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Lohmann Brown (LB) and Lohmann Selected Leghorn (LSL) are two commercially
important laying hen strains due to their high egg production and excellent commercial
suitability. The present study integrated multiple data sets along the genotype-phenotype
map to better understand how the genetic background of the two strains influences their
molecular pathways. In total, 71 individuals were analyzed (LB, n = 36; LSL, n = 35). Data
sets include gut miRNA and mRNA transcriptome data, microbiota composition, immune
cells, inositol phosphate metabolites, minerals, and hormones from different organs of the
two hen strains. All complex data sets were pre-processed, normalized, and compatible
with the mixOmics platform. The most discriminant features between two laying strains
included 20 miRNAs, 20 mRNAs, 16 immune cells, 10 microbes, 11 phenotypic traits, and
16 metabolites. The expression of specific miRNAs and the abundance of immune cell
types were related to the enrichment of immune pathways in the LSL strain. In contrast,
more microbial taxa specific to the LB strain were identified, and the abundance of certain
microbes strongly correlated with host gut transcripts enriched in immunological and
metabolic pathways. Our findings indicate that both strains employ distinct inherent
strategies to acquire and maintain their immune and metabolic systems under high-
performance conditions. In addition, the study provides a new perspective on a view of the
functional biodiversity that emerges during strain selection and contributes to the
understanding of the role of host–gut interaction, including immune phenotype,
microbiota, gut transcriptome, and metabolome.
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INTRODUCTION

The two commercially important laying hen strains, Lohmann Brown (LB) and Lohmann Selected
Leghorn (LSL), are selected for high egg production (Singh et al., 2009; Habig et al., 2012; Reyer et al.,
2021). Although LB and LSL are nearly identical in egg production performance, these strains differ
considerably in other phenotypic traits including body weight, gene expression, immunological
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traits, bone metabolism, and gastrointestinal phytate degradation
(Kaufmann et al., 2011; Silversides et al., 2012; Sommerfeld et al.,
2020; Ponsuksili et al., 2021).

Previously, comparative transcriptomics from brain tissue
revealed that while transcripts’ upregulation contributed to
immune system processes in LSL, the downregulation was
involved in phosphorus (P) metabolism and signaling
pathways (Habig et al., 2012). Following dietary interventions
with reduced P and calcium (Ca) intake, the intestinal
transcriptional profile of the two strains showed strain-specific
alterations, for example, in the cell proliferation rate and
extracellular matrix formation, which might also be due to
different mineral and vitamin D requirements of LB and LSL
(Reyer et al., 2021). Similarly, the miRNAs expression profiles
from the jejunum of LB and LSL hens fed with different amounts
of Ca and P indicate that miRNA targets contributed to metabolic
pathways in LB; miRNA targets were involved in Ca signaling
pathways and mitochondrial dysfunction in LSL (Iqbal et al.,
2021). In addition, the deep-sequenced miRNAs of the jejunum
of LB and LSL at different production periods demonstrated that
miRNAs play a pivotal role in regulating gene expression and
impacting intestinal homeostasis differently in both strains
(Ponsuksili et al., 2021).

Several studies have suggested that the host’s genetic
background is a factor that might influence gut microbiota
composition (Org et al., 2015; Schokker et al., 2015; Han et al.,
2016; Kers et al., 2018). The host intestinal epithelia and gut
microbiota ecosystem are complex and consist of diverse
molecular activities, including immune and metabolic
functions (Simon et al., 2016; Broom and Kogut, 2018;
Borda-Molina et al., 2021). Recent studies demonstrated a
shift in the microbiota during the laying hens’ lifespan or
change in metabolite profiles between the LB and LSL strains
(Gonzalez-Uarquin et al., 2021; Joat et al., 2021). Concerns
about the environment, nutrient supply, and farm profit
contribute to the increasing attention to the Ca and mineral
P supplements in animal feed (Delezie et al., 2015). Numerous
studies indicated that adding additional P and Ca to the feed of
broiler chickens significantly reduced endogenous Inositol
hexakisphosphate (InsP6) degradation (Tamim et al., 2004;
Shastak et al., 2014; Zeller et al., 2015). Compared with
broilers, laying hens need less P in their diet, but they
require substantially more Ca because of eggshell formation
(Ahmadi and Rodehutscord, 2012). Consequently, the
processes of InsP6 degradation, myo-inositol (MI) release,
and P/Ca utilization might be more distinct in laying hens
than in broilers (Sommerfeld et al., 2020; Sommerfeld et al.,
2020). Sommerfeld et al. (2020) described the effects of dietary
Ca and P on intestinal phytate degradation and mineral
utilization during the laying phase in LB and LSL and also
elaborated that measured traits depend on the hen strain. It
was concluded that to meet their respective mineral demands,
LB and LSL use different mechanisms, including transcellular
transport in LB and more effective phytate degradation in LSL.
In addition, results indicated that the variation in Ca and P
concentration in feed affects the body weight of the LB strain,
while no effect was observed in the LSL strain.

Since poultry production intensifies and antibiotics are under
pressure to be used less frequently, maintaining and improving
poultry health by promoting animal-intrinsic mechanisms
become more relevant (Swaggerty et al., 2019). Here, factors
such as nutrition and genetics play a critical role in modulating
immunity in commercial poultry production (Koenen et al., 2002;
Kidd, 2004; Kjærup et al., 2017; Nie et al., 2018; Hofmann et al.,
2021). Interestingly, laying hens fed higher nonphytate-P levels
were found to have higher interferon (IFN) levels in the blood,
suggesting an improved immune system (Nie et al., 2018).

Using advancements in high-throughput approaches and the
availability of multiple omics data generated from similar and
different experiments, data integration provides the material for a
more comprehensive biological interpretation at multiple levels,
which can support the unfolding of the complex biological
processes scientifically and holistically (Subramanian et al.,
2020). An earlier study identified a highly correlated multi-
omics signature including host mRNA, miRNA, and microbial
data for identifying the molecular drivers for P utilization (PU) in
Japanese quail (Ponsuksili et al., 2020) using the multi-block
discriminant analysis with DIABLO (Data Integration Analysis
for Biomarker discovery using a Latent cOmponents) embedded
in the R package “mixOmics” (Rohart et al., 2017; Singh et al.,
2019).

In our preliminary work, individual datasets covering
physiological data, hormones, metabolites, immune
traits, host transcriptome, or microbiome were retrieved
from the same animals of the LB and LSL strains in
separate work packages of the DFG (Deutsche
Forschungsgemeinschaft) Research Unit “P-Fowl” in the
context of divergent dietary Ca and P supply (Sommerfeld
et al., 2020; Hofmann et al., 2021; Iqbal et al., 2021; Reyer et al.,
2021). Individual analysis of each dataset for the two laying hen
strains in the various studies revealed specific differences at
each level and lacked an integrated multi-omics view of these
specific physiological changes. The integration of multi-omics
provides a new perspective on the functional biodiversity
that arises during strain selection and contributes to our
understanding of the role of host–gut interactions. In the
present study, we integrate these datasets in a
holistic biological analysis to characterize the functional
biodiversity of the two strains that contribute to attaining
comparable performance via different molecular
mechanisms. Finally, strain-specific bio-signatures are being
uncovered to deepen our understanding of the relationships
between underlying immunology, genetics, metabolism,
developmental processes, and gut microbial community
composition.

MATERIALS AND METHODS

Experimental Design and Sample Selection
We used previously published datasets (Sommerfeld et al., 2020;
Hofmann et al., 2021; Iqbal et al., 2021; Reyer et al., 2021). In
brief, hatchlings of brown (LB) and white (LSL) layer strains,
representing two distinct genetic backgrounds, were obtained
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from a breeding company (Lohmann Tierzucht GmbH,
Cuxhaven, Germany). LB and LSL were selected for their egg
production performance while being monitored for bone quality,
egg quality, and behavior (Preisinger, 2018). During rearing, the
standard management conditions for the pullet phase of the
experiment station of the University of Hohenheim were
applied (Sommerfeld et al., 2020). All hens received identical
corn-soybean meal-based diets meeting or exceeding the supply
recommendations of the breeding company for the starter,
grower, pre-laying, and layer phases. From week 27 to 31,
forty individuals per strain received experimental diets with
reduced Ca, P, or a combination thereof, as previously
described by Sommerfeld et al. (2020). In week 31, the blood
and intestinal contents were sampled. Trunk blood or vein blood
was collected depending on the targets of analysis (immune
features, metabolites, P, Ca, MI, or hormones). Tissue samples
for transcriptome analysis were collected from jejunum mucosa,
while digesta and mucosa from the duodenum were collected for
the microbiota investigations. Since the study design was
balanced between LB and LSL in terms of diet and the effects
of strain clearly outweighed the dietary alterations [as reported
earlier (Sommerfeld et al., 2020; Iqbal et al., 2021; Reyer et al.,
2021)], the dietary groups were combined in the present study for
the downstream analysis. Specifically, residuals were calculated
for each parameter after adjusting for diet and father effects and
used for further downstream analysis.

Data Pre-Processing
The miRNA and mRNA expression profiles were gathered from
the jejunum. The read count matrices of miRNA and mRNA
from the same birds were obtained from our previous studies
under accession numbers (E-MTAB-9136) and (E-MTAB-9109),
respectively (Iqbal et al., 2021; Reyer et al., 2021). The samples
with lower counts, that is, outliers deviating from the mean by
more than two SD, were excluded. Finally, the total number of
samples analyzed in this study was n = 71, whereas n = 36 for LB
and n = 35 for LSL. Microbiota data were represented as amplicon
sequence variants (ASVs) that were deduced from 16S rRNA
sequencing from the duodenal mucosa and the duodenal digesta
of LB and LSL. Initially, ASVs were assigned to taxa at the genus
level and were filtered so that only taxa with more than one
observation in at least half of the samples were considered.
Subsequently, miRNA and mRNA read count matrices and
microbiota ASVs count matrices were transformed by
variance-stabilizing transformation (VST) using the DESeq2 R
package (Love et al., 2014).

Previously collected data from the same birds include
immunological traits such as the counts of many types of
T cells, B cells, heterophils, thrombocytes, and monocytes
from blood, the spleen, and pharyngeal tonsils. Data on
metabolites are from blood and digesta, including InsP3-6
isomers, P, Ca, MI, and hormones, and other phenotypic traits
include Ca and P intake, Ca and P utilization, Ca and P excretion,
feed intake, and body weight (Sommerfeld et al., 2020; Hofmann
et al., 2021).

After pre-processing by transformation or normalization of
each data type, data were adjusted for systemic effects using

JMP Genomics (SAS Institute, Cary, NC, United States)
mixed analyses of variance. Diet was used as a fixed effect
and hen father as a random effect. The residuals after
adjustment for diet and father were further used for the
integration analysis.

Data Integration
To integrate the data, we used the R package mixOmics
(version.6.10.9) (Rohart et al., 2017). All preprocessed input
data matrices were subjected to mixOmics for further filtering,
removing predictors with zero or near-zero variance. We
integrated six data blocks: mRNA (13,455 features), miRNA
(185 features), immune system (54 features), metabolome (29
features), microbiome (111 features), and phenotypic features (11
features).

Data integration, classification, feature selection, and
visualization were carried out by Data Integration Analysis
and Biomarker discovery using Latent variable approaches
for Omics studies (DIABLO) (Singh et al., 2019). The
DIABLO multi-omic approach instantly predicts significant
biomarkers, including mRNAs, metabolites, proteins, and
miRNA. DIABLO is the first multivariate integrative
classification method to identify correlated or co-expressed
features from heterogeneous data sets. We used the
N-integration supervised Sparse Partial Least Square
Discriminant Analysis (SPLS-DA) approach for feature
selection (Lê Cao et al., 2011; Gley et al., 2021). The block.
splsda() function was used to identify signatures composed of
highly correlated variables across the multiple matrix sets,
enabling us to detect a confident relationship between the
data sets (Singh et al., 2019).

To evaluate the number of parameters and global
performance, to select the appropriate metric distance, and to
determine the number of components for our block. splsda
analysis, we used DIABLO’s pref () function. The parameters
set for the pref () function were Mfold validation (n = 5) and
cross-validation (nrepeat = 10). For all supervised N-integration
models, the tuning function was crucial for selecting the optimal
components and features. We ran the tuning function tune.
block.splsda () to predict the optimal number of features that
were finally used for our block. splsda analysis. The best
performance was obtained with the optimal component
selection based on the balanced error rate (BER). The
parameters used for the tune. block.splsda () function were
M-fold validation (n = 5) and cross-validation (nrepeat = 10).
In addition, the parameter distance metric for splsda to estimate
the classification error rate (dist = max dist) and two
misclassification measures, the total error rate and balanced
error rate (BER) were used.

Subsequently, visualization of the block. splsda results was
accomplished by various plotting functions in a mixomics
environment. The discriminant analysis results were
visualized by the PlotArrow() and plotindiv() functions. The
PlotArrow() function plotted an arrow plot, which indicates
the components’ scores from multiple datasets. It generates
arrows between the scores associated with two or more groups,
in our case, the two groups LB and LSL. In contrast, the
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plotindiv() function generates the individual plot, which
depicts different data blocks, where each block sample
shows differentiation between two or more groups. The
components of the block. splsda results were visualized by
the plotLoadings() function. The plotLoadings() function
plotted loading plots that represent the loading weights of
each feature selected on each dataset block. At the same time,
the size bar indicates the significance of the selected feature
between two or more groups. In addition, the bar’s color is
associated with the group in which the selected features are
most prevalent. A Circos correlation plot was generated by the
circosplot() function; the plot demonstrates the significant
signature from multiple datasets and their correlation
coefficient. LB could be distinguished from LSL laying hens
via two components of biomarkers from the heterogeneous
data sets.

Correlation Analysis of Bio-Signature
Features and Gut mRNA Transcripts
The miRNAs selected using the above approaches (DIABLO)
were used for the prediction of target mRNAs and the study of
negative correlation. Therefore, variance-stabilized counts were
used. A heatmap of bio-signature miRNAs selected from
mixomics was generated using gplots (version 3.1.1) R
package function heatmap.2() (Warnes et al., 2016). The
scatter plot of differentially expressed mRNAs was visualized
by plot() within the R programming environment (https://www.
R-project.org/).

The miRNAs and their potential mRNA targets obtained
from the recent chicken genome assembly (GRC6a) were
predicted using RNAhybrid version 2.1.2 by setting the
parameter binding energy with a cut-off of 25 k, the helix
constraint in a range from 2 to 7, and one hit per target
(Rehmsmeier et al., 2004). MiRNAs and their downstream
mRNA targets were selected based on their minimum free
energy and p-value, as previously described (Iqbal et al.,
2021). The Pearson correlation was calculated between bio-
signature miRNAs and differentially expressed (DE) mRNAs at
FDR ≤ 5%. In addition, mRNAs inversely correlated with
miRNAs were included for further downstream analysis.
Moreover, strain-specific correlation analyses were performed
between jejunal mRNA profiles and bio-signature revealed for
data sets of immune cells, microbes, blood/digesta parameters
(metabolites, P, Ca, MI, and hormones), and phenotypic traits.
Pearson correlation was calculated between the complete set of
mRNAs with datasets mentioned above within LB and LSL. The
correlation was considered significant at FDR ≤ 5%.

Gene Ontology and KEGG Pathway
Enrichment Analysis
Functional annotation enrichment analysis was performed on the
identified miRNAs and their inversely correlated DE mRNA
targets. The mRNAs negatively correlated with miRNAs were
subjected to ClueGO (version.2.5.1) and Cluepedia (version 1.5.7)
plug-ins within Cytoscape (3.6.1.) for gene ontology (immune

system processes) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis (Bindea et al.,
2009; Saito et al., 2012; Bindea et al., 2013). Likewise, pairs of
inversely correlated miRNAs/mRNAs were subject to DAVID
(version 6.8) for gene ontology (biological processes) enrichment
analysis (Huang et al., 2007). GOplot (version 1.0.2) within the R
programming environment generates GO circular and Circos
plots for gene ontology enrichment analysis (Walter et al., 2015).
ClueGO was employed to plot a functionally annotated KEGG
pathways network.

Moreover, gene ontology and KEGG pathway enrichment
analyses were performed considering the complete set of jejunal
mRNAs correlated with bio-signature of immune cells,
microbes, blood/digesta parameters, and phenotypic traits at
the cutoff criteria of FDR ≤ 0.05 and (r ≥ ± 0.5) within LB and
LSL. For gene ontology and KEGG pathway enrichment
analyses, these were further subjected to DAVID (version
6.8) and ClueGO, respectively. ClueGO revealed KEGG
pathway enrichment networks, while DAVID results were
imported to the ggplot2 R package to create dot plots for
gene ontology enrichment analysis (Wickham et al., 2016).
Parameters used for ClueGO and DAVID were right-sided
hypergeometric tests to calculate the p-value,
Benjamin–Hochberg for multiple testing correction, and
Gallus gallus as a reference genome. The KEGG pathways,
biological processes, and immune system processes with p ≤
0.05 were considered significant.

RESULTS

Our study combines miRNA expression, mRNA expression,
immune cell profiles, microbial composition, blood/digesta
data (metabolites, P, Ca, MI, and hormones), and phenotypic
traits from different tissues, blood, and plasma of LB and LSL
chicken strains. The initial datasets included 80 birds. After pre-
processing and filtration, data from 71 animals (36 from LB and
35 from LSL) were considered for further downstream analysis.
We developed a framework for integrating these data sets into
one analysis using the mixOmics platform and predicting
significant bio-signatures from the heterogeneous dataset
(Figure 1A). To examine the data variation between LB and
LSL, we performed a discriminatory analysis using the Sparse
Partial Least Square Discriminant Analysis (SPLS-DA)
supervised approach available in the mixOmics R package. A
mixOmics revealed the selection of the most discriminant
features between the two laying hen strains, including 20
miRNAs, 20 mRNAs, 16 immune parameters, 10 microbes, 11
phenotypic traits, and 16 blood/digesta parameters (Figure 1A).
In order to characterize the molecular and metabolic routes
linked to these selected biomarkers, the individual features
were further used for correlation with selected miRNAs and
mRNAs pairs (Figure 1B) and with the whole set of intestinal
transcripts (Figure 1C).

Considering the different datasets available for the laying hens,
a considerable degree of separation between LB and LSL samples
was achieved (Figure 2A). Discriminant analyses performed for
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the individual data blocks comprising miRNA, mRNA, immune
traits, microbiome, blood/digesta parameters, and phenotypic
traits showed a clear separation of groups (Figure 2B).
Compared to other blocks, miRNA, mRNA, and immune
parameters revealed the highest degree of separation between
LB and LSL.

Integration and Identification of Biomarkers
Specifying the Lohmann Brown and
Lohmann Selected Leghorn Strains
Significant features for distinguishing LB and LSL hens were
selected based on their loading weights and correlation between
the two components for each block. The loadings were
represented as a bar plot that indicates each selected feature’s
contribution on each data block: mRNA, miRNA, phenotype,
immune traits, metabolome, and microbiota (Figures 3, 4). Out

of these sets, for miRNAs 13/20 (65%), mRNAs 6/20 (30%),
immune cells 14/16 (88%), microbes 1/10 (10%), metabolites 4/16
(25%), and phenotypic traits 6/11 (55%) were most prevalent in
LSL based on the two components, as shown in Figures 3, 4. The
results suggest that strain-discriminating immune features and
miRNAs were prominently abundant in LSL, whereas microbes,
blood/digesta parameters, and mRNAs were visibly more
abundant in LB. The Circos plot demonstrates the correlation
among the selected biomarker set and their profiling in LB and
LSL (Figure 5).

Bio-Signature miRNAs and Their Negatively
Correlated DE Target mRNAs
The co-expression clustering analysis of 20 miRNAs selected as
features revealed clusters composed of 13 miRNAs and seven
miRNAs in clusters 1 and 2, respectively (Figure 6A). Results

FIGURE 1 | Framework for multi-omics data integration and downstream analysis. (A) Data types: miRNAs, mRNAs, immune cells, microbes, blood/digesta
parameters, and phenotypic traits were measured from different tissues, blood, and plasma of the LB and LSL laying hen strains. Discriminant analysis in mixOmics was
performed using the Sparse Partial Least Square Discriminant Analysis (SPLS-DA) supervised method for data classification and feature selection. The number of
selected features in each dataset is given in brackets. (B) Pearson correlations between selected miRNAs and bio-signature of immune cells and microbes were
calculated for LB and LSL at FDR ≤5%. Moreover, miRNA–mRNA negatively correlated pairs, derived from the twenty selected miRNAs and differentially expressed (DE)
mRNAs in the jejunum, were subjected to functional annotation analysis. (C) Strain-specific bio-signatures were applied to correlation analysis and functional enrichment.
Within LB and LSL, Pearson correlation was calculated between the whole set of gut mRNAs and bio-signatures of immune cells, microbes, phenotypic traits, and blood/
digesta parameters at an FDR ≤5% and (r ≥ ± 0.5). Finally, mRNAs correlated with the different datasets were subjected to functional enrichment analysis.
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show that 65% (13/20) of the miRNAs were downregulated, and
the remaining 35% (7/20) were upregulated in LB (Figure 6A).
Furthermore, differential expression (DE) analysis on the
complete set of mRNAs revealed 1,686 transcripts were
differentially expressed between LB and LSL, with about 80%
of them (1,340/1,686) downregulated and about 20% (346/1,686)
of them upregulated in LB compared to LSL (Figure 6B).

In addition, we performed the Pearson correlation analyses
between bio-signature miRNAs and their DE putative target
genes, as shown in Figure 1B. The DE mRNAs negatively
correlated with bio-signature miRNAs at FDR ≤ 5% and
revealed that 13 downregulated miRNAs in LB were negatively
correlated with 3,956 genes, while seven upregulated miRNAs in
LB were negatively correlated with 9,153 genes as shown in
Figures 6C,D.

Functional Enrichment Analysis of DE
mRNAs Negatively Correlated With
Bio-Signature miRNAs
Initially, bio-signature miRNAs and their negatively correlated
target genes were subjected to ClueGO and Cluepedia for gene
ontology enrichment analyses (immune system processes).
Immune system processes were enriched with 30 DE genes,
including T-cell activation or regulation, hemopoiesis,
lymphocyte activation or proliferation, and leukocyte
activation or differentiation. Interestingly, 29/30 genes were
downregulated in LB but upregulated in LSL; these findings
indicated that genes involved in the respective immune system

processes were highly expressed in LSL compared to LB
(Figure 7A).

Moreover, gene ontology analysis (biological processes) was
performed using DAVID. We shortlisted ten biological processes
related to immune response, regulation of cell proliferation,
inflammatory response, and cellular processes based on 189
DE mRNAs. The majority of these genes (~93% 175/189) were
upregulated in LSL and downregulated in LB. The remaining 14
upregulated genes in LB are also involved in the aforementioned
biological processes, as shown in Figure 7B.

Moreover, KEGG pathways enrichment analysis of bio-
signature miRNAs and their negatively correlated transcripts
were performed (Figure 8A). In total, 13 KEGG pathways
were found to be enriched (p-value ≤ 0.05). Most of the
downregulated genes in LB and upregulated genes in LSL were
enriched in immune-related pathways, including
cytokine–cytokine receptor interaction, intestinal immune
network for IgA production, the MAPK signaling pathway, the
TGF-β signaling pathway, the FoxO signaling pathway, the Wnt
signaling pathway, and others as represented in Figure 8B. In
contrast, a lower proportion of transcripts, upregulated in LB and
downregulated in LSL, were enriched in Gap junction,
phagosome, the Ca signaling pathway, and cell adhesion
molecule. Surprisingly, these findings also depict that
transcripts enriched in immune-related KEGG pathways were
more abundant in LSL than LB (Figure 8A).

We additionally performed correlation network analysis
revealing that most immune cells were positive correlated with
miRNAs in LSL including miR-7460-5p, miR146c-3p, miR-212-

FIGURE 2 | Discriminant analysis between the two strains of laying hens, LB and LSL. (A) The arrow plot indicates the discrimination of LB and LSL hens as
depicted as consensus components based on the integration of all datasets. The start of the arrow represents the components’ score in the first dimension, while the
diamond symbol on the arrow’s tip gives the components’ scores related to the second dimension for each individual. Short arrows indicate substantial agreement
between the matching datasets, whereas long arrows depict disagreement between the matching datasets. The red and green colors represent the LB and LSL,
respectively. (B) The individual plots depict six data blocks: miRNA, mRNA, phenotype, immune, metabolome, and microbiota, where each block sample showed
differentiation between LB and LSL. The red is for LB and green is for LSL.
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5p, and miR-24-3p, while microbes were more connected to LB
(Figure 8B).

Strain-Specific Bio-Signature of Immune
Cells and Functional Enrichment Analysis of
Correlated Gut mRNAs Transcripts
Sixteen immune cell types were selected as features for LB and
LSL using mixOmics. About 88% of these cell types, 14/16,
were shown to be more abundant in LSL, including immune
cell types in blood (B cells, CD8+ T helper cells, cytotoxic
T cells, total T cells, and monocytes), in the spleen (CD8− γδ
T cells/g, CD8− T-helper cells/g, CD8+ γδ T-cells/g, total γδ
T cells/g, and CD8+ γδ T cells), and both in blood and spleen
(total γδ T cells and CD8− γδ T cells). The remaining 12
percent was shown to be abundant in LB: blood heterophils
and thrombocytes. Subsequently, Pearson correlation was
calculated between selected immune features for LB and
LSL with the complete set of mRNA profiles from the
jejunum (Figure 9A).

In LB, the transcripts correlated with blood thrombocytes
and heterophils were used to predict significantly enriched

biological processes (gene ontology; p-value ≤ 0.05). Immune-
related biological processes were identified, including
programmed cell death, regulation MAPK cascade, cell
differentiation, immune system regulation, the TGF-β
receptor signaling pathway, and others shown in Figure 9B.
In LSL, the transcripts correlated with 7/14 (50%) immune
cells from blood and 7/14 (50%) immune cells from the spleen
were also used to examine the significantly enriched biological
processes. Similarly, our results indicate that most of the
transcripts correlated with immune cells in LSL were
predominantly involved in immune-related biological
processes, including apoptotic processes, cell cycle, immune
response, regulation of immune system processes, cell
proliferation, activation of the immune response, and others
represented in Figure 9C.

In addition, KEGG pathways of genes correlated with immune
cells within LB and LSL were analyzed and revealed the
enrichment in immune-related and mitochondrial
dysfunctional pathways, including autophagy, mitophagy,
endocytosis, phagosome, apoptosis, TGF-β signaling pathway,
cytokine–cytokine receptor interaction, cell cycle, and others
mentioned in Figure 9D (p ≤ 0.05). Interestingly, the major

FIGURE 3 | Significant biomarker loading weights for blocks of miRNAs, mRNAs, phenotypic traits, immune cells, metabolites, and microbes discriminating
between LB and LSL over component 1. Barplot names correspond to the feature selected on each block: mRNA, miRNA, phenotype, immune traits [B (blood) or S
(spleen) means the original organ from which these immune cells originate], metabolome [C (crop) or J (jejunum) or G (gizzard) means the original organ from which these
metabolites originate], and microbiota (DD or DM means duodenum digesta and mucosa). The length of the bar represented the significance (loading weights) of
the selected features, while the color is related to the strain in which the specific feature is most abundant.
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portion of these enriched pathways was covered by the
transcripts highlighted in the LSL strain. At the same
time, the transcripts correlated with immune cells in LB
were also involved in these pathways, but to a lesser extent
than in LSL.

Strain-Specific Bio-Signature of Blood/
Digesta Parameters and Functional
Enrichment Analysis of Correlated Gut
mRNAs Transcripts
Sixteen blood/digesta parameters (metabolites, P, Ca, MI, and
hormones) were shortlisted as features for LB and LSL. About
76% (12/16) of these blood/digesta parameters were more
abundant in LB: MI (jejunum), Ins (1,2,3,4,5) P5 and Ins
(1,2,4,5,6) P5 (jejunum and ileum), InsP6 (jejunum and
gizzard), P (ileum and gizzard), and Ca, inorganic P, and
vitamin-D-25OH (plasma). The remaining 14% (4/16) was
shown to be more abundant in LSL: Mg (Plasma), MI
(jejunum), P, and InsP6 (crop). Subsequently, Pearson
correlation was calculated between selected blood/digesta

parameters for LB and LSL with the complete set of mRNA
profiles from the jejunum (Figure 10A).

Based on the correlated transcripts, gene ontology (biological
processes) enrichment analyses were performed. In LB, these
genes were primarily enriched in metabolism, development, and
immune systems, such as the P, lipid, and carbohydrate derivative
metabolic processes, immune system development, inflammatory
response, tissue development, growth factors, cell proliferation,
and inorganic ion homeostasis (Figure 10B). The most enriched
biological process was the P metabolic process, which included
508 correlated transcripts (p-value = 0.03).

In LSL, the results revealed that the correlated transcripts were
mainly involved in metabolism and immune functions, such as
cellular metabolic process, lipid metabolic process, glycoprotein
metabolic process, fatty acid metabolic process, lymphocyte
activation, proliferation processes, and regulation of immune
response (Figure 10C). The predominantly enriched biological
process was the cellular metabolic process containing 1,144
correlated mRNAs (p-value = 0.01).

Similarly, KEGG pathway analyses were performed with the
transcripts correlated with blood/digesta parameters. The

FIGURE 4 | Significant biomarker loading weights for blocks of miRNAs, mRNAs, phenotypic traits, immune cells, metabolites, and microbes discriminating
between LB and LSL over component 2. Barplot names correspond to the feature selected on each block: mRNA, miRNA, phenotype, immune traits [B (blood) or S
(spleen) means the original organ from which these immune cells originate], metabolome [I (ileum) or J (jejunum) or B (blood) means the original organ from which these
metabolites originate], and microbiota (DD and DMmeans duodenum digesta and mucosa). The length of the bar represented the significance (loading weights) of
the selected features, while the color is related to the strain in which the specific feature is most abundant.
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transcripts were enriched in metabolic and immune pathways,
including glycerophospholipid metabolism, inositol
phosphate metabolism, glycerolipid metabolism, glutathione
metabolism, fructose, and mannose metabolism, autophagy,
phagosome, apoptosis, and cytokine–cytokine receptor
interaction (Figure 10D). In addition, we found that

transcripts derived from parameters more abundant in the
LB strain dominated the enrichment of pathways
compared to LSL, including sphingolipid metabolism,
glycerophospholipid metabolism, cytokine–cytokine
receptor interaction, glycolysis, and gluconeogenesis
(Figure 10D).

FIGURE 5 | Variable plot of miRNAs, mRNAs, phenotypic, immune traits, metabolites, and microbes related to LB and LSL strains. Circos plot demonstrates the
bio-signature from multiple datasets over the two components. The selected biomarkers were represented in the inner circle. Similarly, the pink, purple, orange, green,
gray, and blue dashed lines outside the Circos indicate each data type. The black link suggests a positive correlation, while the yellow link depicts a negative correlation.
The red and green lines represent the feature expression level in LB and LSL, respectively.
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Strain-Specific Bio-Signature of Microbes
and Functional Enrichment Analysis of
Correlated Gut mRNAs Transcripts
Ten microbes were shortlisted as features for LB and LSL from
duodenal digesta/mucosa. About 90% (9/10) of these microbial
taxa were more abundant in LB: Aeromonadaceae,
Bacteroidaceae, Clostridia, Comamonadaceae,
Corynebacteriaceae, Deferribacteraceae, Oxalobacteraceae,
Pasteurellaceae, and Sutterellaceae. The remaining 10% (1/10)
was abundant in LSL: Burkholderiales. Subsequently, Pearson
correlation was calculated between selected microbes for LB and
LSL with the complete set of mRNA profiles from the jejunum
(Figure 11A).

For gene ontology analysis (biological processes), the
transcripts identified for LB revealed enrichment in metabolic
and immune functions such as the phosphatidylinositol
metabolic process, glycerophospholipid metabolic process, P
metabolic process, hemostasis, T- cell differentiation, and
cytokine response (Figure 11B). The most enriched biological
process was the P metabolic process comprising 614 correlated
transcripts (p-value = 0.04).

In LSL, the 554 transcripts correlated with Burkholderiales
from duodenal digesta were used to investigate the function of
these transcripts. The role of these 554 genes was observed in
metabolic processes, including the cellular metabolic process,
primary metabolic process, macromolecule metabolic process,

nitrogen compound metabolic process, and nucleic acid
metabolic process (Figure 11C).

KEGG pathway analysis was performed for the same correlated
gene sets of LB and LSL. The transcripts correlated with microbes
within LB were predominantly involved in immune or metabolic
signaling pathways, covering Ca, MAPK, adipocytokine, Toll-like
receptor, TGF-β, FoxO, and phosphatidylinositol as well as
metabolic pathways, including glycerophospholipid, inositol
phosphate, and glycerolipid metabolism (Figure 11D). In
contrast, the proportion of transcripts correlated with microbes
within LSL was too low for consideration.

Strain-Specific Bio-Signature of Phenotypic
Traits and Functional Enrichment Analysis
of Correlated Gut mRNAs Transcripts
Interestingly, all eleven phenotypic traits used as input were selected as
features that differ between LB and LSL. The traits Ca intake, P
utilization, P intake, P excretion, feed intake (start excreta sampling to
end sampling), and feed intake (start cage phase to start excreta
sampling) had higher values in LSL. The remaining 45%was higher in
LB than in LSL: Feed intake (31 weeks), Ca utilization, Ca excretion,
bodyweight (start cage phase), and bodyweight (31 weeks).
Subsequently, Pearson correlation was calculated between selected
phenotypic traits for LB and LSL with the complete set of mRNA
profiles from the jejunum (Figure 12A).

FIGURE 6 | Twenty bio-signature miRNAs, their negatively correlated DE target transcripts, and differentially expressed genes in contrast for LB vs. LSL. (A)
Heatmap representing the LB and LSL expression profiles of 20 shortlisted miRNAs from the mixOmics. According to their co-expression, these 20 miRNAs clustered
apart in two groups, 13 and seven, in clusters one and two, respectively. The green color represents downregulation, while the red indicates upregulation. (B) Scatter plot
showing differentially expressed mRNAs between LB and LSL (cutoff |VST ≥2, logFC ≥1.2|). The green and red colors indicated the downregulated and
upregulated transcripts in LB, respectively, and the gray color indicated no significant difference in expression between the strains. (C) Bar chart showing the
downregulated miRNAs in LB and upregulated in LSL and the number of negatively correlated target transcripts at FDR ≤5%. (D) Bar chart representing the upregulated
miRNAs in LB and downregulated in LSL and the number of negatively correlated target transcripts at FDR ≤ 5%.
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In LB, the transcripts correlating with the bio-signature of
phenotypic traits were used to predict the functions and
pathways. The correlated genes are involved in metabolic and
catabolic biological processes, including the glycerolipid
metabolism, lipid metabolism, lipid catabolic process, and fatty
acid catabolic process (Figure 12B). The most noticeable
enriched biological process was a metabolic process
comprising 1,497 correlated transcripts (p-value = 0.03).

In LSL, most of the correlated genes were involved in
metabolism and the immune system, such as P metabolism,
carbohydrate metabolism, glycoprotein metabolism, ATP
metabolic process, ribose phosphate metabolism, and immune
responses (Figure 12C). One of the most enriched biological
processes was the P metabolic process, including 1,146 correlated
transcripts (p-value = 0.02).

For KEGG pathway analysis, the proportion of correlated
transcripts within LB was more enriched than LSL for
mitophagy, autophagy sphingolipid metabolism, the PPAR
signaling pathway, apoptosis, the Toll-like receptor signaling
pathway, and the adipocytokine signaling pathway (Figure 12D).

DISCUSSION

Over the past decade, data integration methods have become
increasingly popular due to the plethora of biological data
generated from different biological experiments (Gligorijević

and Pržulj, 2015). A multi-omics data integration approach
can identify novel biomarkers and gain profound insight into
biological mechanisms when integrating data from different
experimental designs (Graw et al., 2021). In the present study,
we applied a muti-omics data integration approach to analyze the
miscellaneous dataset; our results established that the two strains
were noticeably different regarding their immune system,
transcriptional responses, metabolism, gut microbial activity,
and physiological traits such as development and body weight,
although both layer lines had comparable egg production
performance. Moreover, mix-omics provided a shortlist of
significant bio-signatures from pan-omics data comprising 20
miRNAs, 20 mRNAs, 16 immune cell types, 10 intestinal
microbes, 11 phenotypic traits, and 16 blood/digesta
parameters (metabolites, P, Ca, MI, and hormones). These
biomarkers of the twolayer strains revealed distinct modes of
adaptation in metabolic and immune pathways.

The mRNAs transcripts are the master regulator in almost
every biological process and pathway (Mattick et al., 2010). In the
current study, 20 mRNAs were categorized as bio-signature
different between LB and LSL. 14/20 were upregulated in LB
and downregulated in LSL, while 6/20 were downregulated in LB
and upregulated in LSL (Figure 3 and Figure 4). Guanylate-
binding proteins (GBPs) are the major component of cellular
immunity and are pivotal in controlling intercellular infections
(Sohrabi et al., 2018). Previously, a study indicated that copy
number variations of GBP2 and GBP4 are related to growth traits

FIGURE 7 | Gene ontology enrichment analysis of DE mRNAs negatively correlated with bio-signature miRNAs. (A) miRNAs and their negatively correlated DE
target genes were subjected to enrichment analysis of gene ontology (GO) (immune system processes). The inner part of the Circos plot represents links of DE genes and
identified GO terms. (B)Gene Ontology (biological processes) enrichment analysis was performed on bio-signature miRNAs and their negatively correlated target genes.
The inner white dotted line represents the partition of logFC from lower to higher levels. The green is downregulated in LB and the red is upregulated in LB. Immune
system processes and biological processes with p ≤ 0.05 were considered significant.
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in Chinese domestic cattle (Hao et al., 2020). An earlier study
revealed that viremia levels and weight gain in response to PRRSV
infection in pigs are affected by genotype-dependent alterations
inGBP5 andGBP6 expression (Kommadath et al., 2017). Another
study indicated that GBP5 is involved in host defense, the
assembly of inflammasomes, and inflammatory responses
against pathogenic bacteria in GBP5 knockout mice (Shenoy
et al., 2012). Interestingly, our study also found both of these
genes as highly expressed biomarkers in the LB strain. The myelin
basic protein (MBP) and its related transcripts are widely
expressed in cells of the immune system, such as T
lymphocytes, B lymphocytes, and macrophages (Feng, 2007;
Xu et al., 2016). Previously, a study indicated that the bone
marrow and the immune system contain MBP-related
transcripts and are predominantly expressed in T cells (Marty
et al., 2002; Xu et al., 2016). In the present study, we identified the
MBP gene as a highly expressed biomarker in the LSL strain.

There is considerable evidence that miRNAs are highly
conserved among species and significantly regulate gene
expression (Zhang et al., 2012; O’Brien et al., 2018). In the
present study, we focus on 20 miRNA biomarkers and their
mRNA targets that differ between LB and LSL strains. Regarding
biological processes related to the immune system, transcripts
inversely correlating with bio-signature miRNAs were
predominantly higher in terms of expression in LSL than in
LB, which was valid for 29 out of the 30 identified transcripts. The
related processes include hemopoiesis, T-cell activation,

lymphocyte activation, proliferation, leukocyte differentiation,
and activation. The overrepresentation of transcripts assigned
to immune system processes in LSL compared to LB provides
additional evidence to previous studies (Habig et al., 2012, 2014;
Iqbal et al., 2021; Ponsuksili et al., 2021). Stressors affected the
heterophil-to-lymphocyte (H/L) ratio, which can be used to
assess the level of stress imposed on laying hens (Gross and
Siegel, 1983). An earlier study indicated that according to H/L
ratio calculations, LB hens had ratios 2.6-fold higher than the LSL
hens, and the H/Lratios of LB hens indicate prolonged stress
exposure. In addition, previous studies argue that LSL hens seem
to have amore adaptive immunological phenotype, while LB hens
have a distinct innate immunological phenotype (Hofmann et al.,
2021), and it was also shown in this study that T-cell activation,
lymphocyte activation, and proliferation are higher in LSL hens.
Stress influences the immune system to downregulate its
responsiveness (Habig et al., 2014; Monson et al., 2018; Abbas
et al., 2020; Goel et al., 2021). Accordingly, it is conceivable that
higher susceptibility of LB hens to stress might be responsible for
the lower abundance of transcripts related to immune function
compared to LSL.

MiR-375 has been reported to be highly enriched in intestinal
endocrine cells (EECs), and these cells play an essential role in
systemic energy homeostasis (Hung and Sethupathy, 2018). A
higher level of miR-375 was also found in the jejunal mucosa of
the LB hens, which is consistent with our previous findings that it
may be associated with the higher growth rate of LB compared to

FIGURE 8 | Correlation network analysis of selected features for miRNAs, immune cells, and microbes, and KEGG pathway enrichment analysis of these miRNAs
and their negatively correlated DE target transcripts. (A)KEGG pathway enrichment analysis of bio-signature miRNAs and their negatively correlated DE target genes (p ≤
0.05). The pie charts indicate the proportion of the DE gene’s contribution to KEGG pathways. The blue ellipse showed that mRNAs were downregulated in LB and
upregulated in LSL, while the red ellipse showed the opposite. The green symbol depicts miRNAs downregulated in LB and upregulated in LSL, whereas the red
symbol indicates those upregulated in LB and downregulated in LSL. (B) Correlation network derived from Pearson correlations calculated between bio-signatures of
miRNAs, immune cells, and microbes (FDR ≤ 5%). Circular shape showed immune cells linked to LB (orange) or LSL (pink). Likewise, the sky blue triangle indicated
microbial taxa linked with LB, while the yellow triangle showed microbial taxa associated with LSL. The red and green connections indicated the positive and negative
correlation, respectively.
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LSL (Ponsuksili et al., 2021). Our findings show that miR-375 is
less abundant in LSL than in LB and can upregulate 29 transcripts
significantly associated with immunity, as shown in Figures 7A,
8A. The abundance of miR-375 in the gut is also strongly
negatively correlated with total T cells, total γδ T cells, and
CD8− γδ T cells (r < −0.7; FDR < 10−11) and positively
correlated with thrombocytes in the blood. Recently, a study
in mice reported that miR-375 might improve immune functions
by regulating Kupffer cells (Ke et al., 2019). We speculate that
miR-375 is likely to be a new therapeutic target for immune-
mediated diseases in layer chickens. Another study revealed that
miR-148b-3p was downregulated in LSL and upregulated in LB.
This miRNA contributes to osteogenic differentiation and bone
remodeling (Manochantr et al., 2017). For the let-7f miRNA, a
recent study suggests that let-7f functions as a crucial component
of the miRNA network regulating immunity (Kumar et al., 2015).
Consistent with these findings, our results showed that let-7f-3p is
downregulated in LSL, and its potential targets are concomitantly
upregulated and govern the immune cell activation, proliferation,
and differentiation processes in the gut. Furthermore, we
identified bona fide gene noggin (NOG) that was upregulated
in LB and downregulated in LSL; this gene plays an essential role
in body tissue development such as muscle and bones. NOG
regulates the TGF-β signaling pathway, which plays a significant

role in bone development by stimulating osteoprogenitor
enrichment (Wu et al., 2016).

Signal transduction in complex immune responses is triggered
by TNFRSF13B/TNFRSF13C combined with TNFSF13B (Maeda
et al., 2014). The expression of TNF Receptor Superfamily
Member 13 B/C (TNFRSF13B and TNFRSF13C) was higher in
LSL and may play an important role in humoral immunity by
regulating the intestinal immune system network for the IgA
production signaling pathway (Figure 8B).

B-cell survival and maturation are dependent on this
TNFSF13B/TNFRSF13C system. Earlier studies showed that
blocking TNFSF13B/TNFRSF13C signaling may effectively treat
autoimmune diseases mediated by B-cells in humans (Ferrer
et al., 2014). As a result, we speculate that TNFSF13B/
TNFRSF13C are two essential components of gut immunity
among laying hens. Macrophages play a crucial role in innate
and acquired immune systems and are an integral component of
the mononuclear phagocytic system (Elhelu, 1983). Macrophages
need cytokines for their proper functioning (Arango Duque and
Descoteaux, 2014). We identified two upregulated genes in LSL,
colony-stimulating Factor 1 and receptor for colony-stimulating
factor 1 (CSF1 and CSF1R), which were downregulated in LB. The
protein encoded by the CSF1 gene is a cytokine. The CSF1/CSF1R
system plays a pivotal role in controlling macrophages’

FIGURE 9 | Gene Ontology and KEGG pathways enrichment analysis of mRNAs correlated with immune cells within LB and LSL. (A) The bar chart indicates the
number of mRNAs correlated with immune cells at FDR ≤ 5% within LB and LSL (|r ≥ 0.5|). The green bar shows the immune cells that are more abundant in LSL, while
the red bar depicts immune cells that are more abundant in LB. (B) The transcripts correlated with immune cells in LB were subject to DAVID (version 6.8) for Gene
Ontology (biological processes) enrichment analysis. (C) Gene Ontology (biological processes) enrichment analysis of transcripts correlated with immune cells in
LSL. The dot size represents the number of transcripts involved in each biological process, while the dot’s color indicates the p-value. (D) KEGG pathway enrichment
analysis of mRNAs correlated with immune cells within LB and LSL. The pie charts indicate the strain-specific proportions of mRNAs correlated with immune cells to the
KEGG pathways. The red ellipse shows mRNAs correlated with immune cells in LB, and the green ellipse depicts mRNAs correlated with immune cells in LSL. KEGG
pathways and biological processes with p ≤ 0.05 were considered significant.
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development, differentiation, and function and regulates the
cytokine–cytokine receptor interaction pathway. Therefore, the
higher abundance of CSF1/CSF1R in LSL might contribute to the
more pronounced acquired immunity compared with the LB
strain. We also identified interleukin-cytokine receptor (IL1R2,
IL1RAP, and IL1RL1) upregulation in LSL. Earlier studies have
indicated that the immune response and inflammation are
triggered by IL-1, secreted by macrophages, fibroblasts, B cells,
granular lymphocytes, endothelium, and astrocytes (Carmi et al.,
2009; Sims and Smith, 2010). Overall, significant differences were
found in the miRNA- and mRNA-transcript profiles of the
jejunum of the two strains. In particular, we shortlisted some
essential biomarkers, which are the regulators of immune-related
and developmental pathways. Given the high genetic
differentiation of the two strains (Heumann-Kiesler et al.,
2021), the data provide important insights into the interplay
between miRNA and mRNA, which represent different strategies
adopted at the molecular level to achieve optimal performance.

Previously, the genetic selection of poultry aimed to improve
feed conversion and/or egg-laying performance. In addition,
chickens vary in weight gain along a productive period.
Recently, data have shown that the immune system varies
during the hens’ production period due to genetic differences

(Koenen et al., 2002; Kjærup et al., 2017; Hofmann et al., 2021).
One of the data sets included in the present study comprised
T-lymphocytes, B-lymphocytes, heterophils, monocytes, and
thrombocytes from blood, the spleen, and cecal tonsils of LB
and LSL strains. Our feature selection results indicated that most
of the T-lymphocytes and B-lymphocytes from the blood and
spleen were more abundant in LSL, while only thrombocytes and
heterophils from the blood were higher in LB than in LSL. Higher
proportions of thrombocytes and heterophils have been
previously detected in the blood of LB than LSL (Schmucker
et al., 2021). Also, there is evidence that chicken thrombocytes
may have an immunological function similar to that of
mammalian platelets (St. Paul et al., 2012; Ferdous and Scott,
2015).

Compared to other cells, thrombocytes are the primary carrier
of TGF-β in the body and contain 40 to 100 times more TGF-β
(Karolczak and Watala, 2021), and platelet-thrombocyte number
and the TGF-β concentration are positively correlated in
peripheral blood (Weibrich et al., 2002; Lu et al., 2017; Guo
et al., 2019). Interestingly, our results suggested that genes
correlated with thrombocytes and heterophils in the LB strain
were primarily involved in immune-related pathways, including
TGF-β receptor signaling pathways, the apoptotic signaling

FIGURE 10 | Gene Ontology and KEGG pathways enrichment analysis of mRNAs correlated with blood/digesta parameters within LB and LSL. (A) The bar chart
indicates the number of mRNAs correlated with blood/digesta parameters at FDR ≤ 5% within LB and LSL (r ≥ 0.5). The green bar shows the blood/digesta parameters
that are more abundant in LSL, while the red bar depicts blood/digesta parameters that are more abundant in LB. (B) The transcripts correlated with blood/digesta
parameters in LB were subjected to DAVID (version 6.8) for Gene Ontology (biological processes) enrichment analysis. (C) Gene Ontology (biological processes)
enrichment analysis of transcripts correlated with blood/digesta parameters in LSL. The dot size represents the number of transcripts involved in each biological process,
while the dot’s color indicates the p-value. (D) KEGG pathway enrichment analysis of mRNAs correlated with blood/digesta parameters within LB and LSL. The pie
charts indicate the strain-specific proportions of mRNAs correlated with blood/digesta parameters to the KEGG pathways. The red ellipse showsmRNAs correlated with
blood/digesta parameters in LB, and the green ellipse depicts mRNAs correlated with blood/digesta parameters in LSL. KEGG pathways and biological processes with
p ≤ 0.05 were considered significant.
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pathway, regulation of MAPK cascade, and regulation of the
immune system process (Figure 9B). We also detected a positive
correlation between thrombocytes in blood with the TGFB1,
TGFB2, TGFB3, and TGFBR1 genes with essential roles in
regulating the TGF-β signaling pathway. These findings
suggest that thrombocytes may be active carriers of the TGF-β
molecules. However, thrombocytes contribute to various
functions within the immune system, cell differentiation,
apoptosis, and cellular homeostasis, but the contribution of
thrombocytes is not well documented in birds yet, thus
highlighting the relevance of studying the connections between
thrombocytes and TGF-β as a molecular mechanism in bird
immunology. In avian species, three major subsets of
lymphocytes compose the adaptive immune system: T and B
lymphocytes and natural killer cells. Birds have a significantly
higher number of circulating γδ T cells than humans and rodents.
We detected a higher number of γδ T cells in the blood and spleen
of the LSL strain than the LB strain (Figure 9A). We additionally
identified that the genes correlated with γδ T cells significantly
contributed to immune-related pathways in LSL strain, including
cytokine–cytokine receptor interaction, the MAPK signaling
pathway, PPAR signaling, apoptosis, autophagy, and mitophagy.

The gastrointestinal tract (GIT) harbors a complex and diverse
microbiota in chicken, which plays a significant role in host

health, metabolism, and immunity (Kers et al., 2018; Shang et al.,
2018). Previously, studies demonstrated that gut microbiota
profoundly affected chicken immune system development
(Broom and Kogut, 2018; Diaz Carrasco et al., 2019). In
accordance with these findings, our data suggest that genes
correlated with the microbiota of mucosa and digesta were
shown to be more abundant in LB than in LSL strain and
were involved in the immune-related and metabolic pathways.
Recently, significant correlations between cytokine gene
expression (IL-10, IL4, and IFN-γ) and microbiota
communities were observed at the early stages of chicken
growth (Diaz Carrasco et al., 2019). In the intestinal tract,
commensal microbes modulate cytokine production, essential
for host innate and adaptive immune responses (Corthay, 2006).
For instance, Clostridia was identified as a critical factor in
regulating immune function (Schirmer et al., 2016). Similarly,
our data from digesta highlighted that Clostridia was positively
correlated with IL20RA, IL22, IL2RB, and IL4R expression in the
LB strain. The IL22 encoded protein is involved in host
antimicrobial defense at the mucosal surface and is beneficial
to the host intestinal inflammatory responses during infectious
diseases, as shown in IL22−/− mice, which displayed reduced
microbial diversity and slightly amplified vulnerability to host
infectious diseases (Keir et al., 2020). We postulate that dynamic

FIGURE 11 | Gene Ontology and KEGG pathways enrichment analysis of mRNAs correlated with duodenal microbiota within LB and LSL. (A) The bar chart
indicates the number of mRNAs correlated with microbes at FDR ≤ 5% within LB and LSL (r ≥ 0.5). The green bar shows more abundant microbes in LSL, while the red
bar depicts more abundant microbes in LB. (B) The transcripts correlated with microbes in LB were subject to DAVID (version 6.8) for Gene Ontology (biological
processes) enrichment analysis. (C) Gene Ontology (biological processes) enrichment analysis of transcripts correlated with microbes in LSL. The dot size
represents the number of transcripts involved in each biological process, while the dot’s color indicates the p-value. (D) KEGG pathway enrichment analysis of mRNAs
correlated with microbes within LB and LSL. The pie charts indicate the strain-specific proportions of mRNAs correlated with microbiota to the KEGG pathways. The red
ellipse shows mRNAs correlated with microbes in LB, and the green ellipse depicts mRNAs correlated with microbes in LSL. KEGG pathways and biological processes
with p ≤ 0.05 were considered significant.
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crosstalk between IL22 and Clostridia may be relevant for
achieving and maintaining the gut microbiota and host
immunity balance. Studies have shown that different gut
microbiota species are involved in the host’s defense against
harmful microorganisms, such as Firmicutes, Bacteroidetes,
Actinobacteria, and Proteobacteria (Gevers et al., 2012; Lloyd-
Price et al., 2016).

We also identified Corynebacteriaceae (an Actinobacteria
phylum member) and linked host genes enriched in autophagy
and endocytosis. In addition, the autophagy-related 5 (ATG5)
gene was positively correlated with Corynebacteriaceae and
played a critical role in regulating innate and adaptive
immunity. Furthermore, we identified five bacteria,
Aeromonadaceae, Oxalobacteraceae, Comamonadaceae,
Sutterellaceae, and Pasteurellaceae, which belong to the
phylum Proteobacteria. Studies have shown that γ-
proteobacteria are typical hallmarks of acute mucosal
infections because of their pathogenic properties (Molloy et al.,
2013; Raetz et al., 2013). Consistent with these findings, our
results showed that Aeromonadaceae (a γ-proteobacteria) and
genes negatively correlated with the abundance of this bacteria
were involved in the Toll-like receptor signaling and apoptosis
pathways. For instance, the STAT1 transcription factor controls
the responses to acute microbial infections through canonical

interferon (IFN) signaling (Marié et al., 2021). We suggest a
scenario where the expression of critical immune switches, for
example, STAT1, IFNAR1, and IFNAR2, is downregulated by the
pathogenic mechanisms of Aeromonadaceae and may lead to
differential immune responses on the mucosal surface.

Furthermore, our results indicate that the abundance of other
microbes such as Oxalobacteraceae, Comamonadaceae,
Sutterellaceae, and Pasteurellaceae were correlated with
immune pathways and metabolic pathways, including Ca
signaling, adipocytokine signaling, Toll-like receptor signaling,
FoxO signaling, glycerolipid metabolism, inositol phosphate
metabolism, apoptosis, and TGF-β signaling pathway.
However, these signaling and metabolic pathways are well
known for their role in the immune system and metabolism.
Compared to the results of the host gene expression profiles,
where the immune system processes were predominantly
highlighted in LSL, the duodenal microbiota component was
predominantly on the side of the LB strain. This might underline
the use of different strategies of these two strains but certainly
highlights the importance of the gut microbiota for host
immunity and metabolic activity.

Recently, a study indicated that magnesium (Mg) plays a
pivotal role in energy production metabolic processes such as
glycolysis, gluconeogenesis, and oxidative phosphorylation

FIGURE 12 | Gene Ontology and KEGG pathways enrichment analysis of mRNAs correlated with phenotypic traits within LB and LSL. (A) The bar chart indicates
the number of mRNAs correlated with phenotypic traits at FDR ≤5%within LB and LSL (r ≥ 0.5). The green bar shows more abundant phenotypic traits in LSL, while the
red bar depicts more abundant phenotypic traits in LB. (B) The transcripts correlated with phenotypic traits in LB were subjected to DAVID (version 6.8) for Gene
Ontology (biological processes) enrichment analysis. (C) Gene Ontology (biological processes) enrichment analysis of transcripts correlated with phenotypic traits
in LSL. The dot size represents the number of transcripts involved in each biological process, while the dot’s color indicates the p-value. (D) KEGG pathway enrichment
analysis of mRNAs correlated with phenotypic traits within LB and LSL. The pie charts indicate the strain-specific proportions of mRNAs correlated with phenotypic traits
to the KEGG pathways. The red ellipse shows mRNAs correlated with phenotypic traits in LB, and the green ellipse depicts mRNAs correlated with phenotypic traits in
LSL. KEGG pathways and biological processes with p ≤ 0.05 were considered significant.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 85823216

Iqbal et al. Multi-Omics in Laying Hens Strains

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


(Pilchova et al., 2017). In line with these findings, our results
revealed that genes correlated with Mg in LSL were enriched in
oxidative phosphorylation, glycolysis, and gluconeogenesis
pathways. For phytate metabolism, the degradation process of
InsP6 produces MI and lower inositol phosphates, which are
involved in various immune cell functions, including
proliferation, cytokine production, and cytotoxicity (Hofmann
et al., 2021). Similarly, our study revealed that genes correlated
with MI and InsP6 in LSL were enriched in lymphocyte
proliferation and activation. Several studies reported that
numerous transcellular and paracellular mechanisms absorb
nutrients from the GIT, including the vitamin D system as a
critical player in maintaining Ca and P homeostasis in the body
(Delezie et al., 2015; Sommerfeld et al., 2020; Hofmann et al.,
2021; Iqbal et al., 2021; Reyer et al., 2021). Correspondingly, our
results stipulate that transcripts correlated with vitamin-D-25OH
were enriched in P metabolic processes, inositol phosphate
metabolism, and Ca signaling pathways in the LB strain.
Recently, a study reported that P homeostasis is controlled by
the ITPK1 gene in Arabidopsis (Whitfield et al., 2020). Likewise,
we identified Inositol Tetrakisphosphate 1-Kinase (ITPK1),
which was positively correlated with vitamin-D-25OH and
involved in the phosphate metabolism, revealing the role of
ITPK1 in phosphate homeostasis. Interestingly, we found that
genes linked to InsP6, Ca, and P in the LB strain were involved in
Ca signaling, phosphatidylinositol signaling, autophagy,
apoptosis, cytokine–cytokine receptor interaction, sphingolipid
metabolism, glycerophospholipid metabolism, inositol
metabolism, and glycerolipid metabolism. These pathways are
crucial in terms of immunity and metabolism and enlighten the
importance of minerals, MI, and vitamin D in the chicken
immune system and metabolic activity.

CONCLUSION

Together, we provided a bio-signature feature list containing 20
miRNAs, 20 mRNAs, 16 immune parameters, 10 microbes, 11
phenotypic traits, and 16 digesta/blood parameters, which
discriminate between LB and LSL. This clearly shows that in
addition to a zootechnical characterization, several molecular
phenotypes can be inferred, providing unique strain-specific
biosignatures that reliably distinguish these two contrasting
high-yielding laying hen strains. Many of these strain-specific
identified features were associated with many molecular
pathways. We found the gut microbiota–specific LB strain to
be associated with most immune-related pathways, whereas the
host miRNA– and immune cell–specific LSL strain was enriched
in immune-related pathways. Integration of extensive biological
datasets, including deep sequencing mRNA and miRNA
expression data in jejunum mucosa, immune cells, metabolites
and hormones in the blood, the microbiota in both duodenum
digesta and mucosa, and physiological data, revealed
host–microbiota interactions and changes in immune and
metabolic systems. Our results suggest that both strains

implement different intrinsic approaches, shaping their
immunity and metabolic activity.

To the best of our knowledge, this is the first study to
simultaneously compare the two strains of laying hens, LB and
LSL, in terms of their immune system, gene expression, and
microbial activity in the gastrointestinal tract, metabolism, and
phenotypic traits such as body weight, mineral utilization, and
response to external stimuli. Even though we used a large number
of laying hens per strain (LB, n = 36; LSL, n = 35), batch effects
cannot be excluded here, as the animals originate from one batch
each. Our results provide the basic information that contributes
to the understanding of the mechanisms underlying the immune
system, metabolism, and host–microbiome interaction in
laying hens.
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