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Abstract

The ability to incorporate detailed geometry into finite element models has allowed researchers to investigate the influence
of morphology on performance aspects of skeletal components. This advance has also allowed researchers to explore the
effect of different material models, ranging from simple (e.g., isotropic) to complex (e.g., orthotropic), on the response of
bone. However, bone’s complicated geometry makes it difficult to incorporate complex material models into finite element
models of bone. This difficulty is due to variation in the spatial orientation of material properties throughout bone. Our
analysis addresses this problem by taking full advantage of a finite element program’s ability to solve thermal-structural
problems. Using a linear relationship between temperature and modulus, we seeded specific nodes of the finite element
model with temperatures. We then used thermal diffusion to propagate the modulus throughout the finite element model.
Finally, we solved for the mechanical response of the finite element model to the applied loads and constraints. We found
that using the thermal diffusion analogy to control the modulus of bone throughout its structure provides a simple and
effective method of spatially varying modulus. Results compare favorably against both experimental data and results from
an FE model that incorporated a complex (orthotropic) material model. This method presented will allow researchers the
ability to easily incorporate more material property data into their finite element models in an effort to improve the model’s
accuracy.
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Introduction

Technological advances in medical imaging and software have

facilitated the construction of geometrically complicated three

dimensional representations of organic structures that are used in

applications ranging from prototyping to computer-based analysis.

In particular, these technological advances have allowed for more

detailed studies of the skeletal system and its components using

finite element (FE) models [1–28]. FE analysis (FEA) is a standard

technique used by engineers to model the response of structures to

applied boundary conditions (i.e. constraints and loads). For

structural FEA, the material properties of the substances that

comprise the structure are inputs for the model. By applying

different material models (e.g., isotropic vs. orthotropic) to the

same finite element model, investigators can study the effect of

those material models on the response of geometrically compli-

cated structures.

Previous methods for incorporating non-homogeneous moduli

into FE models of biological structures have been developed

[23,29]. However, the collection of material property data and the

precise application of those data to FE models of biological

structures can be a time consuming and difficult process. To our

knowledge, methods of easily including and controlling spatially

variable material properties based on values measured from

experiments in an FE model of a biological structure has not yet

been presented.

Bone, for example, is often tested at discrete locations and has

been modeled as a material ranging from isotropic to anisotropic

depending on the length scale of observation [30–33]. As is always

the case in modeling, it is desirable to employ simplifying

assumptions regarding model inputs that allow efficient model

construction while simultaneously ensuring adequate model

accuracy. Therefore, detailed material data may not always be

appropriate, or even available, for studies that use FE models.

However, some research questions require high fidelity FE models

that may be improved by incorporating detailed material data.

Strait et al. [23] investigated the effect of material models on the

performance of an FE model of a macaque cranium (Macaca

fasicularis). They quantified performance by comparing three strain

measures collected in vivo (maximum shear strain, principal strain

ratio, and maximum principal strain orientations) to those

predicted by the FE model at eight locations on the skull. The

analysis compared the performance of the FE model in four

analyses in which assumptions about bone material properties

ranged from coarse (a single set of isotropic material properties

derived from human limb bones applied to the entire cranium) to
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precise (i.e., regionally varying orthotropic properties derived from

an analysis of several macaque crania [34]). The results indicated

that using an orthotropic material model whose properties were

derived from and varied across the macaque cranium returned

strain data that most closely approximated experimental data.

While this study demonstrated the importance of using orthotropic

material models to achieve results that most closely match

experimental data, it came at the cost of painstaking and time

consuming subdivision of the model into distinct material regions

and creation of over thirty local coordinate systems representing

the principal directions of the orthotropic material properties at

various locations on the skull.

In an effort to minimize the time consuming process of applying

orthotropic material models to FE models, Helgason et al. [29]

presented a novel method of applying spatially-varying (i.e., non-

homogeneous) elastic modulus throughout an FE model by

exploiting the coupled thermal-structural analysis feature typically

found in commercial FEA tools. Helgason et al. [29] created a

voxel-based finite element model of a femur from computed

tomography (CT) data. A Young’s modulus value for each node of

the voxel-derived FE mesh was computed using a nonlinear

relationship between Young’s modulus and bone ash density.

Young’s modulus values were obtained via a calibrated linear

relationship with bone ash density from the CT scan. Finally,

nodal temperature values were used as a surrogate for Young’s

modulus by assigning an arbitrary linear relationship between

temperature and Young’s modulus. The net result was tempera-

ture values for all nodes and a temperature-dependent Young’s

modulus material behavior model. The FE code then solved the

structural problem. This method allows for precise control of

material properties throughout an FE model and has the potential

to significantly simplify the process of assigning complex material

properties to bones. However, the approach requires a voxel-based

finite element mesh and relies on the relatively low correlation of

cortical bone density to Young’s modulus; r2 values range from a

low of 0.24 [35] to a high of 0.69 [36].

In this paper we extend the method proposed by Helgason et al.

[29] to any finite element mesh for which material property values

are known only at specific locations. We take full advantage of the

coupled thermal-structural functionality in commercial codes by

modeling the distribution of Young’s modulus as a thermal

diffusion phenomenon. Specifically, we apply temperature values

(which are linearly correlated to experimentally-measured values

of Young’s modulus) at seed nodes, define isotropic thermal

material behavior, and solve the steady-state heat conduction

problem. Once the finite element temperature solution is obtained,

the coupled thermal-structural analysis as described above is

executed. This method differs from Helgason et al. [29], who fully

specified Young’s modulus at every node according to CT scan

data and therefore did not need to solve a thermal FE model to

obtain the temperature distribution used to functionally grade

Young’s modulus. Our extension of Helgason et al.’s [29]

technique provides a modulus distribution throughout the model

based on heat flow paths through the material.

The goal of this study is to determine whether modeling bone

using our thermal-structural approach can either improve or equal

the predictions of maximum shear strain derived from a model in

which different orthotropic material properties are defined for

different regions: Regionally Orthotropic FE model. We do this by

applying our thermal analogy method to the macaque finite

element model of Strait et al. [23] under identical loading and

boundary conditions. We implement 3 FE models that differ only

in the material properties applied to each model. The Uniform

Isotropic (UI) finite element model uses the same isotropic material

properties through-out each anatomical region of the skull

distinguishing only cortical from trabecular bone. The Regionally

Isotropic (RI) finite element model also uses isotropic material

properties in each anatomical region of the skull, however, the

modulus and Poisson’s ratio varied discretely between anatomical

regions. Finally, the Thermally Graded (TG) finite element model

allows modulus vary smoothly according to seed values and

propagate though the FE model using heat paths. For this analysis

we focus on maximum shear strain; complete experimental data

are not available for principal strain ratios and principal strain

orientation comparisons are highly qualitative [23]. Included with

our results of maximum shear strain are the results obtained using

the Regionally Orthotropic FE model by Strait et al. [23]. If our

temperature dependent modulus method performs well, it will

significantly reduce the time it takes to define and apply complex

material properties to FE models.

Results

Shear strain from eight nodes that matched those used in Strait

et al. in 2005 were identified on each of three finite element

models: Uniform Isotropic, Regional Isotropic and Thermally

Graded. Each material model is discussed further in the materials

and methods section. We compared the strain results with

experimental data collected from the literature and the FE results

from the regionally orthotropic FE model used in Strait et al. in

2005. With one exception, predicted shear strain from all of the

material models fell within the range of the experimental data.

The exception was location number 2 (the superior rim of the orbit

on the working side) in the regional orthotropic material model,

where shear strain fell just outside of the range of the experimental

data (Fig. 1). The results from the Uniform Isotropic and Regional

Isotropic analyses are in basic agreement with those of Strait et al.

[23], considering the slight over-estimation of shear modulus.

Discussion

As noted by Strait et al. in 2005, the need for accurate and

detailed material properties within a model is largely based on

what research questions are being asked. In this and the 2005

study, the criterion for model performance was whether the model

predicted strain that fell in the range of in-vivo data collected from

several individuals, which spanned over 1000 microstrain. Given

this wide range of variation, all material models we examined

performed equally well. Note, however, that all of the models used

material properties derived directly from macaque crania. The

authors also examined the FE model using material properties

derived from a different species and skeletal part (i.e. human limb

bone), and in that case found a weaker correspondence between

FE and in vivo data. Given that relatively few FE analyses of

vertebrate skeletal structures employ material properties derived

directly from the species and/or skeletal part of interest, the

cautions outlined by Strait et al. [23] remain salient. In reference to

the present study, a more fine scaled determination of whether one

material model is superior to the others will require more tightly

controlled experimental data. Ideally, one would compare the

performance of different material models using a complete set of

data on regional material properties, experimentally measured

strains, and strains from an FE model derived from a single

individual.

In the absence of complete studies of single individuals,

modeling bone as a functionally graded isotropic material is

relatively easy and can be implemented in many commercial FE

packages. In fact, most commercial FEA programs provide

automated techniques for coupling the results of a thermal

Thermally Controlled Modulus
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analysis to the subsequent structural analysis problem in which

mechanical properties of the structure are temperature dependent.

The method has the advantage that it does not require a voxel-

based finite element model or rely on indirect measurements of

Young’s modulus. Instead, it applies a functionally graded material

model based on known material values data collected from specific

locations. Ideally, these data are gathered via direct physical tests,

such as micro indentation or ultrasonic testing [37–38]. Another

advantage of this method compared to an approach in which

material properties are partitioned according to region (as in Strait

et al. [22–25]) is that it avoids sudden, unrealistic transitions in

those properties across the boundaries between parts (Fig. 2).

These transitions create artifacts in the strain field that would not

be observed using the thermal diffusion approach described here.

An assumption behind the thermally graded material model we

propose is that the non-homogeneous distribution of material

stiffness in a bone can be approximated by the solution of a heat

conduction problem using the temperature field as a surrogate for

Young’s modulus. Although bone has been shown to have spatially

variable modulus on macroscopic [32,38] and microscopic scales

[37], we are not claiming diffusion is the mechanism by which

stiffness is propagated through bone, nor is it necessarily the

appropriate descriptive model. We are simply using diffusion to

spatially interpolate intermediate values between known values of

measured modulus. We suggest that it is reasonable hypothesis to

let the value of Young’s modulus propagate throughout a

specimen from values at specific points according to the physics

of basic diffusion mechanics. Steady state heat conduction is

governed by Laplace’s equation, an equation encountered in mass

transfer theory, fluid mechanics, elasticity, electrostatics and

virtually all diffusion and potential field problems. Therefore it

seems reasonable to apply here.

An inherent limitation to the proposed technique is the

inability to functionally grade orthotropic material property

values. While it might be possible to control spatially each of the

nine independent orthotropic material constants using nine

independent thermal analyses, the orientations of principal

material axis must also be controlled spatially. Fundamentally,

temperature is a scalar field (i.e. a zeroth order tensor), has no

directional information and therefore fails to provide an analogy

for functionally grading a 2nd order tensor field (i.e. orthotropic

material model) which requires specification of both values and

directions throughout the domain. It should be noted that the

Hounsfield’s unit is also a scalar field in CT bone scans and

therefore also lacks sufficient information for specifying non-

homogeneous orthotropic material properties.

Temperature and static solution tools associated with the FE

method can facilitate the incorporation of more experimental data

Figure 1. Experimental and FE model maximum shear strains. Maximum shear strains collected from each of the analyses are plotted against
grand mean of experimental data. Also included in this figure are the shear strain results from the orthotropic material property FE model (Regional
Orthotropic) used in the 2005 study of same model [23]. All other data are derived from this study. Working and balancing side data are labeled with
(W) and (B), respectively. Descriptions for each location shown on the macaque skull (upper right) are as follows: 1) dorsal interorbital; 2) working side
dorsal orbital; 3) balancing side dorsal orbital; 4) working side infraorbital; 5) balancing side infraorbital; 6) working side zygomatic arch; 7) balancing
side zygomatic arch; 8) working side postorbital bar.
doi:10.1371/journal.pone.0017004.g001
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into the FE models (i.e., local measurements of modulus from

micro- or nano-indentation) and perhaps improve a model’s

performance. The thermal method we outline here provides a

quick and reasonable means for modeling the spatial variation of

isotropic material properties within geometrically complicated

structures, such as bone. This type of material is called a

functionally graded material. Based on available in-vivo data

derived from several macaque crania (none of which represents the

cranium that is the subject of the FE model), the method produces

maximum shear strains that are not discernibly any less realistic

than those produced by a regional orthotropic model, but at a

significantly reduced cost in terms of time and effort. Because the

thermally graded properties are isotropic whereas the true

properties of craniofacial bone are orthotropic, the method

developed here is not necessarily more precise than regional

orthotropy (in particular, the shear modulus of craniofacial bone is

being overestimated). However, the discrepancy in strain results

produced by these models is sufficiently small that the benefit

gained in terms of ease of modeling makes the thermally graded

approach preferable with respect to many research questions.

Materials and Methods

Details of FE model construction, loading and constraints are

discussed in Strait et al. [23]. Briefly, the macaque skull FE model

was constructed from over 300,000 polyhedron elements. The FE

model was divided into 53 different sections to which 17 material

properties were assigned independently. Masticatory muscle forces

were estimated using muscle stress, physiological cross sectional

areas and electromyography data collected from the literature.

Muscle forces were applied to the skull and oriented to mimic

static unilateral biting with the left upper first molar tooth. The FE

model was constrained from rigid body motion at the temporo-

mandibular joints and the left first molar.

We performed analyses using three material models ranging

from simple to complex, applied to the same FE model: a Uniform

Isotropic material model, a Regional Isotropic material model,

and a Thermally Graded material model. In the UI model we

modeled both cortical and trabecular bone as homogeneous

isotropic materials (cortical: Young’s Modulus (E) = 17.3 GPa,

Poisson’s Ratio (n) = 0.28; trabecular: E = 0.64 GPa, n= 0.28)

[23]. In the RI model, we applied varying isotropic material

properties to each of the 53 sections of the cranium corresponding

to regions listed in Table 1. Homologous regions on the right and

left sides of the cranium were assigned the same properties, and

several neurocranial and basicranial regions were assigned the

properties used in the UI analysis. Some of the regions have

multiple parts, but all were assigned the same material property.

For example, trabecular bone was modeled with the same uniform

isotropic material everywhere it occurred.

Figure 2. Steady state temperature distribution. Steady state temperature distribution throughout the skull is determined by heat conduction
based on temperatures at seed points (red squares) on the skull. High temperatures in regions of the skull indicate high moduli according to the
linear relationship shown in Figure 3.
doi:10.1371/journal.pone.0017004.g002
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Note that the isotropic material properties employed here are

not precisely the same as the properties employed by Strait et al.

[23]. The authors erred in that the properties they employed were

not truly isotropic. Rather, they used published values of Young’s

modulus, Poisson’s ratio and shear modulus, but because bone is

not an isotropic material, the values of these variables do not

satisfy the conditions of isotropy. Nevertheless, the values used by

the authors in 2005 are more precise than isotropic values, because

isotropic values derived from Young’s modulus and Poisson’s ratio

systematically overestimate the shear modulus of bone. Thus, the

UI and RI analyses presented here are performed on models with

a higher shear modulus than those in the corresponding analyses

of Strait et al. published in 2005. Ultimately, however, the material

properties used here did not result in maximum shear strains that

differed meaningfully from those obtained by Strait et al. [23].

To implement the TG material model, we used the thermal

analogy to functionally grade Young’s modulus throughout the

skull based on known values at specific points. This method was

executed in several steps. The first step established a relationship

between temperature and the moduli for all of the cortical bone

used in the model (Table 1). We assigned the mid-range modulus

of 17.3 GPa to a temperature of 50 degrees centigrade and

determined the linear scaling factor to account for all the moduli

used in the model (Fig. 2). We then assigned a temperature to a

surface node at the approximate center of each of the 53 sections

of the skull (Fig. 2) according to the moduli listed in Table 1 and

the modulus versus temperature relationship shown in Figure 3.

In order to obtain the steady-state temperature distribution

throughout the structure due to temperature values applied at

specific points, thermal conductivities (k) were assigned to the

materials used to model the structure. Thermal conductivity,

measured in Watts per meter-Kelvin, is a measure of a material’s

ability to conduct heat through the material. Metals for example,

have a relatively high thermal conductivity, between 10 and

400 W/(m-K) [39]. Bone tends to have lower thermal conductiv-

ity, between 0.2 and 0.5 W/(m-K) [40–42]. In this study the

thermal material properties are simply a means by which modulus

is propagated through the model via a finite element solution to

the heat conduction equation. The steady-state temperature

distribution within the structure, assuming constant thermal

boundary conditions, is not affected by changes in the thermal

conductivity value. Therefore, each material in the FE model was

arbitrarily assigned a thermal conductivity of 1.0 W/(m-K). If one

is interested in thermally induced strains as well as mechanical

strains, a coefficient of thermal expansion (a), measured in strain

per Kelvin, must be non-zero. However, we were only interested

in mechanical strain, so assigned the coefficient of thermal

expansion a value of zero.

We solved the steady state temperature problem using Strand7

finite element software (Strand7 Version 2.4, Sydney, Australia),

by allowing temperature to propagate through the skull based on

the temperatures we assigned to seed nodes (Fig. 2). Note that

because temperature is the primary nodal variable solved for in a

finite element thermal analysis, the resulting temperature field has

C0continuity across all inter-element boundaries and will vary

within each element based on each element’s interpolating

polynomials (i.e., shape functions). A function with C0 continuity

is continuous. A function that has Ckcontinuity, where k is a

positive integer, is continuous, as are all its derivatives up to and

including its kth derivative. For example, for a four-noded

tetrahedral element the temperature field within an element is

interpolated using linear polynomials in terms of coordinates x, y,

and z from nodal values.

In the next step of the analysis, we imported the temperature

solution back onto the solid model, thereby assigning temperatures

(and modulus) to all of the nodes within the model. We then solved

the structural temperature-dependent-modulus problem. The

solution process employed by the solver required the computation

of each element’s stiffness matrix. The stiffness matrix for an

element is related to both the shape and size of the element, as well

Table 1. Regional isotropic material properties from Strait
et al. [23].

Region
Young’s
Modulus Poisson’s Ratio

GPa

Trabecular Bone 0.64 0.28

Posterior Zygomatic Arch 12.5 0.28

Frontal Torus 13.1 0.25

Glabella 14.4 0.27

Medial Orbital Wall 14.6 0.36

Frontal Squama 14.9 0.31

Anterior Palate 15.3 0.34

P3–M1 Alveolus 16.7 0.25

Neuro- and Basi- crania 17.3 0.28

Root of Zygoma 17.9 0.34

Lateral Rostrum 18.1 0.25

Premaxilla 18.5 0.21

Posterior Palate 18.8 0.32

Postorbital bar 19.8 0.27

Dorsal Rostrum 19.9 0.22

M2–M3 Alveolus 20.6 0.27

Anterior Zygomatic Arch 20.8 0.26

Each FE model was divided into 17 different regions for which separate material
properties could be assigned. Regions and corresponding material properties
are listed here.
doi:10.1371/journal.pone.0017004.t001

Figure 3. Modulus factor vs. temperature. This figure illustrates
the linear relationship between modulus and temperature used in the
Thermally Graded material model we developed in this study.
doi:10.1371/journal.pone.0017004.g003
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as to its material stiffness. The element’s non-uniform temperature

field enables the elastic modulus within each element to vary

continuously according to its prescribed temperature dependency.

Finite element programs that support temperature-dependent

elastic modulus and a corresponding initial temperature field take

this into account when computing each element’s stiffness matrix.
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