@’PLOS ‘ ONE

CrossMark

click for updates

E OPEN ACCESS

Citation: Prokopenko D, Hecker J, Silverman E,
N6then MM, Schmid M, Lange C, et al. (2015) Using
Network Methodology to Infer Population
Substructure. PLoS ONE 10(6): €0130708.
doi:10.1371/journal.pone.0130708

Editor: Dana C Crawford, Case Western Reserve
University, UNITED STATES

Received: January 15,2015
Accepted: May 22, 2015
Published: June 22, 2015

Copyright: © 2015 Prokopenko et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All 1000 Genomes
data are available from http://www.1000genomes.org/

Funding: The project described was supported by
Cure Alzheimer's fund, Award Number
(RO1MHO081862, R01MH087590) from the National
Institute of Mental Health and Award Number
(U01HL089856, U01HL089897) from the National
Heart, Lung, and Blood Institute. The research of C.
Lange was supported by the National Research
Foundation of Korea Grant, funded by the Korean
Government (NRF-2014S1A2A2028559).

Using Network Methodology to Infer
Population Substructure

Dmitry Prokopenko'-°*, Julian Hecker'-®, Edwin Silverman®, Markus M. N6then®,
Matthias Schmid®, Christoph Lange'>3*, Heide Loehlein Fier'®

1 Institute of Genomic Mathematics, University of Bonn, Bonn, Germany, 2 Department of Biostatistics,
Harvard School of Public Health, Boston, United States of America, 3 Channing Laboratory, Brigham and
Women's Hospital, Boston, United States of America, 4 German Center for Neurodegenerative Diseases
(DZNE), Bonn, Germany, 5 Institute of Human Genetics, University of Bonn, Bonn, Germany, 6 Institute of
Medical Biometrics, Informatics and Epidemiology, University of Bonn, Bonn, Germany

* dmitry.prokopenko @ uni-bonn.de

Abstract

One of the main caveats of association studies is the possible affection by bias due to popu-
lation stratification. Existing methods rely on model-based approaches like structure and
ADMIXTURE or on principal component analysis like EIGENSTRAT. Here we provide a
novel visualization technique and describe the problem of population substructure from a
graph-theoretical point of view. We group the sequenced individuals into triads, which
depict the relational structure, on the basis of a predefined pairwise similarity measure. We
then merge the triads into a network and apply community detection algorithms in order to
identify homogeneous subgroups or communities, which can further be incorporated as
covariates into logistic regression. We apply our method to populations from different conti-
nents in the 1000 Genomes Project and evaluate the type 1 error based on the empirical p-
values. The application to 1000 Genomes data suggests that the network approach pro-
vides a very fine resolution of the underlying ancestral population structure. Besides we
show in simulations, that in the presence of discrete population structures, our developed
approach maintains the type 1 error more precisely than existing approaches.

Introduction

Within the last decade, genome wide association studies (GWAS) have shown to be a powerful
analytical tool in association mapping to identify common variants (i.e. variants with minor
allele frequencies of more than 1%) that contribute to the heritability of complex diseases[1].
The GWAS methodology thereby utilizes the underlying, population specific linkage-disequi-
librium structure of common variants and thus only a limited number of variants needs to be
genotyped in order to capture the common variation within a population[2,3].

Although a large number of GWAS for various complex diseases have been conducted up to
date, for most complex diseases, the proportion of the estimated variance that can be explained
by common variation is rather low [4-6]. Besides alternative factors that are likely to contribute
to the estimated heritability of a trait like gene-gene interactions, variants with low frequencies,
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environmental factors, etc., it has also been suggested that so far undetected common variants
with low penetration rates could further increase the proportion of estimated genetic variance
for complex diseases, although it is widely agreed that for most complex diseases, those low-
penetration rate common variants that have not been detected so far are likely to show smaller
effect sizes compared to the known common risk variants[3,7,8].

Park et al. [9] show on the basis of reported GWAS findings for height, Crohn’s disease, and
breast, prostate and colorectal (BPC) cancers, that there are likely to be additional common
variants with low penetration rates and rather small effect sizes that could still explain more
than 15-20% of the estimated heritability of the traits. In order to detect those common vari-
ants with low penetration rates however, large sample sizes for GWAS are required to ensure
sufficient power. Technological advances in genotyping technologies along with a rapid cost
decline for genotyping services and the establishment of large research consortia have paved
the way for those large-scale GWAS. Some recent examples of GWAS with large sample sizes
that have identified new susceptibility loci in common variation include association studies on
breast cancer risk [10], coronary artery disease [11,12], or ovarian cancer [13].

In most of the cases, those large-scale GWAS have a population-based instead of a family-
based design, since the population based design has a greater power to detect causative loci[14]
and the sample collection for population based designs is much easier, especially for late on set
diseases [15]. One pitfall of population-based association studies in contrast to family-based
association studies is however, that they bear the risk of population stratification. Population
stratification refers to a non-homogeneous distribution of alleles among subjects in the sample
due to ancestral differences and can bias the true association structure between the trait and
the sampled genotypes[16]. It is thereby likely that the risk of population stratification for a
genetic association study increases with its sample size, since the larger the sample size, the
more difficult it becomes to ensure a homogenous ancestral background of the sampled indi-
viduals [17]. Even in a relatively homogenous study design the issue of population structure
might affect the results [18,19].

There exist several methodological approaches on how to correct for population stratifica-
tion in genetic association studies. One is the Genomic Control [20], which is based on the chi-
square scores of the association tests. Genomic Control shows how inflated the calculated
scores are, compared to the null distribution. It thereby assumes a constant inflation rate over
the tested region, which might not always be the case, especially for large genomic regions.
Next, there exist a group of model-based approaches, which estimate the population structure
based on the observed genotypes. Two examples of those model-based approaches include
STRUCTURE [21] and ADMIXTURE [22]. Both methods allow for fractional subpopulation
memberships, but ADMIXTURE is more efficient in terms of runtime. Finally, another stream
in the literature suggests to first calculate the genetic covariance matrix between studied indi-
viduals and then extract the principal components, which are further used as continuous covar-
iates in association analysis [23-25]. There are several extensions of the PCA approach. Some
of them are justified by the fact that using only continuous covariates might be not enough[26-
28]. They try to extend the method by using also discrete membership covariates, obtained
from clustering approaches. Other methods include mixed models with fixed and random
effects to model the outcome variable[29,30]. Here the population structure is modeled as a
random effect. It is important to mention that combining mixed models with principal compo-
nent covariates can increase the quality of correction for population structure[31,32].

Rosenberg and Nordborg [33] showed that the occurrence of false positive associations is a
serious problem in mixtures of discrete subpopulations, whereas in an admixed population it
depends on the variance of admixture between individuals. When the variance is small, spuri-
ous associations are less severe.
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In this manuscript we use network methodology to infer and to visualize population struc-
ture in genotype data. Normally, visual inspection of GWAS data is performed by creating a
PCA or MDS plot. Here, we present a different way to visualize the ancestral population struc-
ture and possible batch artifacts. The intuition behind the method is well suited for a dataset,
consisting of several discrete subpopulations, hence in this setting the method performs partic-
ularly well. The identified subpopulations can be subsequently included as discrete covariates
into association analysis. We apply our method to different populations in the 1000 Genomes
Project and evaluate our type 1 error compared to standard methodology in simulation studies.
All calculations and simulations are implemented in R with the help of igraph package and
Eigensoft[34,24].

Methods

Here we present an algorithm, how to build a social graph between individuals in a genotypic
dataset. The main idea of the method is based on social network methodology. In order to
identify closely related individuals in a given population, we group them into triads based on a
predefined similarity measure, and then combine those triads into a graph for further analysis.

In terms of social network theory, triads can be thought of as the smallest social community,
they consist of three individuals and describe the pairwise relations among themselves [35].
Following the existing theory on triads, those three individuals can be unconnected (empty
triad), can be partially connected (one-edge triad, two-path triad), or all three individuals can
be connected to each other (triangle triad).Since we aim to identify individuals that are closely
linked to each other on the basis of their genetic profile, we utilize the triangle-structure of
transitive triads to create the triplets, and thus define that for three individuals (A, B, C), not
only A and B, and B and C, but also A and C have to be linked to each other based on their
genetic profile.

We will further outline how we derive the social graph for a given set of individuals based
on their genetic profile, and then describe how this graph can be partitioned into communities
which can be utilized as covariates in association analysis.

Given n individuals and m biallelic markers we display them in a genotype matrix GT:

gll glm
Gr=|: .t |.g<{0,1,2} (1)

gnl ot gnm

For the triad construction we need a similarity measure between individuals in order to
identify their degree of "relatedness". This can be a simple Euclidian distance between genotype
vectors [36] or a variance-covariance matrix between individuals [23,24]. For the sake of sim-
plicity, we further outline our approach on the basis of the variance-covariance matrix,
although it is important to note, that in principle any other similarity or distance matrix could
be used.

Let D represent the genetic covariance matrix, calculated as described in Price et al. [24]. It
is an nxn symmetric matrix and Dj; is the covariance between individuals i and j.

A triad in terms of graph theory can be defined as an undirected graph G = (V,E), where V
is the vertex set (set of individuals) and E is the edge set (structure of connections):

G=(V,E),V={1,2,3},E={{1,2},{2,3},{1,3}} (2)

For every individual i, we aim to find two other individuals j and k, so that the covariances
between the three individuals are maximized in a stepwise manner. In order to simplify this
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pairwise optimization problem, we rank the other individuals based on their pairwise covari-
ance with individual i as shown in Table 1. Those individuals that show the highest covariance
with individual i are assigned the highest ranks, and those that show the smallest covariance
are assigned the lowest ranks.

Step 1

We first want to find the closest subject j to i. In order to do this we minimize the term (3).

min(rank"[j] + rank"[i]) (3)
J
Here rank”[j] represents the relative position of subject j for subject i and rank?[i] represents
the relative position of subject i for subject j based on the covariance matrix D. Such "two-
sided" optimization allows us to account for two-sided "closeness” from i to j and from j to i.
This gives us the advantage to create more robust pairs in terms of relatedness.

Step 2

We now want to find the third subject k in the triad. This subject should be closely related to
both already included individuals i and j. In order to fulfill this requirement we again use the
term (3), but for both dyads: {i,k} and {j,k}:

mkin(ranki [k] + rank[i] + rank/[k] + rank*[j]) (4)

In such a way we make sure that the individual k is similar to both individuals in the dyad
{i,j}-

After creating triadic groups for all n subjects, we merge the retrieved triads in a graph that
will contain n vertices and 3*n edges and that can be further partitioned into communities by
using community-detection algorithms.

Community detection

After a first look on the created graph, one can already determine robust groups by identifying
unconnected components of the graph. Those components, as we show in our simulation stud-
ies, already present a valid partition into groups, especially with data, coming from discrete
populations. In order to increase the resolution of clustering into groups within those uncon-
nected components we further outline how communities within the network can be detected.
The community structure of a network or graph can be seen as groups of nodes which are
densely connected within their community and sparsely connected between groups[37]. The
simplest community detection analysis on a graph would be identifying its unconnected

Table 1. Ranking procedure for individual i.

Subject Covariance value with i Rank
1 0.004918 45

2 0.014093 2

3 0.000124 6

4 0.028862 1

5) 0.004918 45

6 0.012716 3

doi:10.1371/journal.pone.0130708.1001
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Table 2. Description of datasets, used in the analysis.

Dataset Number of individuals Number of subpopulations Number of SNPs (MAF>0.05)
1) Americans 174 3 930369

2) Africans 229 3 2011030

3) Asians 279 3 716976

4) Europeans 378 5 851672

doi:10.1371/journal.pone.0130708.1002

components. More sophisticated community-detection algorithms aim to measure the modu-
larity, which shows the quality of a particular division of the network in communities [37]. It is
defined as:

Q= Z(eii - a[Z) ) (5)

where e is a kxk matrix, whose entries e;j represent the fraction of connections between com-

k
munities i and j, and g, = E e;, kis the number of communities.

=]

ij?

The modularity is calculated in such a way that it compares the fraction of connections
within communities in a graph with the expected value of this fraction, given random connec-
tions, but the same community division. A value of 1 would represent a perfect community
grouping.

We use the Louvain algorithm from Blondel et al. [38] which is computationally fast and
doesn't require a predefined number of communities to be specified in advance. Initially, each
node is assigned to its own community. Then, at each step a node is replaced to a neighboring
community by maximizing the modularity gain with this replacement. The process stops if
there is no further gain possible or there is only one community left. For typical and sparse
data the computational time is linear and depends on the number of nodes. Blondel et al.
applied the algorithm to a network with 118 million nodes and the computational time was
152 minutes. In case of genotype data the computational time of the community detection
algorithm breaks down to milliseconds. For example for the European dataset of 378 individu-
als it took 0.02 seconds to calculate the communities, given a precalculated covariance matrix.
The computational complexity is driven by calculation of the covariance matrix between the
genotypes of individuals and is quadratic on the number of individuals.

Results
Data description and application

We applied our method to the phase 1 data of the 1000 Genomes Project [39]. The 1000
Genomes project offers a unique platform for sequence data analysis since the project provides
data for more than 1000 sequenced genomes from various populations. We divided the whole
dataset into 4 subsamples, according to the continental membership: Europeans, Africans,
Americans, Asians. We applied minor allele frequency filtering with a threshold of 5% and a
linkage disequilibrium pruning step. During this step we also excluded long-range LD regions
[40]. After data cleaning we were left with 4 datasets, described in Table 2. We then applied our
method to every dataset in order to detect subpopulations.

We created scale-free plots of the constructed graphs in Figs 1-4. Every node represents an
individual and the color of the node is related to the actual population label of this individual.
For purposes of visualization we do not show the edges in the plots. In order to visualize the
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American subpopulations

B Puerto-Ricans
O Columbians
B Mexicans

Fig 1. 3 American subpopulations. The polygons around the nodes represent the detected communities. The node colors represent the actual labels.

doi:10.1371/journal.pone.0130708.9001

communities we constructed polygons around the nodes, which are assigned to this commu-
nity. Every polygon represents 1 community. Full community assignment and the precision we
described in Tables 3-6. One can clearly see an almost perfect separation of subpopulations in
Africans and Americans. The separation in Asian subpopulations is slightly worse, there are
some admixed communities, consisting of Han Chinese from Beijing and from the South. In
the European subpopulations we see that the Finnish and Toscanian communities are very
homogeneous. The 5 small heterogeneous communities mostly contain individuals from Utah
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African subpopulations

@ Yoruba,Nigeria
@ LuhyaKenia
African ancestry S/IW US

Fig 2. 3 African subpopulations. The polygons around the nodes represent the detected communities. The node colors represent the actual labels.

doi:10.1371/journal.pone.0130708.9002

and Great Britain, but this is expected,because the Utah residents from this dataset are known
to have a high degree of shared ancestry with the British. For completeness we also included
S1-54 Tables which represent precision for unconnected components of the graphs. One can
already determine a good separation for the subpopulations by looking only at the uncon-
nected components.
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Asian subpopulations

O Han Chinese,South
B Han Chinese, Beijing
B Japanese,Tokyo

Fig 3. 3 Asian subpopulations. The polygons around the nodes represent the detected communities. The node colors represent the actual labels.

doi:10.1371/journal.pone.0130708.9003

Evaluation via simulated association studies

In order to evaluate the performance of our method for population stratification correction

in association analysis, we conducted a simulation study. We compared our method to a prin-
cipal component analysis approach (EIGENSTRAT [24,25]) and to a model-based approach
(ADMIXTURE|[22]). The simulation design followed the one described in Price et al. [24] and
used in Alexander et al. [22] and is outlined below. For association analysis we used a logistic
regression model with additional covariates (5), which are included to correct for population
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European subpopulations

British,England & Scotland

Finnish

Iberian,Spain

Utah residents (CEPH), N/w EUR ancestry
Toscani,ltalia

OEEOO

Fig 4. 5 European subpopulations. The polygons around the nodes represent the detected communities. The node colors represent the actual labels.
doi:10.1371/journal.pone.0130708.9g004

structure.
logit(Y) = X + 7E (6)

Here Y is the phenotype vector, X is the genotype and E are the additional covariates. For
EIGENSTRAT, we ran the analysis with 1, 2 or 10 principal components. For ADMIXTURE,
we used 1 or 2 entries of their ancestry estimate. For our method we created discrete dummy
variables representing community membership and plugged them into the logistic regression.

PLOS ONE | DOI:10.1371/journal.pone.0130708 June 22,2015 9/16
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Table 3. Contingency table for American subpopulations, rows correspond to detected communities,
columns to actual subpopulations.

CLM MXL PUR
1 0 0 18
2 0 0 3
3 0 0 10
4 7 0 8
5 0 0 15
6 5 0 0
7 10 0 0
8 10 0 0
9 23 0 0
10 0 30 0
11 5 10 0
12 0 16 1
13 0 3 0

PUR—Puerto Rican, CLM—Colombian, MXL-Mexican

doi:10.1371/journal.pone.0130708.t003

We also included discrete dummy variables, which represent unconnected sub-graphs in our
network. This was done in order to evaluate how well the constructed graph already represents

population structure.
We considered 4 population structure scenarios suggested by the literature [24,27]:

o 2 underlying discrete subpopulations with moderate differences between cases and controls;

o 2 underlying discrete subpopulations with extreme differences between cases and controls;

Table 4. Contingency table for African subpopulations, rows correspond to detected communities,
columns to actual subpopulations.

ASW LWK YRI
1 0 0 12
2 0 0 11
3 0 0 19
4 0 0 16
5 0 0 14
6 0 0 15
7 0 7 0
8 0 19 0
9 0 27 0
10 0 34 0
11 3 0 0
12 3 0 0
13 5 0 0
14 25 0 0
15 10 0 0
16 9 0 0

YRI—Yoruba in Nigeria, LWK—Luhya in Kenia, ASW—African ancestry in Southwest US

doi:10.1371/journal.pone.0130708.t004

PLOS ONE | DOI:10.1371/journal.pone.0130708 June 22,2015 10/16



@'PLOS ‘ ONE

Using Network Methodology to Infer Population Substructure

Table 5. Contingency table for Asian subpopulations, rows correspond to detected communities, col-
umns to actual subpopulations.

CHB CHS JPT
1 6 11 0
2 0 5 0
3 4 20 0
4 2 21 0
5 0 14 0
6 17 0 0
7 18 0 0
8 4 2 0
9 5 12 0
10 25 0 1
11 16 8 0
12 0 0 17
13 0 0 11
14 0 0 13
15 0 0 14
16 0 0 5
17 0 0 13
18 0 0 15

CHS—Southern Han Chinese, CHB—Han Chinese in Beijing, JPT—Japanese in Tokyo

doi:10.1371/journal.pone.0130708.t005

« 3 underlying discrete subpopulations;
o admixed population.

For the discrete settings we simulated 1000 individuals (500 cases and 500 controls), coming
from 2 or 3 populations with differentiation of Fst = 0.01. In scenario 1 60% of cases were from
population 1 and 40% from population 2. In scenario 2 with more extreme mismatching cases
had equal proportions between populations, whereas 100% of controls were from population 2.
In scenario 3 we took the following proportions for cases and controls: 45% of cases and 35%
of controls were from population 1, 35% and 20% were from population 2, 20% and 45% were
from population 3. For the admixed setting we sampled individuals with ancestry proportions
aand (1-a) from the 2 populations, where a is uniformly distributed. The ancestral risk was set
to 3, and the probability of disease was set to 0.5 * log(r) * r* / (r — 1) as described in Price et al.
[24]. For every setting we generated 100.000 random training SNPs, which were used to infer
population substructure. For association testing 1 million testing SNPs in each of the 3 catego-
ries were generated:

1. Random SNPs with no disease association (same setting as for the training SNPs
generation)

2. Highly differentiated SNPs with no disease association: The minor allele frequency for
SNPs, coming from population 1 and 2, was set as 0.8 and 0.2 respectively.

3. Causal SNPs: Multiplicative risk model with a relative risk of 1.5.

The results are presented below in Table 7. The values are averaged across 10 independent
simulation runs.We included also a 'naive' setting, which is the false positive rate (or true posi-
tive for causal SNPs) for a logistic regression without covariates. For all three discrete settings
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Table 6. Contingency table for European subpopulations, rows correspond to detected communities,
columns to actual subpopulations.

CEU FIN GBR IBS TSI
1 0 0 14 0 0
2 0 0 4 0 0
3 8 0 16 0 0
4 5 0 22 0 0
5 0 32 0 0 0
6 0 26 0 0 0
7 0 13 0 0 0
8 0 16 0 0 0
9 0 5 0 0 0
10 0 0 0 6 0
11 0 0 0 8 0
12 8 0 14 0 0
13 3 1 9 0 0
14 6 0 8 0 0
15 17 0 0 0 0
16 12 0 0 0 0
17 26 0 1 0 0
18 0 0 0 0 24
19 0 0 0 0 9
20 0 0 0 0 47
21 0 0 0 0 4
22 0 0 0 0 14

GBR—British in England and Scotland, FIN—Finnish, IBS—Iberian in Spain, CEU—Utah residents with
Northern and Western European ancestry, TSI—Toscani in Italy

doi:10.1371/journal.pone.0130708.t006

one can see that already the inclusion of the unconnected sub-graphs as covariates in a logistic
regression performs similar to logistic regression with EIGENSTRAT and ADMIXTURE
covariates. A further separation of the graph into communities and the inclusion them as
covariates into a logistic regression improves the results in the discrete scenarios. Especially
when the underlying population structure consists of three discrete populations with moderate
stratification in the dataset, it can be clearly seen that our approach achieves higher power than
standard approaches, while maintaining the alpha error more precisely.

We expected that our method would not provide advantages over the existing methodology
in the admixed scenario, but we included this scenario for completeness.As we see from
Table 7 the proposed network-based approaches perform similarly to EIGENSTRAT and
ADMIXTURE for random and causal SNPs from an admixed population. Only for the special
admixed scenario in which the approaches are applied to differentiated SNPs, the network-
based approaches are not able to maintain the significance level. However, this simulation sce-
nario can be considered as not realistic for application.

Discussion

In this communication, we have proposed a new approach for population structure inference,
which is based on network methodology. It is straight-forward to think of individuals in a pop-
ulation based study as of nodes in a big network, where the edges represent the strength of

PLOS ONE | DOI:10.1371/journal.pone.0130708 June 22,2015 12/16
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Table 7. Average proportions of significant SNPs in the simulation study.

Random SNPs

Differentiated
SNPs

Causal SNPs

Random SNPs

Differentiated
SNPs

Causal SNPs

Random SNPs

Differentiated
SNPs

Causal SNPs

Random SNPs

Differentiated
SNPs

Causal SNPs

naive PCA(1or2 PCA (10 ADMIXTURE (1 or 2 Unconnected Detected
components)* components) ancestry estimates)* components communities
2 underlying discrete subpopulations with moderate differences between cases and controls
0.0007397 0.0000835 0.0000879 0.0000835 0.0000841 0.0001035
0.8471269 0.0000849 0.0000917 0.0000833 0.0000854 0.0001003
0.5035125 0.4839071 0.4836014 0.4838919 0.4833888 0.4820485
2 underlying discrete subpopulations with extreme differences between cases and controls
0.0349635 0.0000852 0.0000926 0.0000851 0.0000829 0.0001029
1 0.0000889 0.0000979 0.0000892 0.0000772 0.000094
0.5024409 0.2571964 0.2585007 0.2573263 0.2545517 0.2562946
3 underlying discrete subpopulations
0.0010452 0.0000867 0.0000925 0.0000867 0.0000871 0.0001042
0.9981074 0.0000874 0.0000936 0.0000874 0.0000864 0.0001009
0.5007428 0.4588232 0.4592651 0.4588511 0.4587604 0.4605026
Admixed population
0.0006067 0.0000913 0.0000972 0.0000909 0.0006084 0.0001426
0.7514909 0.0000912 0.0000987 0.0000911 0.7527596 0.0130633
0.5087061 0.4445503 0.4431812 0.4445344 0.5086953 0.4694344

The values in the table represent the proportions of SNPs (averaged over 10 replications) found to be significant. The significance level was set to 0.0001.

The results are present for 4 scenarios, which are described in the section: "Evaluation via simulated association studies ".
* For these methods in the scenario with 3 underlying discrete subpopulations we took 2 principal components and 2 ancestry estimates, as
recommended by the authors.

doi:10.1371/journal.pone.0130708.t007

their relationship, based on a given similarity measure of their genotypes (i.e. covariance).
Hence, population structure can be identified by detecting network communities. We present a
heuristic method on how to generate a network structure between individuals based on their
genotypic information and in a second step apply community detection algorithms in order to
identify subpopulations. The method is computationally fast and flexible. To test its perfor-
mance, we applied it to different subpopulations from the 1000 Genomes Project and the
method was able to provide a very fine resolution of the population structure. We were not
only able to separate the subpopulations within continents, but also we identified homoge-
neous subgroups within those subpopulations. Many of them represent individuals, which
were sequenced on different platforms, whereas some of them might represent other artifacts
or show small communities, which might include individuals with a stronger connection to
each other.It is also important to mention that already the unconnected components of the
constructed graphs show a valid separation of the individual subpopulations. Hence, applying
community detection algorithms would provide a finer level of homogeneous subgroups within
those unconnected components.

We further conducted a simulation study and compared the performance of our method to
EIGENSTRAT and ADMIXTURE. For association testing, we used logistic regression with
covariates. For every method we included the corresponding population-specific covariates:
principal components for EIGENSTRAT, ancestry estimates for ADMIXTURE, and binary
covariates representing the community memberships for our method.The results suggest that

PLOS ONE | DOI:10.1371/journal.pone.0130708 June 22,2015
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our method corrects for population structure more effectively when individuals come from sev-
eral discrete subpopulations.

Given our findings, we have shown that network based approaches bear a great potential for
subpopulation detection. The integration of network based methodology is intuitive and is suit-
able for large sample sizes. Due to its ability to group individuals into discrete communities
without any prior information, we enable more flexible ways to analyze the data, e.g. conduct-
ing association analyses separately in the identified subsamples.The visualization of different
levels of discrete communities (i.e. unconnected components or detected communities) is
straightforward and the interpretation of the discrete groups is natural. Especially in the case,
when little is known about the underlying structure of the data, one should use our assumption
free network-based method. The high research dynamic in the field of network community
detection algorithms will most likely further provide interesting applications for the identifica-
tion of ancestry based genetic heterogeneity in populations. However, more research has to be
done on how the information on the identified network communities can more efficiently be
included in regression models.
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