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Nod-Like Receptors: Cytosolic Watchdogs
for Immunity against Pathogens
Jean-Claude Sirard, Cécile Vignal, Rodrigue Dessein, Mathias Chamaillard*

ABSTRACT

I n mammals, tissue-specific sets of pattern-recognition
molecules, including Nod-like receptors (NLR), enable
concomitant and sequential detection of microbial-

associated molecular patterns from both the extracellular and
intracellular microenvironment. Repressing and de-
repressing the cytosolic surveillance machinery contributes
to vital immune homeostasis and protective responses within
specific tissues. Conversely, defective biology of NLR drives
the development of recurrent infectious, autoimmune and/or
inflammatory diseases by failing to mount barrier functions
against pathogens, to tolerate commensals, and/or to instruct
the adaptive immune response against microbes. Better
decoding microbial strategies that are evolved to circumvent
NLR sensing will provide clues for the development of
rational therapies aimed at curing and/or preventing
common and emerging immunopathologies.

Introduction

Mammals face life-threatening signals and have the double-
edged challenge of eliminating infectious agents and
tolerating their flora, especially in the gastrointestinal tract.
In mammals, the combination of germ-line encoded pattern-
recognition molecules (PRM), including Toll-like receptors
(TLR) and Nod-like receptors (NLR), plays an essential role in
detecting a diversified set of extracellular and intracellular
‘‘danger’’ signals that primarily originate from microbes (so-
called microbial-associated molecular patterns [MAMP]) [1,2].
MAMP are highly conserved microbial-derived molecules
shared by both pathogens (in which they are designated as
PAMP [pathogen-associated molecular patterns]) and
commensals, such as lipopolysaccharides, carbohydrates
(including peptidoglycans [PGN]), flagellins, nucleic acids,
and peptidic and lipidic structures [3]. Originally identified in
the fruit fly and plants, the membrane-bound receptors TLR
sense MAMP through their extracellular domain, whereas
NLR detect signals inside the cells. Upon recognition of their
specific MAMP (Table 1), NLR drive innate and adaptive
responses and participate in homeostasis within various host
tissues through the activation of transcription factors and
downstream effectors, such as mitogen-activated protein
kinase (MAPK) (Figure 1) [4–9]. Recent studies emphasized
major contributions of NLR in microbial pathogenesis and
mammalian immunity. Herein, we summarize the
mechanisms of microbial detection by NLR, the NLR-
mediated immune signaling, the crosstalk between NLR–NLR
and NLR–TLR in mammals, and the strategies used by
pathogens to circumvent NLR signaling. Lastly, we will discuss
the pathophysiological implications of both NLR and TLR in
human diseases, because mutations in NLR- and TLR-
encoding genes have been linked to chronic inflammatory

diseases, resistance and susceptibility toward a panel of
infectious agents, and/or autoimmunity.

NLR Are Cytosolic Biosensors for Both Intra- and
Extracellular Microbes

Similarly to the superfamily of plant disease-resistance
proteins [10], the structure of NLR, also referred as
caterpillers, is composed of a N-terminal effector domain, a
central oligomerization domain (called NACHT for neuronal
apoptosis inhibitor protein, CIITA, HET-E, and TP1), and a
C-terminal collection of leucine-rich repeats (LRR) [4–7]. A
set of about 23 mammalian NLR has been recently identified
by in silico mining of genomic databases for proteins with
homology to the apoptosis regulator Apaf-1. NLR are
classified accordingly to their effector domains, caspase-
recruitment domain (CARD) for nucleotide-binding
oligomerization domain protein (NOD), the pyrin domain
(PYD) for NALP, and the baculovirus-inhibitor-of-apoptosis
repeats (BIR) for NAIP (Figure 1 and Table 1). The effector
modules CARD and PYD belong to the death-domain family
and define the specificity of the cellular response by
activating multiple signaling pathways through homophilic
and heterophilic protein-protein association.
The NOD-dependent signaling pathway. Bacterial PGN is a

parietal structure found in all proteobacteria, and both
NOD1 and NOD2 have been identified as sensors of
fragments derived from PGN, namely muramyl dipeptide
(MDP) for NOD2 [11–13] and c-D-Glu-meso-DAP (iE-DAP) for
NOD1 [14,15]. Upon recognition of MDP or iE-DAP, the
CARD-containing serine/threonine kinase RIP2 (also known
as RICK, CARDIAK, CCK, and Ripk2) engages inflammatory
and antimicrobial responses independently of TLR [16–18].
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The NOD1- and NOD2-dependent immune response can be
triggered by invasive bacteria that replicate inside cells, such
as Listeria monocytogenes [16,17,19] (Figure 1). Whereas RIP2-
deficient mice have increased susceptibility to systemic
infection by L. monocytogenes [18], NOD2-deficient mice
showed susceptibility to oral (but not systemic) listeriosis [13].
Extracellular bacterial pathogens can also be sensed by NOD1
and NOD2 through the intracellular delivery of
muropeptides by either their type III or IV secretion
apparatus [20,21]. These secretion machines are molecular
syringes that form transport channels through the membrane
of target cells to deliver virulence factors into cytosol.
However, the mechanisms by which muropeptides are
injected intracellularly remain elusive. Notably, NOD1 is
required for the innate immune response to Helicobacter pylori,
a major agent of gastric ulcer [20]. Conversely, bacterial
mutants deficient in PGN synthesis or type IV secretion
system have impaired ability to trigger NOD1-mediated
responses in epithelial cells of the stomach [20,22].

More recently, CARD9 has been identified to physically
interact with NOD2 and RIP2 to selectively synergize the
MDP-induced activation of MAPK but not of nuclear factor–j
B (NF-jB) (Figure 1), providing a mechanism by which
CARD9 might control innate immune response toward
intracellular pathogens [23]. CARD9 is a CARD-containing
adaptor which modulates the development of T(H)-17
response [24] and lacks the C-terminal, membrane-associated
guanylate kinase domain. Similarly to RIP2-deficient mice,
CARD9-deficient mice are susceptible to systemic infections
by L. monocytogenes [23]. Because CARD9 is involved in

Dectin1-mediated response to fungal infection [25], the
physiological role of NOD1 and NOD2 in response to fungi is
now eagerly awaited. Lastly, given that CARD9 is also
required for TLR3- and TLR7-dependent signaling pathways
[23], further work is now warranted to assess the physiological
role of CARD9 in immunity to viruses.
The inflammasome. The inflammasome is an inflammatory

caspase-activating complex, which contain at least caspase-1
and -5, ASC, NALP1-3, IPAF, and NAIP5 [26]. Notably,
caspase-5 is recruited by NALP1, but not NALP2 and NALP3,
through homophilic CARD–CARD interactions (Figure 1)
[26,27]. However, the physiological role of NALP2 and
caspase-5 remains poorly understood [28]. Caspase-1, also
known as IL-1–converting enzyme (ICE), is a protease
involved in pyroptosis, a recently described form of
inflammatory programmed cell death, and is essential for the
processing of immature pro-inflammatory cytokine IL-1b and
the related members IL-1a, IL-18, and IL-33 [29]. The IL-1b is
instrumental to initiate and/or amplify innate and adaptive
immunity toward pathogens [28]. Caspase-1 activation is also
involved in the cleavage of the MyD88-like adaptor Mal [30]
and in membrane biogenesis by promoting cell survival
following toxin-induced membrane permeabilization [31].
The contribution of caspase-1 and NALP/NAIP in host–
pathogen interaction has been analyzed in vivo by using
animal models of infection or in vitro by using cytokine and
viability assays with monocytes/macrophages. Caspase-1�/�

mice, which are inoculated nasally by the agent of bacillary
dysentery Shigella flexneri cannot trigger IL-1b–dependent
acute inflammation, thereby resulting in exacerbated

doi:10.1371/journal.ppat.0030152.g001

Figure 1. Intracellular Debugging of the NLR Signaling Pathways

A schematic overview of the major NLR signaling pathways in innate immunity is depicted. Upon detection of their agonists, NLR likely oligomerize
through the NOD domain and recruit at least three specific adaptors, including RIP2, CARD9, and ASC. Several modulators of NLR signaling have been
recently identified, such as Erbin, Bcl2, and Bcl-xl. The maturation of IL-1b by the inflammasome illustrates the interplay between NLR (i.e., NALP1–3,
NAIP5, and IPAF) and other PRM, such as TLR. Better understanding of the spatio-temporal engagement and/or repression of specific NLR might open
new avenues for therapeutical intervention.
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infection [32]. Interestingly, a positive correlation was defined
for S. Typhimurium and S. flexneri between their capacity to
promote macrophage death and their virulence in mice. This
effect has been proposed to depend on the inflammasome
[26,33].

Sensing of several extracellular and intracellular
pathogenic bacteria is associated to the secretion of IL-1b by
activating caspase-1 through at least five NLR, namely ICE
protease-activating factor (IPAF), NALP-1, �2 and �3, and
NAIP5 (Figure 1 and Table 1). Containing a N-terminal PYD
and a C-terminal CARD, the death-fold–containing adaptor
apoptosis-associated speck-like protein containing a CARD
(ASC) acts as a molecular bridge between NALP1-3, IPAF, and
caspase-1 [26] (Figure 1). In vivo, NALP1 senses the Bacillus
anthracis lethal toxin, which is delivered in the cytoplasm by
receptor-mediated endocytosis [34]. The bacterial PGN
component MDP activates both the NALP1- and NALP3-
dependent inflammasome [35,36]. NALP3 is also able to
detect a large variety of additional microbial signals (such as
microbial RNA) and cytolytic toxins (such as aerolysin from
Aeromonas hydrophila and maitotoxin) [31,37–39]. The NALP3-
dependent inflammasome is also activated by cellular
components that are released into the extracellular milieu by
distressed cells such as crystals found in gout, namely
monosodium urate and calcium pyrophosphate dihydrate
[40]. Oral infection with S. Typhimurium of caspase-1–
deficient mice, but not ASC�/�, NALP3�/�, or IPAF�/� animals,
leads to increased susceptibility to infection [41]. Similar
observations have been reported with L. monocytogenes [42,43].
Furthermore, caspase-1– and ASC-deficient (but not IPAF-
and NOD2-deficient) mice experienced increased
susceptibility to Francisella tularensis, the agent of tularemia
[44].

By using microinjection or liposome delivery or bacterial
mutants, the caspase-1 activators, such as IpaB (from S.
flexneri), SipB (from S. Typhimurium) and flagellin (from S.
Typhimurium and Legionella pneumophila), have been recently
proposed to signal through NAIP5 and IPAF [45–50].
Interestingly, NAIP5 is required to limit the maturation of
phagosomes following in vitro infection by L. pneumophila, the
agent of Legionnaires disease, [51] and restrict its
intracellular replication independently of caspase-1
activation [49,52]. IPAF has similar functions that depend,
however, on caspase-1 [52,53]. Notably, IPAF and caspase-1,
but not ASC, are required to control pyroptosis and
autophagy induced by Shigella independently of flagellin [54].
Whereas NAIP5 confers resistance to Legionnaires disease
[55–57], the physiological role of IPAF remains elusive with
respect to L. pneumophila. Unlike the inflammasome, the
sensing of flagellin through TLR5 does not trigger caspase-1
activation, suggesting that IPAF and NAIP5 represent a fail-
safe immune mechanism to respond to flagellated pathogens
[48,57,58]. Lastly, interferon-b and tumor necrosis factor-a
have been implicated in restricting the growth of L.
pneumophila in macrophages, but independently of IPAF and
NAIP5 [49,59]. Taken together, deficiency in NAIP5, ASC,
and/or caspase-1 in mice are, instead, associated with
increased susceptibility to invasive microbes and with
resistance to the lethal effect of endotoxins [50,60].
Therefore, the NLR signaling pathway and the inflammasome
represent ‘‘watchdog’’ machineries against both intra- and
extracellular pathogens, including toxicogenic microbes.

Optimal Immune Response Toward Pathogens
Requires NLR

Given that several sensors are likely solicited when host cell
faces a microorganism, the engagement of specific
combinations of NLR and other PRM affect the host response
by driving either tolerance, priming, or synergy. Notably, by
using cell-based assays, it was found that chemically
synthesized NOD1 and NOD2 agonists synergize TLR-
dependent cytokines expression in monocytes [61–66].
Similar findings have been reported in dendritic cells (DCs)
for the secretion of IL-12 [67,68], which is a major cytokine
produced by DCs to promote T(H)1 polarization of T cells
[69]. DCs are the central ‘‘professional’’ immune cells for the
initiation of the adaptive immunity by activating the T
lymphocyte differentiation into T(H)1 or T(H)2 cells. It is
worth noting that the RIP2 signaling pathway is required for
efficient elicitation of antigen-specific T and B cell immunity
and for instructing subsequently the onset of T(H)1 and
T(H)2, as well as T(H)17 immune pathways by regulating IL-
23, IL-12, interferon-c and IL-17 [13,18,70]. Conversely,
NOD1- and NOD2-deficient bone marrow–derived
macrophages and macrophages bearing loss-of-function of
NOD2 failed to synergize the expression of inflammatory
cytokines following concomitant stimulation by NOD1/2 and
TLR agonists [13,14,63]. The role of the inflammasome in the
development of autoimmune diseases and T(H)17 response to
pathogens and ‘‘danger’’ signals remains to be further
documented, because the IL-1 receptor is required to drive
the development of experimental autoimmune
encephalomyelitis and the production of IL-17 [71,72].
Triggering of a specific PRM induces a transient

phenomenon of tolerance and/or cross-tolerance toward a
second stimulation by the same agonist [73]. This
unresponsiveness window may be essential to protect the host
from sustained innate response. If a microorganism colonizes
a TLR-responsive niche, one can expect that the TLR
signaling might be exhausted. This TLR refractory state is
nevertheless specific for this niche and for a certain period of
time. In this context, subsequent signaling is likely to occur
for unrepressed NLR signaling pathways [74,75].
Alternatively, sequential engagement of distinct TLR
stimulates mainly the synergistic production of pro-
inflammatory mediators [73]. Therefore, systematic dissection
of the synergy and tolerance induced by TLR and/or NLR is
now warranted for rationale therapeutic intervention.
The heterotypic interactions between NLR have also been

proposed to regulate their function [76,77], as well as
interplay with additional proteins like Erbin for the NOD2
signaling pathway [78]. Effective NALP1- and NALP3-
dependent inflammasome activation requires both the
synthesis of pro-IL-1b and several incoming signals.
Activation of TLR signaling pathways has often been used as a
first signal that drives the expression of the IL-1b–encoding
gene [47–49,58,79–81]. Activation of caspase-1 and release of
mature IL-1b might then result from the cytosolic detection
by the inflammasome of a second signal (which are primarily
microbial compounds and self-danger signals). Alternatively,
the intracellular concentration of potassium and ATP/dATP,
which might be modulated by toxins and pathogens, control
inflammasome activation [80,82–84]. In this context, the
transmembrane receptor Pannexin-1 and the P2X(7) receptor
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participate in the activation of the inflammasome by
transferring bacterial components from outside to the cytosol
[80]. It is worth noting the increased viability of ‘‘permissive’’
macrophages to replication of L. pneumophila, which is in part
explained by a specific targeting of pro-death members of the
Bcl2 protein family [85]. Similarly to what occurs in the
nematode Caenorhabditis elegans, a complex interplay between
cell survival and caspase-1 activation has been recently
unraveled, as the mammalian anti-apoptotic proteins Bcl-2
and Bcl-Xl repress specifically the NALP1-mediated caspase-1
activation [35]. Implications for the pathophysiology of
human inflammatory diseases and the pathogenesis of
pathogens that activate caspase-1, like L. pneumophila, remain
to be investigated for the development of rational
prophylactic and anti-infectious therapies.

NLR in Antimicrobial Immunity

Antimicrobial peptides, such as defensins, play an active
role in fortifying the lining of the gut toward pathogens and
commensals by preserving epithelium integrity and stem cell
viability and by participating in the recruitment of
immunocytes. Defensins are cationic antimicrobial peptides
rich in cysteine residues that exert their activity by damaging
the bacterial cell wall [86]. Mammalian defensins can be
divided into two main subsets, the a and b defensins. In
humans, a defensins 1–4 are produced by neutrophils and are
stored in granules, whereas a defensins 5 and 6 (referred as
cryptdins in mice) are mostly secreted by Paneth cells in the
lumen of the small intestine. The human b defensins are more
widely expressed and are synthesized by most of the epithelia.
Proteases (e.g., trypsin and metalloproteinase-7) play an
essential role in the maturation process of defensins [87,88].
Alternatively, the expression of certain antimicrobial peptide-
encoding genes is down-regulated during shigellosis in
humans and salmonellosis in mice [89,90]. In this context, we
might speculate that specific combinations of PRM coordinate
a three-steps immune response by regulating expression,
degranulation, and maturation of antimicrobial peptides.

Recent evidences shed also lights on a nonredundant role
of NLR and TLR in the differential expression and
maturation of specific sets of antimicrobial peptides [91]. By
using cell lines, NOD1 and NOD2 agonists have been shown
to up-regulate the expression of the human b defensin-2
(hBD2)–encoding gene [91]. Likewise, inhibition of the NF-jB
pathway totally blocks NOD1- and NOD2-dependent
induction of hBD2 expression, whereas inhibition of p38 and
JNK signaling pathways only partially diminish hBD2
expression in a NOD1-dependent manner [22,92].
Consistently, MDP-induced hBD2 expression was down-
regulated after knocking down NOD2 or by transfecting
HEK293 cells with the Crohn disease–associated 3020insC
frameshift mutation [92]. In vivo, TLR5-deficient mice exhibit
impaired expression of mouse b defensin-3 (the homolog of
the hBD-2) by intestinal epithelial cells [93], whereas NOD1-
and NOD2-deficient mice showed a deficiency in mouse b
defensin-4 by gastric epithelial cells and in certain cryptdins
by Paneth cells, respectively [13,22]. Combining experiments
using mice and human models might shed light on the
potential effect of antimicrobial peptides in response to
specific infectious agents and in the control of physiological
inflammation.

Microbial Alteration of NLR Sensing and Signaling

Pathogens have also evolved strategies to circumvent their
intracellular sensing through NLR such as NOD1 by
preventing processing and optimal sensing of their PGN.
Indeed, a L. monocytogenes–derived deacetylase, namely PgdA,
is required to bypass the early innate immune response of
NOD1 by specifically adding N-acetylglucosamine residues to
the DAP-type PGN. pgdA mutants triggered sensitivity to the
bacteriolytic activity of lysozyme, leading to increased NOD1-
dependent interferon-b immune response and have impaired
virulence in vivo [94]. Similarly, the PGN hydrolase AmiA is
involved in the microbial pathogenesis of H. pylori by limiting
the sensing by NOD1 [95]. The implications of post-
translational changes of additional MAMP, including MDP, in
microbial pathogenesis remain to be systematically
investigated.
Commensal and symbiotic microorganisms may actively

interfere with NLR-mediated response by down-regulating
pro-inflammatory signaling and/or by modifying cell
differentiation/proliferation. Bacteroides thetaiotamicron
specifically stimulates the nucleus-cytosol shuttling of NF-jB
in a peroxisome proliferator–activated receptor-c–
dependent mechanism [96]. The bacterial molecules driving
this down-regulation might consequently affect NOD
signaling. In addition to commensal, pathogenic bacteria are
also able to interfere with NOD, as recently showed in Yersinia
species that block stimulation of NF-jB– and MAPK-
dependent gene expression through acetylation of MAPK
[97]. In other respects, S. flexneri produces a phosphatase that
is specific for nuclear MAPK, thus preventing histone H3
modification and NF-jB–dependent transcription of pro-
inflammatory genes [98]. Lastly, modification of
ubiquitination is also a candidate mechanism for invasive
microbes to subvert sensing through NLR and is now the
subject of investigation [99]. This conceptual view of
regulation of NLR signaling now warrants further
investigation to better understand the double-edged
challenge of the mucosa toward commensals and pathogens
in health and disease.

Impaired TLR and NLR Function Are Sufficient to
Drive Human Immunopathologies

Microbial sensing deficiency in fruit fly and mice confers
an increased susceptibility to several infectious agents and
leads to the development of autoimmune disease. In humans,
defective NF-jB– and TLR-dependent immunity have been
associated with restricted inherited infectious diseases, in
that hypomorphic or null germline mutations of TLR5,
IRAK4, NEMO, and UNC-93B are sufficient for the
development of Legionnaires disease [100], recurrent
pneumococcal disease [101], mycobacterial disease [102], and
herpes simplex virus encephalitis [103], respectively.
Similarly, common infection might result primarily from
mutations in a major susceptibility gene, as impaired TLR2/
Mal signaling is conferring protection against invasive
pneumococcal disease, bacteremia, malaria, and tuberculosis
in the United Kingdom, Vietnam, and several African
countries through an increased frequency of the Ser allele at
the Mal S180L variant [104]. Hence, these observations have
challenged dogmas in the genetics of human infectious
diseases, and they might suggest that both rare and common
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infectious diseases may result from defect in a major
biological pathway.

Like infectious diseases, complex inflammatory traits result
from the inheritance of major susceptibility alleles and the
exposure to several environmental factors. No specific
infectious agents have been identified so far, but note that
gain-of-function mutations in NALP3 [105] and NOD2 [106]
cause Mendelian inflammatory diseases, such as
autoinflammatory disorders (Muckle-Wells syndrome,
familial cold autoinflammatory syndrome, and chronic
infantile neurologic cutaneous and articular syndrome) and
Blau syndrome, respectively. Furthermore, predisposition to
common inflammatory disorders has been inextricably linked
to major susceptibility genes, as loss-of-function mutations in
TLR5 and NOD2 are protecting and predisposing,
respectively, to the development of systemic lupus
erythematosus [107] and inflammatory bowel diseases
[108,109]. Similarly, NEMO deficiency in enterocytes leads to
the spontaneous development of colitis in mice by
compromising tissue repair, epithelium integrity and
promoting bacterial translocation [110]. A missense mutation
(L155H) and noncoding polymorphism of the NALP1-
encoding gene are predisposing to the development of
vitiligo-associated multiple autoimmune disease [111],
implicating innate immunity in the pathogenesis of
autoimmunity. However, the constitutive and bacterial-
induced level of caspase-1 activation remains elusive in cells
bearing the NALP1 L155H mutation. Lastly, mutations in the
gene encoding for NALP7 cause familial and recurrent
hydatidiform moles [112–114], which are tumors that forms
in the uterus as a mass of cysts resembling a bunch of grapes.
Unlike NALP1-3, IPAF, and NAIP5, NALP7 is a negative
regulator of IL-1b signaling [115] that promotes
tumorigenesis [116]. Further work should now determine the
following: (a) how the NALP7 signaling pathway might be
activated, (b) whether NALP7 might interfere with additional
PRM, and (c) whether NALP7 might regulate innate and
adaptive immunity.

Concluding Remarks

Whereas most studies have focused on the characterization
of individual PRM, the physiological situation is more
complex, because host cells have to integrate multiple
incoming signals from damaged cells and pathogenic and
symbiotic microbes into vital immunological information. In
this context, organ-specific onset of innate and adaptive
immunity is regulated differentially by multiple cross-talks
between a limited set of functional PRM signaling
pathways. &
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