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Cuproptosis-related gene index:
A predictor for pancreatic
cancer prognosis,
immunotherapy efficacy,
and chemosensitivity

Xufeng Huang1,2†, Shujing Zhou1,3†, János Tóth1

and András Hajdu1*

1Department of Data Science and Visualization, Faculty of Informatics, University of Debrecen,
Debrecen, Hungary, 2Faculty of Dentistry, University of Debrecen, Debrecen, Hungary, 3Faculty of
Medicine, University of Debrecen, Debrecen, Hungary
Aim: The term “Cuproptosis” was coined to describe a novel type of cell death

triggered by intracellular copper buildup that is fundamentally distinct from

other recognized types such as autophagy, ferroptosis, and pyroptosis in

recent days. As the underlying mechanism was newly identified, its potential

connection to pancreatic adenocarcinoma (PAAD) is still an open issue.

Methods: A set of machine learning algorithms was used to develop a

Cuproptosis-related gene index (CRGI). Its immunological characteristics

were studied by exploring its implications on the expression of the

immunological checkpoints, prospective immunotherapy responses, etc.

Moreover, the sensitivity to chemotherapeutic drugs was predicted.

Unsupervised consensus clustering was performed to more precisely identify

different CRGI-based molecular subtypes and investigate the immunotherapy

and chemotherapy efficacy. The expression of DLAT, LIPT1 and LIAS were also

investigated, through real-time quantitative polymerase chain reaction (RT-

qPCR), western blot, and immunofluorescence staining (IFS).

Results: A novel CRGI was identified and validated. Additionally, correlation

analysis revealed major changes in tumor immunology across the high- and

low-CRGI groups. Through an in-depth study of each medication, it was

determined that the predictive chemotherapeutic efficacy of 32 regularly

used anticancer drugs differed between high- and low-CRGI groups. The

results of the molecular subtyping provided more support for such theories.

Expressional assays performed at transcriptomic and proteomic levels

suggested that the aforementioned Cuproptosis-related genes might serve

as reliable diagnostic biomarkers in PAAD.

Significance: This is, to the best of our knowledge, the first study to examine

prognostic prediction in PAAD from the standpoint of Cuproptosis. These

findings may benefit future immunotherapy and chemotherapeutic therapies.
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Introduction

Copper is an indispensable element for human survival.

However, its redox activity can be damaging to the cell that has

evolved highly coordinated processes to chelate copper ions and

transport them throughout the cell. Owing to its key involvement

in pathways needed for normal cell development and metabolism,

the copper level is typically dysregulated in malignancies (1).

Hence, Cuproptosis as a unique cell death mechanism in which

intracellular copper concentration plays a crucial role has

attracted considerable interest in the scientific community (2).

The exploration of a potential connection between the

copper equilibrium and the healthiness of the pancreas has a

long history ever since the last century. As early as 1989, Dubick

et al. found that nutritional copper deficiency raised a

morphological change in the pancreas in female rats, and

increased its susceptibility to oxidative damage (3). In 1997,

Fields et al. reported that copper deficiency could lead to

impaired functions and pancreatic atrophy in both male and

female rats (4).

In the recent decade, increasing evidence suggested that

abnormal buildup of copper stress might be linked to a lot of

cancer types such as prostatic cancer (5), among which,

pancreatic cancer was included. Clinically, according to the

observation of Lener et. al., the concentration of copper ions

was significantly elevated in patients with PAAD (6, 7).

Inspired by these findings, scientists started to develop new

treatments attempting to regulate copper hemostasis. Existing

studies suggested that copper-ionophores and copper-chelators

might act as anticancer agents, although the lack of selectivity

remained one of the most challenging obstacles in reality. Lately,

breakthroughs in which the conjugation of targeting units with

copper ionophores was proven to be effective occurred.

Additionally, alternative options were brought forth by the

exploitation of proionophores and the implementation of a

nano-drug delivery system. One typical example in this field is

the project led by Gaál et al. (8) who applied a thermosensitive

liposomal formulation laden with copper and neocuproine to the

C26 cancer cells in mice and detected both in-vitro and in-

vivo toxicity.

Given that various types of cell death modalities (e.g.

autophagy ferroptosis, etc.) were proven to be intimately
02
associated with the eradication of tumors (9–11), we were

inquisitive about the relationship between Cuproptosis and

pancreatic adenocarcinoma (PAAD) for its exceptionally poor

5-year overall survival (OS) (12–20), and a striking fact that one

of the Cuproptosis-related genes, CDKN2A, was a fully-

investigated and well-known biomarker in PAAD at the

same time.

Taking it altogether, in the present study, we optimized a

Cuproptosis-gene index (CRGI) with important implications for

prognosis, tumor immunology, molecular subtypes, and the

efficacy of immunotherapy and chemotherapy through 10

mainstream algorithms in machine learning. Supplementarily,

3 essential CRGI genes (i.e., DLAT, LIPT1, and LIAS) were found

with a promising potential to serve as diagnostic biomarkers

through computational method analyzing open data combined

with in-vitro validation.

Figure 1 demonstrates the workflow of the present

study briefly.
Materials and methods

Collection and integration of the
transcriptome data and matched clinical
information

In the present study, we retrospectively curated 10

Cuproptosis-related genes from the work of Tsvetkov et al. (2).

The transcriptomic data and matching clinical information on

pancreatic adenocarcinoma (PAAD) from publicly accessible

sources, including the Cancer Genome Atlas (TCGA, https://

www.cancer.gov/tcga, N = 177) and the Australian dataset of

International Cancer Genome Consortium (ICGC, https://www.

icgc-argo.org, N = 269) (21). All the data involved in the present

study were processed by R Foundation (v 4.0.3) and

corresponding R packages. Notably, if it wasn’t specifically

mentioned, P-value<0.05 is considered statistically significant

and might be annotated as * within the figures. Moreover, **, ***,

and **** might appear within the figures to indicate the P-value

thresholds 0.01, 0.001, and 0.0001, respectively. Besides, we took

the academic writing style of Xie et al. (22) as a reference to

construct the present manuscript.
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Machine learning in the development of
cuproptosis-related gene index

10 mainstream machine learning algorithms were used in

the optimization of CRGI, including least absolute shrinkage

and selection operator (LASSO), decision tree, Gaussian

mixture model (GMM), gradient boosted decision trees

(GBDT), K-nearest neighbors (K-NN), light gradient

boosting machine (LGBM), logistic regression, random

forest, support vector machine (SVM), and extreme

gradient boosting (XGboost) (23–31). Their performances

were assessed by the time-dependent receiver operative

characteristic (ROC) curves in which the area under the

curve (AUC) represented the predictive power. The greater

the AUC value indicated the better accuracy and robustness

of the model. The ROC curve was created by the R

package “timeROC”.
Decision curve analysis

Usually, prognostic models and diagnostic tests are

mathematically evaluated with measures of accuracy that do

not consider clinical outcomes. To help improve such

shortcomings, DCA was developed (32). It is often used to

compare the efficacy of different predictive models and

diagnostic tests to maximize the clinical benefits when false

positives and false negatives are known to be unavoidable. In the

present study, we performed this analysis by using the R

package “ggDCA”.
Frontiers in Immunology 03
Construction of a conventional
nomogram and corresponding
calibration curve

The CRGI of our model that was optimized through the

machine learning method as aforementioned was integrated as a

prognostic indicator with other clinical factors to estimate the

overall survival (OS) probability, through univariate and

multivariate Cox regression, and a traditional nomogram with

calibration curve was constructed from these results. The

visualization was achieved by using the R packages

“forestplot”, and “rms” (33, 34).
Construction of an online OS calculator

By utilizing the analytic results acquired from the last step,

we built an easy-to-use web-based OS calculator by the R

package “DynNom” (35).

The calculator is available at https://debmed.shinyapps.io/

CRGIProgCal/.
Gene set enrichment analysis

The GSEA software (v 4.0.3, http://software.broadinstitute.

org/gsea/index.jsp) combined with the gseKEGG and gseGO

functions of the “clusterProfiler” package was used to investigate

the underlying mechanism of the high- and low-CRGI groups,

and further identified the KEGG and GO pathways that were
FIGURE 1

Graphical abstract of the present study.
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significantly enriched through Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) databases

(36–41).
Estimation of the tumor
microenvironment condition

The tumor microenvironment condition was assessed

quantitatively by calculating the levels of stromal and immune cell

infiltration using the expression profiles obtained from the TCGA

dataset. This was done by the R package “ESTIMATE” in which the

stromal score, immune score, and ESTIMATE score were calculated

(42). The Wilcoxon t-test was performed for the calculation of each

score to compare them in high- and low-CRGI groups.
Screening of immune cell infiltration

The gene expression profiles were processed by integrating 7

mainstream immunoinformatic algorithms, including TIMER,

C I BER SORT , C I BER SORT−ABS , QUANT I S EQ ,

MCPCOUNTER, XCELL, and EPIC, and the immune cell

infiltration matrix was obtained (43–45). The R package

“ggplot2” was used to visualize the distribution of infiltration

of diverse immune cell types as a heatmap.
Cancer-immunity cycle and 19 known
biological processes

In July 2013, Chen and Mellman (46) systemically described

a series of self-sustaining stepwise events, termed the cancer-

immunity cycle in which the anticancer immune responses

eliminated the cancer cells efficiently. The cancer-immunity

cycle consisted of 7 steps: “release of cancer antigens”, “cancer

antigen presentation”, “priming and activation”, “trafficking of T

cells to tumors”, “infiltration of T cells into tumors”,

“recognition of cancer cells by T cells”, and “killing of

cancer cells”.

As for the 19 known biological processes including tumor

inflammation signature, cellular response to hypoxia, tumor

proliferation signature, EMT markers, ECM-related genes,

angiogenesis, apoptosis, DNA repair, etc., genes involved in

this analysis were retrieved from the works of Wei et al. and

Mariathasan et al. (47, 48).
Prediction of the potential response to
immune checkpoint blockade

The concept of immunotherapy for tumors was proposed at

the end of the 19th century and refers to a treatment method that
Frontiers in Immunology 04
uses the body’s immune system to destroy cancer cells. The

therapies that use immune checkpoint blockade have

revolutionized the treatment of human cancer.

Herein, we firstly used the Tumor Immune Dysfunction

and Exclusion (TIDE) algorithm which was developed as a

computational method to model the primary mechanisms of

tumor immune escape to predict the responsiveness of a single

sample or a subtype based on expression profiling data (49).

Since the original publication of the TIDE algorithm,

researchers have widely applied it to their studies. A typical

example could be seen in the work of Tang et al. in 2021 in the

Journal of Translational Medicine (50). More similar studies

could also be found elsewhere. For instance, the work of Chen

et al. regarding a Necroptosis-related lncRNA signature in

breast cancer also directly used the TIDE algorithm for

predictive purposes (51).

Nevertheless, considering that the TIDE algorithm was

merely experimentally verified in melanomas and non-small

cell lung cancer, to further confirm the reliability of the TIDE

prediction, the SubMap algorithm was implemented (52). It

calculated the similarity of the expression profile of PAAD

patients in the high- and low-CRGI groups to the urothelial

bladder carcinoma (BLCA) patients recorded in the IMvigor210

dataset who responded or did not respond to the PD-1 and

CTLA4 therapies, which in turn indirectly predicted

immunotherapy efficacy (53). Such a solution was inspired by

some previously published articles like the work of Yu et al. on

lung adenocarcinoma (54).
Unsupervised clustering through the K-
means algorithm

The consistency analysis was performed using the R package

“ConsensusClusterPlus (v 1.54.0)”, the maximal number of

clusters was 6, and 80% of the samples were extracted 100

times through a re-sampling approach (55). The package

generated the consensus matrix, empirical cumulative

distribution function (CDF), and delta area plots for each

selected K value.

Moreover, as a complementary confirmation, a principal

component analysis (PCA) was conducted to elucidate if the

samples were well-separated with the batch effect fully removed.
Survival analysis

The Kaplan Meiler curve was applied to compare the

survival difference between different groups. The P-value and

hazard ratio (HR) with a 95% confidence interval (CI) were

generated by log-rank test and univariate Cox proportional

hazards regression. Both were done by the R package

“survival” (56, 57).
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Evaluation of the response to
chemotherapy

32 commonly used anticancer drugs were involved in the

present study. Their half-maximal inhibitory concentration

(IC50) values were predicted from the expression matrix by the

pRRopheticPredict function of the R package “pRRophetic” (58).
Cell lines and cell culture

There were 5 cell lines (i.e., normal human pancreatic ductal

epithelial cell line: HPDE6-C7, and pancreatic cancer cell lines:

CFPAC-1, PANC-1, SW1990, and AsPC-1) involved. HPDE6-

C7 was cultured in a mixed solution of high-glucose DMEM and

10% FBS, CFPAC-1 was cultured in a mixed solution of DMEM/

IMDM/1640 and 10% FBS, PANC-1 was cultured in a mixed

solution of DMEM/1640 and 10% FBS, SW1990 was cultured in

a mixed solution of DMEM/L-15/1640 and 10%FBS, and AsPC-

1 was cultured in a mixed solution of DMEM/1640 and 10%FBS.

All the aforementioned cell lines were incubated at 37°C and in a

5% CO2 incubator.
Real-time polymerase chain reaction

The total RNA of cells was extracted through the one-step

method (i.e., Trizol), then 2uL of which was used for reverse

transcription. The quality of the cDNA was tested before further

steps. The RT-qPCR was conducted under the following primer

sequences design (Supplementary Material T1) and using the

StepOne Software instrument (ABI, USA). The reaction

conditions were 95°C for 5 min, 95°C for 10 s, 58°C for 20 s,

and 72°C for 20 s. in total, 40 cycles were run. After the end of

the reaction, the software automatically analyzed the

fluorescence signal and converted it to the Ct value.
Western blot

All the cell lines were washed by PBS 3 times and lysed by

lyase, assisted with an ultrasonic cell crusher to ensure we could

obtain the targeted proteins fully. The extracted proteins were

quantified and loaded for SDS-PAGE gel for electrophoresis,

transferred to PVDF membranes, and blocked by 10% milk.

Later, the membranes were incubated with primary antibodies

and secondary antibodies to form immunocomplexes which

were visualized by enhanced chemiluminescence and followed

by directly photographing and quantitative analysis.
Frontiers in Immunology 05
Immunofluorescence staining

HPDE6-C7 and AsPC-1 cell lines were used in the IFS

val idat ion and observed under 100- and 400-t ime

magnification for the protein staining of DLAT, LIPT1, and

LIAS, respectively. Information regarding the antibodies used

in the present study is available in the Supplementary

Material T2.
Results

CRGI was optimized from 10 mainstream
algorithms

10 Cuproptosis-related genes were curated from the work of

Tsvetkov et al. (2). Combined with 6 well-recognized biomarkers

(i.e., KRAS, TP53, SMAD4, BRCA1, BRCA2, and CDKN2A) in

pancreatic adenocarcinoma (PAAD), they were subjected to

mainstream machine learning procedures to develop a

Cuproptosis-related gene index (CRGI) (59).

In the TCGA dataset, among 10 mainstream machine

learning algorithms, we optimized the best model through

LASSO penalized Cox regression that had a leading AUC

value in 1, 2, 3, and 4-year overall survival (OS) predictive

performance, up to 0.736, 0.703, 0.708, 0.812, respectively

(Figure 2C). The formula for the CRGI calculation is:

CRGI  =  0:5316*KRAS  +  0:014*TP53  –  0:0407*CDKN2A  –  0:0999*SMAD4

  +  0:3768*BRCA1  + 0:0866*BRCA2  –  0:1292*LIAS  –  0:587*LIPT1 

–  0:3158*DLD  +  0:4833*DLAT   –  0:3627*PDHA1 

– 0:3253*MTF1  –  0:1286*GLS

Following the calculation of the CRGI, patients were

separated into the high- and low-CRGI groups by the median

value of all CRGI. It was observed that the number of patients

who deceased significantly climbed up with the increase in CRGI

value (Figure 2A). The survival analysis further revealed the fact

that the low-CRGI group possessed a significant survival

advantage (Figure 2B). Similar analytic results were found

when we validated our model in the ICGC dataset

(Figures 3D, E).

Interestingly, although the predictive performances of

the other machine learning algorithms in the first 4 years

were poor, 7 algorithms (i.e., Decision Tree, GMM, K-NN,

Logistic Regression, Random Forest, SVM, and XGboost)

possessed an AUC value = 1.000 in 5-year OS prediction

(Figures 2D–L). Taking it altogether, we decided to choose

LASSO as the final predictive model for the following

comprehensive analytics.
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The predictive performance of CRGI was
superior to that of the signatures derived
from other cell death mechanisms

Recently, with the progressions made in the in-depth

understanding of cell death mechanisms, a considerable
Frontiers in Immunology 06
number of prognosis-predictive gene signatures have been

proposed. To clarify whether CRGI behaves better than those

signatures originating from other underlying cell death

mechanisms, we retrieved gene signatures proposed for PAAD

that were derived from autophagy-, ferroptosis-, and pyroptosis-

related genes (60–62). Then, we performed time-dependent
A B

D E F

G IH

J K L

C

FIGURE 2

Predictive performance comparison of the 10 mainstream machine learning algorithms in the TCGA dataset. (A) Distribution of the CRGI and
survival status of individual PAAD patients. (B) Survival analysis of the high- and low-CRGI groups. (C) The time-dependent ROC curve with the
AUC value of 1-, 2-, 3-, 4-, and 5-year OS prediction of the best model optimized by LASSO penalized Cox regression. (D–L) The predictive
accuracy of other machine learning algorithms (i.e., Decision Tree, GMM, GBDT, K-NN, LGBM, Logistic Regression, Random Forest, SVM, and
XGboost, respectively).
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FIGURE 3

Comparison of other cell death mechanisms-based prognostic signatures in PAAD. (A–C) The ROC curve of autophagy-, ferroptosis-, and
pyroptosis-based models in the TCGA dataset, respectively. Distribution of the CRGI and survival status of individual PAAD patients (D), and
Survival analysis (E) of the high- and low-CRGI groups in the ICGC dataset. (F–I) The ROC curve of our model, the autophagy-, ferroptosis-,
and pyroptosis-based models in the ICGC dataset, respectively. DCA diagrams of our model, the autophagy-, ferroptosis-, and pyroptosis-based
models in the TCGA dataset (J), and ICGC dataset (K). All: all positive; None: all negative. They are the extreme conditions that serve as
background references.
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ROC curves across the TCGA and ICGC datasets for each

signature. In the TCGA dataset, our model possessed an AUC

value of 0.736, 0.703, 0.708, 0.812, and 0.801 in the 1-, 2-, 3-, 4-,

5-year prediction (Figure 2C), whereas the autophagy-,

ferroptosis-, and pyroptosis-based models possessed an AUC

value of 0.537, 0.7, 0.731, 0.824, and 0.852; 0.665, 0.675, 0.738,

0.819, and 0.871; 0.643, 0.649, 0.705, 0.808, and 0.807 in the 1-,

2-, 3-, 4-, 5-year prediction, respectively (Figures 3A–C). A

similar situation happened to the ICGC dataset where our

model possessed an AUC value of 0.587, 0.605, 0.636, 0.648,

and 0.789 in the 1-, 2-, 3-, 4-, 5-year prediction (Figure 3F). On

the contrary, the autophagy-, ferroptosis-, and pyroptosis-based

models possessed an AUC value of 0.463, 0.545, 0.66, 0.65,

and 0.657, 0.593, 0.594, 0.608, and 0.483, 0.523, 0.588, 0.543,

and 0.91 in the 1-, 2-, 3-, 4-, 5-year prediction, respectively

(Figures 3G–I). Overall, comprehensively speaking, our model

was deemed to possess the best AUC values, demonstrating the

advanced stability and accuracy of CRGI.

Usually, it was considered rigorous enough to assess different

models by comparing the AUC values of the ROC curve.

However, as ROC analysis merely accounts for the specificity

and sensitivity of the model, in the field of medicine, in case of

unavoidable false positives and false negatives, one should

maximize the clinical benefits from either result as possible.

Therefore, we complementarily employed decision curve

analysis (DCA) for each signature in the TCGA (Figure 3J)

and ICGC datasets (Figure 3K). Within a DCA diagram, there

were 2 baselines for reference purposes, annotated as “All” and

“None” (i.e., All: all positive, None: all negative). The closer the

curve of the corresponding model to them, the worse predictive

performance in clinical practice indicated. Therefore, when the

corresponding curve of a model possessed a higher position than

others, it would mean that this model showcased a more

practically useful prediction. Through the DCA diagrams, we

found that although an exception exists in the 4- and 5-year

curves in the ICGC dataset in which the curves of our model

were less ideal than that of the autophagy-based model, the curve

of our model was located superiorly to the others in the rest of

the cases.

In fact, through the survival analysis in the TCGA

(F i gu r e 2B) and ICGC (F i gu r e 3E) da t a s e t s , a s

aforementioned, less than 10% of the PAAD patients could

survive more than 5 years (12–20). Hence, there were only 2

cases in the TCGA dataset and 1 case in the ICGC dataset who

lived more than 4 years. The bias raised by this could

probably be the reseason why our model performed

similarly to the autophagy-based model in the 4- and 5-year

prediction. Nevertheless, taking it altogether, we believed that

our model had the st rongest predict ive power in

general aspects.
Frontiers in Immunology 08
CRGI served as an independent indicator
in PAAD prognostic prediction

Based on our model, we extracted the CRGI, age, gender,

pathological status, TNM stages, histological grades,

radiotherapy, smoking, and drinking information from the

TCGA dataset, and carried out univariate Cox regression to

examine if they are statistically correlated with prognosis and

multivariate Cox regression to qualify their eligibility as

independent prognostic indicators. It turned out that the

CRGI, age, pathological T stage, pathological N stage, and

radiotherapy were associated with prognosis as a result of the

univariate Cox regression, while results of multivariate Cox

regression furtherly indicated that the CRGI and smoking

were independent prognostic indicators (Figures 4A, B).

According to these findings, we constructed a conventional

nomogram (Figure 4C) that contained all the prognosis-related

correlated factors (i.e., the CRGI, age, pathological T stage,

pathological N stage, and radiotherapy) with a C-index up to

0.7883801. As generally, a C-index greater than 0.7 could be

reckoned as a precise predictor, hence, it was thought that our

model accurately predicted the prognosis of PAAD. To further test

the robustness of its predictive results, we also compared them with

real records in the TCGA dataset in a plot where a calibration curve

indicated the deviation in a graphical manner (Figure 4D). As

observed, the bias scale was acceptable and the trends of 1-, 2-, and

3-year prediction followed the ideal dash line relatively tight. As

such, it was believed that the nomogram constructed in the present

study exerted a satisfying performance.

To make it more user-friendly, the underlying statistics were

implemented in a web-based OS calculator which assisted the

clinicians to estimate the OS probability by entering the

clinicopathological parameters, and the survival time of

interest for prediction (Figure 4E). The calculator is available

at https://debmed.shinyapps.io/CRGIProgCal/.

We also explored the correlation between the CRGI and

different clinical factors (e.g., age, gender, tumor grading, etc.). It

appeared that the CRGI was only associated with tumor grading,

between G1 and G3, G2 and G3 (Supplementary S1).
Over-representation analysis revealed
the functional importance of CRGI
in PAAD

Over-representation analysis was conducted to unravel the

functional mechanisms underlying the high- and low-CRGI

groups through the ssGSEA. Results of the correlation analysis

of the CRGI and the ssGSEA score implied that they were

statistically significant (Figure 5A). Moreover, different cancer
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hallmarks were found enriched in the high- and low-CRGI

groups with statistical significance. In total, 34 pathways were

identified within the high-CRGI group. The most enriched

pathways were upregulated and mostly related to cell

proliferation, including G2M CHECKPOINT, E2F_TARGETS,

etc. (Figure 5B). Within the low-CRGI group, 4 pathways were

downregulated, mainly related to digestive functions, such as

BILE_ACID_METABOLISM (Figure 5C).

We also performed GO terms and KEGG pathways

enrichment analysis for the CRGI genes. Subsequently,

enriched GO terms were found most relevant to the energy

production within the mitochondria (Figure 5D), including the

“acetyl-CoA biosynthetic process”, “mitochondrial matrix”, and
Frontiers in Immunology 09
“oxidoreductase complex”, etc. The other GO terms such as

“DNA damage response” and “histone acetyltransferase

binding” and so on were mainly related to the instability of

the genome, which was reasonable as the majority of the CRGI

genes were core genes involved in the copper-induced cell death

mechanism (i.e., Cuproptosis) and the rest of the CRGI genes

were driver mutation genes (i.e., KRAS, TP53, SMAD4, BRCA1,

BRCA2, and CDKN2A) in PAAD. For the enriched KEGG

pathways, the pathway entitled “pancreatic cancer” was found

directly linked with the CRGI genes (Figure 5E). The other

KEGG pathways like “TCA cycle” and “pyruvate metabolism”

once again emphasized the critical role that the CRGI genes

played in cellular physiology.
A B

D

E

C

FIGURE 4

Nomogram with clinicopathological characteristics to predict OS in PAAD. (A, B) Forest plots of the results of the univariate and multivariate Cox
regression, respectively. (C, D) Conventional nomogram and its calibration curve based on our model. (E) The screenshot of the web-based OS
calculator calculating a fictional case.
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CRGI was associated with the tumor
microenvironment condition,
cancer-immunity cycle, and
immunotherapy efficacy

It has been widely believed that cancers are essentially

considered as dynamic ecosystems wherein subclone

populations of most cancer cells and non-malignant cells in

the tumor microenvironment engage cooperatively to promote

the disease progression. Therefore, it is necessary to investigate
Frontiers in Immunology 10
the general appearance of the tumor microenvironment. Herein,

by utilizing the clinical information curated from the TCGA

cohort, we utilized the R package “ESTIMATE” to elucidate it in

a quantitative way, through which we found that except for the

stromal score, the immune score and ESTIMATE score were

found statistically significant and that higher immune and

ESTIMATE scores were observed in normal tissues than that

of PAAD tumor tissues (Figures 6A–C). Then, we analyzed the

correlation between the CRGI and stromal, immune, and

ESTIMATE scores, respectively. It was found that the CRGI
A

B

D

E

C

FIGURE 5

Over-representation analysis of CRGI in PAAD. (A) Correlation analysis of the CRGI and ssGSEA score. (B) The top 10 most enriched and
upregulated cancer hallmarks in the high-CRGI group. (C) The 4 downregulated cancer hallmarks in the low-CRGI group. (D) The enriched GO
terms of CRGI genes. (E) The enriched KEGG pathways of CRGI genes.
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was negatively associated with the immune score with statistical

significance (Figures 6D–F). We also analyzed the

aforementioned scores in high- and low-CRGI groups, and it

was observed that there was a difference in immune score and

ESTIMATE score with statistical significance in which the low-

CRGI group possessed a relatively higher immune score and

ESTIMATE score (Figure 6G). These findings supported the idea

that CRGI as a classifier of the high- and low-CRGI groups

played an essential role in the distinguishment of the tumor

microenvironment condition in PAAD. On the other hand, we

exhaustively screened the immune cell types in the tumor

infiltration process in the high- and low-CRGI groups by

integrating 7 mainstream immunoinformatic algorithms,

including TIMER, CIBERSORT, CIBERSORT−ABS,

QUANTISEQ, MCPCOUNTER, XCELL, and EPIC. It was

found that the immune cell types involved in this process were

very much diverse. In detail, immune cell types such as B cells,

CD4+ T cells, CD8+ T cells, regulatory T cells, myeloid dendritic

cells, macrophages, NK cells, monocytes, and endothelial cells

were found to dramatically differ from the high-CRGI group to

the low-CRGI group (Figure 6H).

Immune checkpoints are negatively regulatory proteins in

the immune system that are indispensable for maintaining self-

tolerance, preventing autoimmune responses, and minimizing

tissue damage. They function by controlling the timing and

intensity of immune response. In immunotherapy, the

overexpression of immune checkpoints inhibits the function

of immune cells so that the body cannot produce an effective

anti-tumorous immune response, which ultimately leads to

immune escape. Therefore, to fully evaluate the potential

impact on immunotherapy efficacy caused by CRGI, we also

analyzed the difference in the expression of the representative

genes of the soundest immune checkpoints in the high- and

low-CRGI groups in the TCGA cohort, including PD-1 (i.e.,

protein of PDCD1 gene), PD-L1 (i.e., protein of CD274 gene),

PD-L2 (i.e., protein of PDCD1LG2 gene), CTLA4, HAVCR2,

LAG3, TIGIT, and SIGLEC15. It was found that there are

statistical significances in the expression of PD-1, CTLA4,

TIGIT, and LAG3 (Figure 6I). It was also observed that there

were higher expression levels in the low-CRGI groups,

hindering that patients with low-CRGI might be benefited

more from immunotherapy.

In addition, after integrating the clinical data curated from the

TCGA cohort, through the TIDE algorithm (i.e., a scoring system

that inversely reflects the immunotherapy efficacy), we predicted

the potential response of PAAD patients to immune checkpoint

blockade. To be more exact, we first conducted a correlation

analysis in which we found that the TIDE score and the CRGI

showed a significant correlation statistically with a P-value = 0.01

and a Spearman coefficient = 0.19 (Figure 6J). Then, we stepped

forward, finding that in the high- and low-CRGI groups, there was

also a distinct difference in which the low-CRGI groups
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demonstrated a prominently lower TIDE score than that of the

high-CRGI group, implying that there were certain advantages in

immunotherapy efficacy in the low-CRGI groups (Figure 6K).

As the TIDE algorithm was merely verified with real-world

data in melanoma and non-small cell lung cancer, it is of nature

to be concerned with the reliability of the predictive results.

Therefore, to further confirm the reliability, we utilized the

SubMap algorithm to validate the aforementioned results. We

firstly screened the immunotherapy responders and non-

responders using the CRGI as a classifier, finding that

patients with lower CRGI in the IMvigor210 dataset were

mor e r e spon s i v e t h an tho s e w i t h h i gh e r CRGI

(Supplementary S2A, B). However, as the SubMap algorithm

was principally an inference-making machine purely based on

the statistical similarity between the expression profiles,

objective differences were inescapable, which might lead to

deviations. Moreover, although it was the best option under the

given conditions, the IMvigor210 dataset was somewhat less

organized. Therefore, taking it altogether, the Bonferroni

adjusted P-value was not ideal, despite a statistical similarity

between the expression profiles of PAAD and BLCA could be

seen (Supplementary S2C). Overall, the patients with low-

CRGI in the IMvigor210 dataset demonstrated a certain

positive association with the responsiveness of PD-1 therapy,

which once again implicated that they might be more suitable

for immunotherapy.

As Cuproptosis is a cell death mechanism that may raise

immune reactions, it is of great interest to investigate its

potential underlying anticancer mechanisms in the tumor

immunity aspect. Meanwhile, the cancer-immunity cycle

proposed by Chen and Mellman (46) and the 19 known

biological processes summarized by Wei et al. and

Mariathasan et al. (47, 48) were hot research topics over the

past decade, which were widely believed to be the key paths

toward tumor malignancies. Hence, to boost the direct

understanding of the bridge between the CRGI and the

development of cancer, the correlation analysis between the

CRGI and cancer–immunity cycle together with 19 known

biological processes was performed based on the TCGA cohort

(Figure 6L). As a result, the CRGI presented a significantly

positive relationship with “cancer antigen presentation”,

“recognition of cancer cells by T cells”, and “killing of cancer

cells” in the cancer-immunity cycle, and “tumor proliferation

signature”, “cellular response to hypoxia”, “EMT markers”,

“apoptosis”, “DNA repair”, “DNA replication”, “G2M

checkpoint”, “PI3K AKT mTOR pathway”, “MYC targets”,

“P53 pathway” , “TGFb” , “collagen formation” , and

“ ferroptosis” in the 19 known biological functions

(Figure 6M). Similar differences with statistical significance

also existed between the high- and low-CRGI groups,

indicative of the remarkable interactions of CRGI with tumor

immunology (Figure 6N).
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FIGURE 6

In-depth analytics on the relationship between CRGI and the tumor microenvironment condition, immune cell infiltration, immunotherapy
efficacy, TMB, as well as the cancer-immunity cycle. (A–C) Comparison of the stromal, immune, and ESTIMATE scores of tumorous and normal
tissues in the TCGA dataset. (D–F) Correlation analysis between the CRGI and the stromal, immune, and ESTIMATE scores. (G) The violent plot
demonstrated the comparison of the stromal, immune, and ESTIMATE scores in the high- and low-CRGI groups. (H) The heatmap
demonstrated the diverse immune cell types in the infiltration process. (I) The violent plot demonstrated the comparison of the expression of
the representative genes of the soundest immune checkpoints in the high- and low-CRGI groups. (J) Correlation analysis between the TIDE
score and CRGI. (K) The violent plot demonstrated the comparison of the TIDE scores in the high- and low-CRGI groups. (L) Graphical
demonstration of the cancer-immunity cycle. (M) Correlation analysis between the CRGI and the main steps of the cancer-immunity cycle as
well as the 19 known biological processes. (N) The boxplot demonstrated the comparison of marker scores in the high- and low-CRGI groups.
*, **, ***, and **** indicate the P-value thresholds 0.05, 0.01, 0.001, and 0.0001, respectively.
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The high- and low-CRGI groups
possessed different chemosensitivity

Chemotherapy has been the centerpiece in the treatment of

cancer over the past few decades, yet due to the heterogeneous

characteristics of tumors, even the responses to the same

chemotherapeutic may vary from one patient to another (63).

To address this problem, genome-based methodologies must be

introduced. For this purpose, we evaluated the chemosensitivity

of PAAD patients from the TCGA dataset who were classified

into the high- and low-CRGI groups previously in the present

study to 32 commonly used anticancer drugs (Supplementary

S3). Subsequently, the half-maximal inhibitory concentration

(IC50) value of 5 drugs (i.e., Lenalidomide, Metformin,

Temsirolimus, Axitinib, and Camptothecin) was found

relatively higher in the high-CRGI group (Figure 7A), while

that of the other 11 drugs (i.e., Paclitaxel, Lapatinib, Dasatinib,

Bleomycin, Docetaxel, Doxorubicin, Bexarotene, Gefitinib,

Bosutinib, and Bortezomib) was found relatively higher in the

low-CRGI group (Figure 7B).
CRGI-based molecular subtypes were
characterized by different survival
outcomes, immunotherapy efficacy,
and chemosensitivity

Since the above analytics has revealed that the high- and

low-CRGI groups possessed distinct OS probability and

immunotherapy efficacy, it raised our interest in systemically

dividing it into more precise molecular subtypes through an

unsupervised consensus method (i.e., K-mean algorithm). It was

found that when K = 4, the PAAD samples were separated into 4

clusters in the consensus diagram (Supplementary S4A).

Meanwhile, when K = 4, CDF almost reached its maximum

which indicated good stability (Supplementary S4B). Besides, it

was observed that CDF changed only slightly when K+/-1

(Supplementary S4C). Therefore, K = 4 was deemed to be an

ideal value in the present study. To ensure the robustness of the

clustering, we also conducted a principal component analysis

(PCA), through which we could see that the samples were indeed

well separated (Supplementary S4D). Therefore, ultimately, 4

molecular subtypes were identified, annotated by C1 (N = 37),

C2 (N = 90), C3 (N = 23), and C4 (N = 29).

Furthermore, we examined the expression profiles of the 13

CRGI genes in each molecular subtype and found that generally,

the expression levels were arranged in such order: C1 > C4 >

C2 > C3 (Supplementary S4E).

We then investigated the clinical outcomes in these

molecular subtypes. Results of the survival analysis suggested

that C2 had the best prognosis, followed by C4, C3, and C1

(Supplementary S4F).
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We also inspected the TIDE score and the expression of the

representative genes of the soundest immune checkpoints in

different molecular subtypes. For the TIDE score, there were

differences with statistical significance between C1 and C3, and

between C2 and C3, where C3 had a relatively lower TIDE score

compared with that of C1 and C2 (Supplementary S4G). For the

expression of the representative genes, except SIGLEC15, the

rest were all found statistically significant and exhibited

prominent di fferences in each molecular subtype

(Supplementary S4H). In short, the 4 molecular subtypes

demonstrated diverse immunogenic features, and that may

lead to various efficacy in immunotherapy.

Final ly , we carr ied out the e luc idat ion of the

chemosensitivity of PAAD patients from the TCGA dataset

who were divided into 4 molecular subtypes based on the

CRGI. This was done in the same way as we evaluated the

chemosensitivity of the high- and low-CRGI groups. As a result,

we identified that 27 of the 32 common anticancer medications

exhibited changes that were statistically significant in each of the

4 molecular subtypes (Supplementary S5). Axitinib stood up as

being particularly unique as it had exceptionally high statistical

significance in its differences concerning both of the

molecular subtypes.
DLAT, LIPT1, and LIAS as reliable
diagnostic biomarkers in PAAD

We selected a normal human pancreatic ductal epithelial cell

line (i.e., HPDE6-C7) and 4 pancreatic cancer cell lines (i.e.,

CFPAC-1, PANC-1, SW1990, and AsPC-1) to examine the

expression of DLAT, LIPT1, and LIAS.

To be more detailed, we first performed a real-time

quantitative polymerase chain reaction (RT-qPCR) to verify

their expression at the upstream transcriptomic level. It was

recognized that they were all expressed at a relatively higher level

in the cancer cell lines than that in the normal ones (Figure 8A).

On the other hand, at the downstream proteomic level, we

conducted a triple repetition in western blot to validate the

expression of the corresponding proteins in the aforementioned

cell lines. The results indicated that these proteins were

expressed relatively higher in the cancer cell lines (Figure 8B;

Supplementary S6). Macroscopically, we visualized these

findings through immunofluorescence staining (IFS) using the

HPDE6-C7 (i.e., normal cell line, control group) and AsPC-1

(cancer cell line, group of interest) cell lines. It was observed that

the staining intensities were much higher in AsPC-1 than in

HPDE6-C7 (Figure 8C).

The aforementioned results were further theoretically

verified by utilizing the TCGA dataset through diagnostic

ROC analysis. Consequently, we found DLAT demonstrated

the highest accuracy with an AUC value that reached 0.968,
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followed by LIPT1 with an AUC value of 0.848, and LIAS with

an AUC value of 0.753 (Figure 8D).
Discussion

Despite the fast growth of current healthcare technology,

there has been very little progress in treating pancreatic

adenocarcinoma (PAAD). The long-term overall survival (OS)

rates of PAAD remain a major challenge for clinicians because of
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its high malignancy, rapid progression, and lack of effective

treatments (14, 64). Less than 10% of the patients may survive

for more than 5 years even until today (13–15). Under such

circumstances, surgery and chemotherapy continue to be the

most common treatments for PAAD. However, since these

interventions lead to high morbidity and mortality, an

expansion of the arsenal of translational medicine remains on-

demand. In a word, the present situation is not optimistic.

Although in clinical observation and animal modeling, a few

validated biomarkers such as KRAS, TP53, SMAD4, and
A

B

FIGURE 7

Comparison of the efficacy of 32 chemotherapeutics in (A) high-CRGI group, and (B) low-CRGI group. *, **, ***, and **** indicate the P-value
thresholds 0.05, 0.01, 0.001, and 0.0001, respectively.
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FIGURE 8

In-vitro validation of essential genes (i.e., DLAT, LIPT1, and LIAS) as potential diagnostic biomarkers in PAAD. (A) Results of RT-qPCR of DLAT,
LIPT1, and LIAS in HPDE6-C7, CFPAC-1, PANC-1, SW1990, and AsPC-1 cell lines, respectively. (B) Results of western-blot in triple repletion
utilizing the aforementioned cell lines. (C) IFS slides in 100X and 400X magnification demonstrated the expressional abundance of these
proteins of interest in HPDE6-C7 and AsPC-1 cell lines. (D) Evaluation of the eligibilities of DLAT, LIPT1, and LIAS serving as diagnostic
biomarkers in PAAD.
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CDKN2A were discovered to exhibit apparent impacts on

tumorigenesis, metastasis, and concomitantly poor prognosis

(59), they were still regarded to be inadequate to cause the

disease and less gratifying to be exploited in targeted

drug development.

The good news is that as medicine has evolved from

empirical to evidence-based, or even further, to personalized,

the value of multi-omics data has raised unprecedented

attention. Such rapid acquisition, storage, and analytics of such

data in the era of big data make precision medicine more and

more realistic. Under this background, bioinformatics as a

subject within the intersection of computer science and

biomedicine has made extensive progress in the past few

decades. Subsequently, lots of genetic signatures and

corresponding risk models were mined from internationally

available genomic databases and increasingly accepted by the

scientific community. In the past 10 years, newly characterized

cell death processes like autophagy, ferroptosis, and pyroptosis

are anticipated to provide new insights into the genesis and

treatment of cancer including PAAD. At this point, the novel cell

death mechanism termed “Cuproptosis” was reported by

Tsvetkov et al. in March 2022 (2), lightening up the road for

scientists, clinicians, and patients against PAAD.

Indeed, as copper serves as an essential trace element in the

human body, its imbalance is tightly associated with numerous

pathological conditions including cancers, albeit mainly through

undefined underlying mechanisms. Dating back to the year

2013, Seiko et al. had proven that bioavailable copper was able

to modulate the oxidative phosphorylation and growth of tumor

tissues (65).

On the other hand, considering the complexity of tumor

biology, it has been realized that it is insufficient to predict the

clinical outcomes solely based on clinical and pathological

characteristics or a single biomarker. Therefore, accurate

assessment of the OS rate in PAAD has been an emerging concern.

Taking it altogether, in the present study, we optimized a

Cuproptosis-gene index (CRGI) with important implications for

prognosis, tumor immunology, molecular subtypes, and the

efficacy of immunotherapy and chemotherapy through 10

mainstream algorithms in machine learning. Supplementarily,

3 essential CRGI genes (i.e.,DLAT, LIPT1, and LIAS) were found

with promising potential as diagnostic biomarkers through a

computational method analyzing open datasets combined with

in-vitro validation.

13 genes, including well-established biomarkers such as KRAS,

TP53, SMAD4, BRCA1, BRCA2, and CDKN2A (17–20, 59, 66–69),

as well as Cuproptosis-related genes such as DLAT, LIPT1, LIAS,

DLD, PDHA1, MTF1, and GLS40 comprises the CRGI. Among

them, CDKN2A, a tumor suppressor gene that encodes for

p16INK4A and p14ARF, critical for the regulation of cell cycle

pathways (70, 71), was also a well-known biomarker in PAAD and

a member of the 10 Cuproptosis-related genes meanwhile. The rest

of the CRGI genes were indispensable to the process of
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mitochondrial energy production. For instance, DLAT was a

critical component of the pyruvate dehydrogenase complex and

was intimately engaged in the oligomerization of lipoylated TCA

cycle proteins when copper ions are overloaded (72).

In comparison to other signatures derived from autophagy,

ferroptosis, and pyroptosis, our model demonstrated a more

robust and accurate predictive performance. Notably, such a

conclusion was not only drawn from conventional assessment

(i.e., the AUC value in the time-dependent ROC analysis) but

also from the results of decision curve analysis (DCA), since we

comprehended the necessity to maximize the goodness in

clinical practice when tolerable false positivity and false

negatives were inevitable (32).

Additionally, we investigated the relationship between the

CRGI and tumor immunology and the differences in tumor

immunology between the CRGI. We found that CRGI was

associated with the condition of the tumor microenvironment,

the cancer-immunity cycle, and immunotherapy efficacy.

Regarding immunotherapy, in particular, the lower CRGI was

more favorable as it indicated a substantially stronger response

to immune checkpoint blockade and was more engaged with the

cancer-immunity cycle and the 19 known biological processes in

pancreatic cancer (46, 47).

The half-maximal inhibitory concentration (IC50) curves of

32 frequently used anticancer medicines were examined to

determine their predicted chemotherapeutic effectiveness.

Among them, the IC50 value of Lenalidomide, Metformin,

Temsirolimus, Axitinib, and Camptothecin was found

relatively higher in the high-CRGI group, while that of

Paclitaxel, Lapatinib, Dasatinib, Bleomycin, Docetaxel,

Doxorubicin, Bexarotene, Gefitinib, Bosutinib, and Bortezomib

was found relatively higher in the low-CRGI groups. Both results

came with statistical significance after log-rank testing.

Thereby, it is considered that the CRGI not only predicted

the OS rate but also implicated the various therapeutic

approaches that should be utilized for more precise therapy.

As a further step, we aimed to use CRGI as a classifier for

molecular subtype classification. Subsequently, it was found that

immunotherapy and chemotherapy had distinct impacts on

various molecular subtypes.

As the current diagnosis approach is underdeveloped and often

shows delays in early detection (i.e., once the patient is identified as

a PAAD patient, it is almost at a late stage of disease progression

accompanied by metastasis to multiple organs), we hoped that the

CRGI genes could help improve the situation to a certain extent. As

such, DLAT, LIPT1, and LIAS were designated for further in-vitro

research as they were more relatively weighted among the CRGI

genes and relatively less studied previously. The results of both

transcriptomic (RT-qPCR) and proteomic (western blot and

immunofluorescent staining) assays suggested they were

promising diagnostic biomarkers. The AUC value of each gene in

the diagnostic ROC analysis using the TCGA dataset further

verified the experimental phenomenon.
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In summary, despite the imperfections, including the lack of

real-world clinical cohort and own IC50 testing data, the present

study highlighted the outstanding achievement of CRGI in PAAD

prognostic prediction and the association with tumor immunology.

These findings may inspire more and more immunotherapy- and

chemotherapy-based interventions in the future.
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Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture
from expression data. Nat Commun (2013) 4:2612. doi: 10.1038/ncomms3612

43. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of
tumor-infiltrating immune cells. Nucleic Acids Res (2020) 48(W1):W509–W514.
doi: 10.1093/nar/gkaa407

44. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: A web server
for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res (2017)
77(21):e108–10. doi: 10.1158/1538-7445.AM2017-108

45. Li B, Severson E, Pignon J-C, Zhao H, Li T, Novak J, et al. Comprehensive
analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol
(2016) 17(1):174. doi: 10.1186/s13059-016-1028-7

46. Chen DS, Mellman I. Oncology meets immunology: The cancer-immunity
cycle. Immun Vol (2013) 39(1):1–10. doi: 10.1016/j.immuni.2013.07.012

47. Wei J, Huang K, Chen Z, Hu M, Bai Y, Lin S, et al. Characterization of
glycolysis-associated molecules in the tumor microenvironment revealed by pan-
cancer tissues and lung cancer single cell data. Cancers (2020) 12(7):1788.
doi: 10.3390/cancers12071788

48. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang, et al.
TGFb attenuates tumour response to PD-L1 blockade by contributing to exclusion
of T cells. Nat Vol (2018) 554(7693):544–8. doi: 10.1038/nature25501

49. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell
dysfunction and exclusion predict cancer immunotherapy response. Nat Med
(2018) 24(10):1550–8. doi: 10.1038/s41591-018-0136-1

50. Tang C, Yu M, Ma J, Zhu Y. Metabolic classification of bladder cancer based
on multi-omics integrated analysis to predict patient prognosis and treatment
response. J Transl Med (2021) 19:205. doi: 10.1186/s12967-021-02865-8

51. Chen F, Yang J, Fang M, Wu Y, Su D, Sheng Y. Necroptosis-related lncRNA
to establish novel prognostic signature and predict the immunotherapy response in
breast cancer. J Clin Lab Anal (2022) 36:e24302. doi: 10.1002/jcla.24302

52. Hoshida Y, Brunet JP, Tamayo P, Golub TR, Mesirov JP. Subclass mapping:
identifying common subtypes in independent disease data sets. PloS One (2007) 2:
e1195. doi: 10.1371/journal.pone.0001195

53. Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP, Bellmunt J,
et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with
locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre,
phase 2 trial. Lancet (London England) Vol (2017) 389(10064):67–76. doi: 10.1016/
S0140-6736(16)32455-2

54. Yu Q, Zhao L, Yan X, Li X, Chen XY, Hu XH. Identification of a TGF-b
signaling-related gene signature for prediction of immunotherapy and targeted
therapy for lung adenocarcinoma. World J Surg Onc (2022) 20:183. doi: 10.1186/
s12957-022-02595-1

55. Wilkerson DM, Hayes ND. ConsensusClusterPlus: a class discovery tool
with confidence assessments and item tracking. Bioinformatics (2010) 26
(12):1572–3. doi: 10.1093/bioinformatics/btq170
frontiersin.org

https://doi.org/10.1038/nrc.2017.53
https://doi.org/10.1038/s41568-022-00459-0
https://doi.org/10.1038/s41401-022-00887-6
https://doi.org/10.1038/s41401-022-00887-6
https://doi.org/10.1126/sciadv.abb9200
https://doi.org/10.1126/sciadv.abb9200
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21654
https://doi.org/10.3322/caac.21637
https://doi.org/10.14740/wjon1166
https://doi.org/10.1186/s13045-020-00958-3
https://doi.org/10.1016/S0140-6736(20)30974-0
https://doi.org/10.1016/S1470-2045(19)30795-8
https://doi.org/10.1016/j.ccell.2018.12.010
https://doi.org/10.1038/s41587-019-0055-9
https://doi.org/10.3389/fmolb.2022.834593
https://doi.org/10.3389/fmolb.2022.834593
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v039.i05
https://doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1007/978-0-387-73003-5_196
https://doi.org/10.1007/978-0-387-73003-5_196
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1007/978-0-387-88615-2_4
http://CRAN.R-project.org/doc/Rnews/
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1177/0272989X06295361
https://doi.org/10.1177/0272989X06295361
https://doi.org/10.1016/j.biocon.2020.108849
http://www.forestplots.net
https://doi.org/10.1186/s12967-021-02942-y
https://doi.org/10.1038/ng1180
https://doi.org/10.1038/ng1180
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1002/pro.3715
https://doi.org/10.1093/nar/gkaa970
https://doi.org/10.1038/75556
https://doi.org/10.1093/nar/gkaa1113
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1093/nar/gkaa407
https://doi.org/10.1158/1538-7445.AM2017-108
https://doi.org/10.1186/s13059-016-1028-7
https://doi.org/10.1016/j.immuni.2013.07.012
https://doi.org/10.3390/cancers12071788
https://doi.org/10.1038/nature25501
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1186/s12967-021-02865-8
https://doi.org/10.1002/jcla.24302
https://doi.org/10.1371/journal.pone.0001195
https://doi.org/10.1016/S0140-6736(16)32455-2
https://doi.org/10.1016/S0140-6736(16)32455-2
https://doi.org/10.1186/s12957-022-02595-1
https://doi.org/10.1186/s12957-022-02595-1
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.3389/fimmu.2022.978865
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2022.978865
56. Kaplan EL, Meier P. Nonparametric estimation from incomplete
observations. J Am Stat Assoc (1958) 53:457–81. doi: 10.2307/2281868

57. Stalpers LJA, Kaplan EL. Edward L. Kaplan and the Kaplan-Meier survival
curve, BSHM bulletin. J Br Soc History Math (2018) 33(2):109–35. doi: 10.1080/
17498430.2018.1450055

58. Geeleher P, Cox N, Huang RS. pRRophetic: An r package for prediction of
clinical chemotherapeutic response from tumor gene expression levels. PloS One
(2014) 9(9):e107468. doi: 10.1371/journal.pone.0107468

59. Wang S, Zheng Y, Yang F, Zhu L, Zhu XQ, Wang ZF, et al. The molecular
biology of pancreatic adenocarcinoma: translational challenges and clinical
perspectives. Sig Transduct Target Ther (2021) 6:249. doi: 10.1038/s41392-021-
00659-4

60. Deng J, Zhang Q, Lv L, Ma P, Zhang Y, Zhao N, et al. Identification of an
autophagy-related gene signature for predicting prognosis and immune activity in
pancreatic adenocarcinoma. Sci Rep (2022) 12:7006. doi: 10.1038/s41598-022-
11050-w

61. Yang J, Wei X, Hu F, DongW, Sun L. Development and validation of a novel
3-gene prognostic model for pancreatic adenocarcinoma based on ferroptosis-
related genes. Cancer Cell Int (2022) 22:21. doi: 10.1186/s12935-021-02431-8

62. Bai Z, Xu F, Feng X, Wu Y, Lv J, Shi Y, et al. Pyroptosis regulators exert
crucial functions in prognosis, progression, and immune microenvironment of
pancreatic adenocarcinoma: a bioinformatic and in vitro research. Bioengineered
(2022) 13(1):1717–35. doi: 10.1080/21655979.2021.2019873

63. Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in
cancer chemotherapy. Int J Mol Sci (2020) 21(9):3233. doi: 10.3390/ijms21093233

64. Park W, Chawla A, O'Reilly EM. Pancreatic cancer: A review. JAMA vol
(2021) 326:9. doi: 10.1001/jama.2021.13027
Frontiers in Immunology 19
65. Ishida S, Andreux P, Poitry-Yamate C, Auwerx J, Hanahan D. Bioavailable
copper modulates oxidative phosphorylation and growth of tumors. Proc Natl Acad
Sci USA (2013) 110(48):19507–12. doi: 10.1073/pnas.1318431110

66. Buscail L, Bournet B, Cordelier P. Role of oncogenic KRAS in the diagnosis,
prognosis and treatment of pancreatic cancer. Nat Rev Gastroenterol Hepatol Vol
(2020) 17(3):153–68. doi: 10.1038/s41575-019-0245-4

67. Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, et al.
Whole genomes redefine the mutational landscape of pancreatic cancer. Nat Vol
(2015) 518:7540. doi: 10.1038/nature14169

68. Yachida S, White CM, Naito Y, Zhong Y, Brosnan JA, Macgregor-Das AM,
et al. Clinical significance of the genetic landscape of pancreatic cancer and implications
for identification of potential long-term survivors. Clin Cancer Res: Off J Am Assoc
Cancer Res Vol (2012) 18(22):6339–47. doi: 10.1158/1078-0432.CCR-12-1215

69. Holter S, Borgida A, Dodd A, Grant R, Semotiuk K, Hedley D, et al.
Germline BRCA mutations in a Large clinic-based cohort of patients with
pancreatic adenocarcinoma. J Clin Oncol: Off J Am Soc Clin Oncol Vol (2015) 33
(28):3124–9. doi: 10.1200/JCO.2014.59.7401

70. Potrony M, Puig-Butillé JA, Aguilera P, Badenas C, Carrera C, Malvehy J,
et al. Increased prevalence of lung, breast, and pancreatic cancers in addition to
melanoma risk in families bearing the cyclin-dependent kinase inhibitor 2A
mutation: implications for genetic counseling. J Am Acad Dermatol (2014) 71
(5):888–95. doi: 10.1016/j.jaad.2014.06.036

71. Zhao R, Choi BY, Lee MH, Bode AM, Dong Z. Implications of genetic and
epigenetic alterations of CDKN2A (p16(INK4a)) in cancer. EBioMedicine (2016)
8:30–9. doi: 10.1016/j.ebiom.2016.04.017

72. Goh WQJ, Ow GS, Kuznetsov VA, Chong S, Lim YP. DLAT subunit of the
pyruvate dehydrogenase complex is upregulated in gastric cancer-implications in
cancer therapy. Am J Trans Res (2015) 7(6):1140–51.
frontiersin.org

https://doi.org/10.2307/2281868
https://doi.org/10.1080/17498430.2018.1450055
https://doi.org/10.1080/17498430.2018.1450055
https://doi.org/10.1371/journal.pone.0107468
https://doi.org/10.1038/s41392-021-00659-4
https://doi.org/10.1038/s41392-021-00659-4
https://doi.org/10.1038/s41598-022-11050-w
https://doi.org/10.1038/s41598-022-11050-w
https://doi.org/10.1186/s12935-021-02431-8
https://doi.org/10.1080/21655979.2021.2019873
https://doi.org/10.3390/ijms21093233
https://doi.org/10.1001/jama.2021.13027
https://doi.org/10.1073/pnas.1318431110
https://doi.org/10.1038/s41575-019-0245-4
https://doi.org/10.1038/nature14169
https://doi.org/10.1158/1078-0432.CCR-12-1215
https://doi.org/10.1200/JCO.2014.59.7401
https://doi.org/10.1016/j.jaad.2014.06.036
https://doi.org/10.1016/j.ebiom.2016.04.017
https://doi.org/10.3389/fimmu.2022.978865
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Cuproptosis-related gene index: A predictor for pancreatic cancer prognosis, immunotherapy efficacy, and chemosensitivity
	Introduction
	Materials and methods
	Collection and integration of the transcriptome data and matched clinical information
	Machine learning in the development of cuproptosis-related gene index
	Decision curve analysis
	Construction of a conventional nomogram and corresponding calibration curve
	Construction of an online OS calculator
	Gene set enrichment analysis
	Estimation of the tumor microenvironment condition
	Screening of immune cell infiltration
	Cancer-immunity cycle and 19 known biological processes
	Prediction of the potential response to immune checkpoint blockade
	Unsupervised clustering through the K-means algorithm
	Survival analysis
	Evaluation of the response to chemotherapy
	Cell lines and cell culture
	Real-time polymerase chain reaction
	Western blot
	Immunofluorescence staining

	Results
	CRGI was optimized from 10 mainstream algorithms
	The predictive performance of CRGI was superior to that of the signatures derived from other cell death mechanisms
	CRGI served as an independent indicator in PAAD prognostic prediction
	Over-representation analysis revealed the functional importance of CRGI in PAAD
	CRGI was associated with the tumor microenvironment condition, cancer-immunity cycle, and immunotherapy efficacy
	The high- and low-CRGI groups possessed different chemosensitivity
	CRGI-based molecular subtypes were characterized by different survival outcomes, immunotherapy efficacy, and chemosensitivity
	DLAT, LIPT1, and LIAS as reliable diagnostic biomarkers in PAAD

	Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


