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Physical exercise physical and psychological health positive through various different 

avenues, as example, through affecting positively cognitive performance based upon the 

relocation of cortical activity which seems to advancing the brain development, connectivity 

and resilience [1]. Any bodily activity that enhances or maintains physical fitness implies the 

engagement of regular and frequent exercise thereby maintaining physical fitness and the 

reduction of agents associated with health problems, e.g. cortisol. With regard to the large 

proportion of individuals with more-or-less sedentary occupations, physical exercise offers 

probably the most effective health-promoting lifestyle available with positive outcomes for 

both neurologic and psychiatric conditions [2–10]. The expressions of disorder emerging as 

consequences of exposure to reward loss have been neglected in approaches to the 

psychobiology of substance abuse disorders. This notion emphasizes the shared 

characteristics reward loss and addiction are reviewed, namely, the neural circuitry involved 

in reward devaluation, the influence of genetic and reward history on the behavioral 

vulnerability and resilience, the role of competing natural rewards, and emotional self-

medication as a backdrop [11] to the consequences evolving in the “Reward Deficiency 

Syndrome”. The Reward Deficiency Syndrome, characterized by expressions of reward-

seeking behavior and/or addictions and involving a G protein-coupled receptor located on 

postsynaptic dopaminergic neurons that is centrally involved in reward-mediating 

mesocorticolimbic pathways, originates from genetic variations, most notably resulting from 

those carrying the D2A1 allele implicated in addiction and abuse [12, 13]. Individuals 

carrying the A1 allele tend to have insufficient numbers of D2 receptors in their brain, 

resulting in lack of pleasure and reward from activities that would provide others with 

pleasure. Dopamine subtype 2 receptor (D2DR) knockdown mice fail to gain weight or 

exhibit elevated appetitive motivation in comparison with the wild-type mice within standard 

environments yet in enriched environments incorporating voluntary exercise facilities, these 

D2DR knockdown mice expressed markedly lower activity with a rapid increase in obesity 

compared with the wild-type mice without being receptive of the protective benefit from 

exercise contingencies [14]. Thus, an underlying mechanism for conceptualizing and 
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treating addictive problems ought to be the reinstatement of a “Dopamine Homeostasis” 

[15].

It has been found that molecular, cellular and vascular regional brain plasticity [16–18] and 

neuromorphology [19], involving the medial prefrontal cortex, hippocampus, striatum and 

amydala, are implicated in both addictive behaviors [20] and the pursuit of physical activity 

[21]. It has been shown that fitness derived from aerobic exercise at baseline assessments 

was related selectively to greater thickness in the dorsolateral prefrontal cortex and 

hippocampus regional volume was associated positively with increased aerobic fitness over 

time [17]. The notion that sustained physical exercise, possibly rhythmic, may activate 

opioid systems thereby offering an adjunctive treatment of addictive disorders has been 

entertained [22, 23]. The integrity of regional brain centers is critical for the expression of 

exercise interventions: rats with intact medial prefrontal cortical areas showed reduced 

tendencies to use morphine with accompanying symptomatic (withdrawal) alterations 

whereas lesioned rats remained unaffected [24, 25]. Certainly, the insertion of exercise 

intervention for drug abuse patients has produced marked improvements with regard to 

physical fitness and various aspects pertaining to quality-of-life variables, including daily 

physical functioning, psychological health and well-being, vitality, social functioning, and 

general health perceptions as assessed by quantitative measures. Specific physical benefits, 

indicated by reductions in injuries and muscular pains, decreased weight, and increased 

vitality with the development of necessary activities of daily living, psychological benefits 

(i.e. forgetting about everyday problems, improved mood, decreased stress and anxiety), 

social benefits, and a reduction in craving were estimated through qualitative measures [26]. 

In the “STimulant Reduction Intervention” program, carried out over nine residential 

addiction treatment initiatives (USA), a dosed exercise STRIDE intervention increased the 

mean percentage of abstinence days and levels of abstinence rates among participants [27, 

28].

In animal laboratory studies, wheel-running exercise reduced the self-administration of 

drugs, such as alcohol and nicotine, heroin and cocaine, and 3,4-

methylenedioxypyrovalerone (MDPV), in rodents, which in turn were capable of 

devaluating the ability of the natural reward of exercise to maintain behavior [29–32]. Male 

rats evidenced a dose-dependent reduction in cocaine-seeking in response to wheel-running 

[33]; although this effect was evident in female rats also the relationship was not so 

straightforward. Furthermore, intracellular levels of neurotransmitters are both modulated bi-

directionally by drug abuse and addiction [34, 35]. The efficacy of physical exercise under 

conditions of drug and/or behavioral abuse seems to be connected with the capability of 

normalizing glutamatergic and dopaminergic signaling events thereby reversing drug-

induced changes in chromatin via epigenetic interactions with brain-derived neurotrophic 

factor (BDNF) in the reward pathway [36]. Exercise alleviates the detrimental effects of 

negative affective status [37, 38]. Running exercise was found to enhance metabolic rate in 

rats thereby increasing dopamine availability in the brain with consequential increments to 

performance [39]. The co-activation dopamine-acetyl choline balance in the context of the 

nucleus accumbens shell-corticotrophin releasing systems has been shown to affect both 

reward and affective behavior processes [40]. Morphine exposure during pregnancy 

increases anxiety-like behavior and increased morphine consumption and drug abuse in the 
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pups [41, 42]. Physical exercise among pregnant rat mothers promoted angiogenesis, 

neurogenesis, BDNF levels, cognition and reduced anxiety and morphine consumption in 

the pups [43, 44], as well as in morphine-dependent rats [45]. Exercise schedules during 

pregnancy for morphine-dependent and non-morphine-dependent rat dams were associated 

with elevated BDNF concentrations, and increased proliferation and viability of bone 

marrow stromal cells, vulnerable during addiction [46], in the pups of these dams [42]. 

Furthermore, voluntary exercise reduced the severity of the anxiogenic-like behaviors, linked 

to the withdrawal from chronic opiate administration, in both morphine-dependent and 

morphine-withdrawn rats [47].

The influence of addictive drugs upon the immune system, e.g. reciprocal interaction 

between the opioid system and the neuroimmune functioning of health systems has been 

documented [48], incorporating the activation of neuroplastic and neuroinflammatory 

cascades in the brain [49], implies that potential therapies and interventions, such as physical 

exercise, that target neuroimmune pathway improvements may be adapted to treat 

neuropathological and behavioral consequences [50]. Numerous studies have indicated the 

plethora of health benefits and promotion of effective neuroimmune function resulting from 

several types of exercise programs over the lifespan of individuals [6, 51–53]. In Wistar rats 

rendered morphine dependent it was observed that eight weeks of moderate level exercise 

increased interferon-ɣ and reduced interleukin-17 serum levels [54]. Within the context of 

morphine withdrawal issues, it was observed that regular swimming exercise (45 min/day, 

over five days per each week, over the course of 14 or 21 days) reduced the severity of 

morphine dependence and voluntary morphine consumption with reducing anxiety and 

depression in morphine-dependent and withdrawn rats [55, 56]. In this regard, it was 

observed that swimming exercise reduced both conditioned place preference for morphine 

and behavioral sensitization [57]. Finally, in a rodent model of “drug-craving” it was shown 

that regular swimming exercise decreased voluntary methamphetamine consumption 

through the dissipation of anxiety, obsessive-compulsive behaviors, and depression in 

methamphetamine-withdrawn rats [58].

In conclusion, the present account outlines benefits of physical exercise, independent of 

type, duration or intensity, pertaining to general health, brain regional, behavioral and 

somatic integrity and quality-of-life among individuals and laboratory animals stranded in 

the mire of addictive behaviors, most especially drug abuse. Regular exercise regimes 

reinstate the modulatory influences of natural rewards through reparation of functional 

circuits appertaining reward sensitivity, conditioning and cognitive control [59, 60].
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