMP3 (rs9621532), APOE (rs2075650, rs4420638), 
LIPC (rs10468017, rs493258), LPL (rs12678919), CETP 
(rs3764261), FADS1 (rs174547), VEGFA (rs943080), TGFBR1 

(rs334353), SKIV2L (rs429698), RAD51B (rs8017304), ABCA4 
(rs76157638), ABCA1 (rs3758294), COL8A1 (rs13081855), 
COL10A1 (rs3812111), SLC16A8 (rs8135665), ADAMTS9 
(rs6795735), IER3DDR (rs3130783), MYRIP (rs2679798), 
HSPH1 (rs9542236), GLI3 (rs2049622), GLI2 (rs6721654), 
TYR (rs621313), PON1 (rs705381), CYP24A1 (rs1570669), 
IGFR1 (rs2872060), and TNFRSF10A (rs1327806) genes was 
performed as previously described [30]. SNPs with minor 
allele frequency (MAF) < 0.05 were not included in this 
analysis.

Statistical analysis: Associations of RPD with genetic and 
nongenetic risk factors were analyzed by univariate and 
multivariable generalized linear models (GLMs). Variables 
with > 15% missing cases were not included in the GLMs. 
Odds ratios (ORs) with 95% confidence intervals (CIs) were 
estimated. The probability of RPD was estimated based on 
the selected models, and receiver operating characteristic 
(ROC) curves with the corresponding areas under the curve 
(AUCs) were obtained. Bootstrapping was used to derive 95% 
CIs for the ROC curves. Statistical analysis was performed 
using R software version 4.1 (packages: peperr, rms, fbroc).

RESULTS

Patient data: Out of 2,783 individuals available in the 
EUGENDA cohort at the time of analysis for this study, 64 
cases were excluded because of insufficient image quality 
and confounding macular or retinal diseases. RPD were 
considered present in 262 cases (9.6%). The mean age of indi-
viduals with RPD was higher compared with cases without 
RPD (80.74 ± 7.97 versus. 70.77 ± 8.35 years, p = 4.47 × 10−5, 
OR 1.13, 95% CI 1.12–1.15). No association was observed 
between gender and the presence of RPD. AMD was detected 
in at least one eye in 1,354 individuals (49.8%).

The presence of RPD showed a strong association with 
AMD (adjusted for age, p = 1.11×10−18, OR 21.03, 95% CI 

Table 1. Baseline characteristics of all subjects.

Variables No RPD RPD
Number of patients, n 2457 262
Female sex, n (%) 1436 (58.4%) 156 (59.5%)
Age (years), mean ±SD 70.77±8.35 80.74±7.97
No AMD, n (%) 1356 (99.3%) 9 (0.7%)
Early/intermediate AMD, n (%) 530 (87.6%) 75 (12.4%)
Late AMD, n (%) 571 (76.2%) 178 (23.8%)

AMD: Age-related macular degeneration, RPD: Reticular pseudodrusen CI: Confidence Interval, RPD: 
Reticular Pseudodrusen, OR: Odds ratio, MAF: Minor allele frequency MAF<5%: CFI rs141853578, CFB 
rs4151667, ABCA4 rs76157638, TIMP3.
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10.69–41.36). The prevalence of RPD was 0.7% (9/1365) in no 
AMD, 7.7% (25/323) in early AMD, 17.7% (50/282) in inter-
mediate AMD, 26.7% (27/101) in pure GA, 22.68% (139/610) 
in pure nAMD and in 31.6% (12/38) in mixed type with GA in 
one eye and MNV in the fellow eye (Table 1). The distribution 
of RPD in late AMD subgroups was not statistically different 
(p = 0.81).

Role of age and genetic risk factors: The univariate associa-
tions of each genetic risk factor with RPD and their MAF 
are presented in  Appendix 1. A genetic risk model was 
created after inclusion of all genes, sex, and age (model 
a). The following variables were included in the genetic 
model after backward variable selection: APOE rs2075650, 
ARMS2 rs10490924, CFH rs800292, CFH rs12144939, CFI 
rs10033900, COL8A1 rs13081855, COL10A1 rs3812111, GLI3 
rs2049622, and SKIV2L rs4296082 (Table 2). This genetic 
model showed a high AUC of 0.871. The ROC curve of the 
genetic model with its bootstrapping curve is presented in 
Figure 2.

Additional value of nongenetic risk factors: Univariate asso-
ciations of nongenetic risk factors with RPD are presented in 

Table 3. A new model with all available predictors (model b) 
was created by backward selection to estimate the possible 
effects of nongenetic risk factors. Besides age, this model 
revealed the following genetic variants: APOE rs2075650, 
ARMS2 rs10490924, CFH rs800292, CFH rs12144939, CFI 
rs10033900, COL8A1 rs13081855, CYP24A1 rs1570669, LIPC 
rs10468017 SKIV2L rs4296082, and TYR rs621313. Moreover, 
it revealed the following nongenetic risk factors: smoking, 
rheumatoid arthritis, corticosteroids, antiglaucomatous drugs, 
and past sunlight exposure (Table 4). However, the AUC of 
this model was only marginally better than that of the genetic 
model (AUC 0.883).

DISCUSSION

This comprehensive association study between known 
genetic and nongenetic AMD risk factors with RPD revealed 
common genetic risk pathways between RPD and AMD and 
highlighted the strong association of RPD with age, AMD, 
and ARMS2 polymorphism. Our results support the notion 
that RPD, as an important risk phenotype, should be inte-
grated into the future AMD classification systems used for 
patient prognosis.

Table 2. Variables selected based on model a) including age, sex and genes.

Variables Subset Estimate OR Lower 95% CI Upper 95% CI P- Value
Age   0.15 1.16 1.14 1.18 6.65E-47
APOE rs2075650 GA versus AA −0.42 0.66 0.43 1.01 0.056
  GG versus AA −15.34 0.00 0.00 n/A 0.977
ARMS2 rs10490924 TG versus GG 0.64 1.90 1.31 2.77 0.001
  TT versus GG 1.62 5.05 3.20 7.95 2.89E-12
CFH rs800292 GA versus GG −0.86 0.42 0.29 0.62 9.12E-06
  AA versus GG −0.82 0.44 0.17 1.14 0.090
CFH rs12144939 TG versus GG −0.93 0.40 0.25 0.62 3.9E-05
  TT versus GG −1.48 0.23 0.07 0.76 0.016
CFI rs10033900 TC versus CC 0.33 1.39 0.92 2.10 0.122
  TT versus CC 0.48 1.61 1.00 2.59 0.050
COL8A1 rs13081855 GT versus GG 0.61 1.83 1.24 2.71 0.002
  TT versus GG −0.30 0.74 0.16 3.54 0.708
COL10A1 rs3812111 AT versus AA −0.09 0.91 0.57 1.46 0.707
  TT versus AA −0.43 0.65 0.40 1.07 0.087
GLI3 rs2049622 GA versus GG −0.39 0.68 0.46 1.00 0.048
  AA versus GG −0.37 0.69 0.44 1.09 0.116
SKIV2L rs4296082 GA versus GG −0.54 0.58 0.37 0.91 0.019
  AA versus GG −1.88 0.15 0.02 1.34 0.090

CI: confidence interval, RPD: reticular pseudodrusen, OR: odds ratio
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In this study, a strong relationship between RPD and 
AMD was detected, as reported previously [6,22-25,28,31]. 
RPD in the absence of AMD were detected in only nine 
cases (<1%). AMD onset is strongly linked to age and genetic 
susceptibility involving multiple genetic variants related 
to the complement system, extracellular matrix, and lipid 
metabolism [1]. In concordance with previous reports, we 
detected a strong association between RPD and the ARMS2 
rs10490924 variant, one of the major AMD susceptibility 
polymorphisms [6,20-28]. The ARMS2 gene encodes for the 
ARMS2 protein, which is an extracellular matrix protein 
surrounding choriocapillaris adjacent to Bruch’s membrane 
(BrM), presumably contributing to BrM homeostasis [32,33]. 
Although RPD are frequently observed in AMD and their 
presence is associated with AMD progression [5-7], RPD also 
appear in other diseases related to BrM pathologies, such as 
Sorsby dystrophy and pseudoxanthoma elasticum [34,35]. 
These findings support the hypothesis that alterations in the 
BrM/RPE complex may be related to RPD formation.

Although genetic variants encoding for complement 
system components and regulators count as important risk 
factors for AMD and its progression [1,36-39], the associa-
tions of RPD with CFH variants are controversial [6,20-28,31]. 
Some studies have attributed the presence of CFH variants 
to an increased risk of RPD (CFH rs1061170 [22,28], CFH 
rs393955 [22], CFH rs2274700 [22]), whereas others have 
indicated that CFH rs1061170 (Y402H)—the major AMD risk 
polymorphism—is even associated with a lower incidence of 
RPD [20,24]. In contrast, some studies have found neither a 
positive nor negative association of CFH polymorphisms with 
RPD [21,23,26,31]. In this cohort, CFH rs800292 and CFH 
rs12144939 were associated with a decreased rate of RPD. 
Our results indicate the influence of CFH variants and the 
ARMS2 variant on the presence of RPD.

In this study, further known AMD risk polymorphisms 
in APOE, COL8A1, COL10A, GLI3, and SKIV2L genes were 
observed to have significant associations with the presence of 
RPD. Of these polymorphisms, an association with variants in 

Figure 2. Receiver operating 
characteristic (ROC) curve with 
95% confidence interval (CI) for 
variables selected based on genetic 
model).
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the APOE gene was evaluated previously by Puche et al., but 
no association was found [27]. Apolipoprotein E immunoac-
tivity has been previously described in patients with RPD and 
soft drusen [16]. In this cohort, APOE rs2075650 was associ-
ated with a low risk of RPD. Further associations of RPD 
were observed with COL8A1 and COL10A, both encoding 
for the chains of collagen types VIII and X; collagen type 
VIII was previously shown to be an important part of BrM 
and choroidal stroma [40,41]. Thus, associations of RPD with 
COL8A and COL10A might further support the involvement 
of BrM alterations in RPD pathogenesis. Altogether, the role 
of these variants remains to be evaluated carefully in larger 
cohorts.

In line with previous studies, we also observed a strong 
association between RPD and increasing age [4,23,26,28,31]. 
Moreover, the RPD rate was higher among patients with a 
history of smoking, rheumatoid arthritis, steroids, and past 

sunlight exposure. Smoking was previously reported as a 
risk factor for RPD [4,28]. In line with Wu et al. [23], the 
distribution of RPD was similar between women and men in 
this cohort, although several previous studies have reported 
otherwise [4,6,20,26,28,31]. Nevertheless, the ROC analysis 
demonstrated that the addition of nongenetic risk factors to a 
model consisting of age and genetic factors merely influences 
the discrimination ability between RPD and no RPD.

To date, RPD are increasingly accepted as an important 
risk factor for AMD progression [5-7], but the RPD patho-
genesis is still not fully understood. Alteration of choroid-
BrM-RPE is suggested as a contributor to RPD formation 
[18,34,42-46]. Impaired RPE might secrete proteins in an 
inverse fashion to the apical “subretinal” space instead of 
the sub-RPE, causing the accumulation of RPD [19]. The 
strong link of RPD with genetic variants affecting BrM and 
extracellular matrix remodeling supports the hypothesis that 

Table 3. Univariate association of non-genetic risk factors with presence of RPD.

Tested Non-genetic risk factor OR 95% CI p-value
Age 1.13 1.12–1.15 <0.001
Gender 0.96 0.74–1.24 0.732
Smoking (never/ever) 1.09 0.84–1.42 0.517
Body Mass Index (BMI) 0.99 0.95–1.02 0.423
Hypertension (no/yes) 0.99 0.76–1.29 0.936
Diabetes (no/yes) 1.40 0.91–2.09 p=0.109
CVD (no/yes) 1.88 1.43–2.45 <0.001
Rheumatoid Arthritis (no/yes) 1.87 1.22–2.79 0.003
Thyroid Disease (no/yes) 1.01 0.70–1.41 0.973
Cancer (no/yes) 1.20 0.84–1.67 0.305
Migraine (no/yes) 0.90 0.55–1.41 0.664
History of Allergy (no/yes) 0.56 0.39–0.79 0.001
ASA intake (no/yes) 2.14 1.56–2.90 <0.001
NSAID intake (no/yes) 1.21 0.56–2.33 0.596
Corticosteroid intake (no/yes) 2.58 1.60–4.02 <0.001
Coumarine intake (no/yes) 1.63 0.94–2.66 0.065
Antiglaucomatous drops (no/yes) 1.34 0.71–2.35 0.330
Alcohol use (no/ regular) 0.68 0.51–0.93 0.014
Fruits Intake (almost never versus regular) 0.89 0.48–1.85 0.736
Vegetables Intake (almost never versus regular) 1.22 0.24–22.22 0.851
Fish Intake (almost never versus regular) 0.86 0.64–1.18 0.351
Red Meat Intake (almost never versus regular) 1.29 0.93–1.83 0.141
Physical exercise (never versus ≥3 times/week) 0.65 0.46–0.91 0.015
Past Sunlight exposure (<4h versus ≥8h/day) 2.30 1.60–3.25 <0.001

AMD: Age-related macular degeneration, ASA: Acetylsalicylic acid, CVD: cardiovascular disease, CI: 
Confidence Interval, NSAID: non-steroidal anti-inflammatory drugs, OR: Odds ratio
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RPD formation is rather dependent on the choroid-BrM-RPE 
complex. This is further supported by proteomic findings 
in the aqueous humor of RPD patients showing upregulated 
extracellular matrix proteins similar to soft drusen [19]. 
Despite several similarities between RPD and AMD [13-19], 
lipid and immune cell composition of RPD and AMD seem 
to be slightly different [18,19]. Nevertheless, patients with no 
drusen and RPD have been shown to have a significant risk 
for development of both neovascularization and geographic 
atrophy over the years [47]. In addition, the results of this 
comprehensive study highlight that RPD and AMD share 
genetic pathways, even if the impact of each polymorphism 
might be different for soft drusen and RPD.

The strengths of this study include its large sample size 
and its prospective nature using multimodal imaging. In this 
study, we determined the presence of the RPD via OCT and 
NIR images, which is a great advantage for detecting RPD. 
Furthermore, the images were graded by two independent 
certified graders. The RPD detection rate in this EUGENDA 
cohort was 9.6%, which was slightly higher than population-
based studies that have used only FP for RPD detection 
[4,28]. Nevertheless, the prevalence rates of RPD in early, 
intermediate, and nAMD in this cohort were comparable to 
those of a recent AREDS2 report (EUGENDA vs. AREDS2: 
early AMD, 7.7% vs. 6.0%; intermediate AMD, 18% vs. 
26%; nAMD, 23% vs. 19%), whereas the RPD rate in GA 
was less than in the EUGENDA cohort (27% vs. 36%) [6]. An 
important limitation of this study is its case-control design; 

Table 4. Variables selected based on model b) including all predictors.

Variables Subset OR Lower 95% CI Upper 95% CI P- value
Age   1.16 1.14 1.19 3.53E-36
Gender Male versus female 0.71 0.47 1.08 0.109
APOE rs2075650 GA versus AA 0.76 0.47 1.24 0.273
  GG versus AA 0.00 0.00 N/A 0.977
ARMS2 rs10490924 TG versus GG 2.21 1.44 3.38 0.0002
  TT versus GG 4.93 2.90 8.39 3.92E-09
CFH rs800292 GA versus GG 0.36 0.23 0.57 7.60E-06
  AA versus GG 0.68 0.26 1.78 0.43
CFH rs12144939 TG versus GG 0.24 0.13 0.42 6.28E-07
  TT versus GG 0.15 0.04 0.62 0.008
CFI rs10033900 TC versus CC 1.60 1.00 2.56 0.051
  TT versus CC 1.48 0.85 2.57 0.162
COL8A1 rs13081855 GT versus GG 1.55 0.98 2.47 0.064
  TT versus GG 0.00 0.00 N/A 0.984
CYP24A1 rs15706692 GA versus AA 0.73 0.49 1.10 0.131
  GG versus AA 1.32 0.75 2.34 0.340
LIPC rs10468017 CT versus CC 1.25 0.85 1.84 0.266
  TT versus CC 0.52 0.22 1.26 0.149
SKIV2L rs4296082 GA versus GG 0.52 0.30 0.90 0.018
  AA versus GG 0.14 0.02 1.32 0.086
TYR rs6213132 TC versus TT 0.81 0.52 1.26 0.354
  CC versus TT 0.58 0.34 0.98 0.041
Smoking Never versus ever 1.43 0.95 2.15 0.083
Rheumatoid Arthritis Yes versus no 2.35 1.30 4.27 0.005
Corticosteroids Daily versus Non-daily 1.75 0.90 3.42 0.098
Antiglaucomatous Drugs Daily versus Non-daily 2.10 0.98 4.49 0.055

Past Sunlight Exposure ≥8 h a day versus 
<8 h a day 1.62 0.97 2.72 0.068

CI: confidence interval, RPD: reticular pseudodrusen, OR: odds ratio
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the distribution of RPD might differ from population-based 
trials. With correction for the multivariable approach, we 
attempted to minimize confounding factors. Furthermore, 
the information obtained from the questionnaire is subjec-
tive and was not validated. An additional limitation is that 
only known genetic and nongenetic AMD risk factors were 
included in this study, and therefore, additional risk factors 
for RPD could not be detected. Larger studies may reveal 
further important factors associated with RPD.

In conclusion, our results suggest that RPD share 
common genetic pathways with AMD and are strongly linked 
to AMD, age, and ARMS2 and CFH variants. Moreover, RPD 
and AMD share common nongenetic risk factors, such as 
smoking, but their influence seems to be modest. In light of 
these findings, integration of RPD in future AMD grading 
systems would help us understand the role of RPD in AMD.

APPENDIX 1. UNIVARIATE ASSOCIATION OF 
SNPS WITH PRESENCE OF RPD.

To access the data, click or select the words “Appendix 1.” 
CI: Confidence Interval, RPD: Reticular Pseudodrusen, OR: 
Odds ratio, MAF: Minor allele frequency, MAF< 5% : CFI 
rs141853578, CFB rs4151667, ABCA4 rs76157638, TIMP3 
rs9621532.
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