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Abstract: Neuropathic pain can have a major effect on quality of life but current therapies are often
inadequate. Growing evidence suggests that neuropathic pain induced by nerve damage is caused
by chronic inflammation. Upon nerve injury, damaged cells secrete pro-inflammatory molecules
that activate cells in the surrounding tissue and recruit circulating leukocytes to the site of injury.
Among these, the most abundant cell type is macrophages, which produce several key molecules
involved in pain enhancement, including cytokines and chemokines. Given their central role in
the regulation of peripheral sensitization, macrophage-derived cytokines and chemokines could
be useful targets for the development of novel therapeutics. Inhibition of key pro-inflammatory
cytokines and chemokines prevents neuroinflammation and neuropathic pain; moreover, recent
studies have demonstrated the effectiveness of pharmacological inhibition of inflammatory (M1)
macrophages. Nicotinic acetylcholine receptor ligands and T helper type 2 cytokines that reduce M1
macrophages are able to relieve neuropathic pain. Future translational studies in non-human primates
will be crucial for determining the regulatory mechanisms underlying neuroinflammation-associated
neuropathic pain. In turn, this knowledge will assist in the development of novel pharmacotherapies
targeting macrophage-driven neuroinflammation for the treatment of intractable neuropathic pain.

Keywords: cytokine; chemokine; leukocyte; neutrophil; neuroinflammation; allodynia; hyperalgesia;
nicotinic acetylcholine receptor

1. Introduction

Neuropathic pain elicited by damage to or dysfunction of the sensory nervous system severely
affects quality of life and is associated with a high economic cost for both the individual and
society [1–3]. The symptoms of neuropathic pain are sensory hypersensitivity defined by spontaneous
pain, hyperalgesia, and allodynia [4–6] resistant to standard analgesics [7,8]. Neuropathic pain can
be caused by not only physical lesions (e.g., traumatic nerve injury and spinal cord injury) but also
other reasons, such as diabetes, chemotherapy, and viral infection [9–11], and senior people have
a high risk of suffering neuropathic pain [12,13]. It is difficult to treat all types of hypersensitivity
with currently available medications, and many patients with neuropathic pain do not receive
appropriate treatment [14–16]. Thus, there is an urgent need for evidence-based development of
novel pharmacotherapies for neuropathic pain.

A number of experimental animal models [17–20] have contributed to our understanding of the
key components of neuropathic pain. In particular, recent studies have suggested that interactions
between the nervous and immune systems trigger chronic neuroinflammation resulting in aberrant
sensory processing and neuropathic pain [17,21,22]. Upon nerve injury, several cell types, including
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damaged neurons, demyelinated Schwann cells, and tissue-resident macrophages, produce soluble
inflammatory cytokines, chemokines, and damage-associated molecular patterns (DAMPs) that
activate surrounding cells [23–28] and recruit circulating leukocytes, such as monocytes/macrophages,
neutrophils, and lymphocytes, into the site of injury [22,29,30]. Numerous pro-inflammatory
cytokines (e.g., interleukin-1β (IL-1β), IL-6, and tumor necrosis factor α (TNFα)) and chemokines
(e.g., CC-chemokine ligand 2 (CCL2, also known as monocyte chemoattractant protein-1), CCL3,
and CCL4) are released by the infiltrating leukocytes, directly sensitize nociceptors, and alter the
processing of nociceptive information by sensory (dorsal root ganglion, DRG) neurons [31–34]. Several
studies using different rodent models have shown that inhibition of these leukocyte functions prevents
the pathogenesis of neuropathic pain [29,35–37]. Macrophages have especially significant functions in
regulating neuroinflammation; consequently, they are considered to be a common peripheral regulator
of neuropathic pain [25,30,38].

The contribution of macrophages to neuropathic pain was mainly uncovered in studies of rodents
in which macrophages were depleted by toxin treatment or genetic ablation, which may have had
other effects on homeostasis [36,37]. Thus, there is a significant knowledge gap between the rodent
studies and the human situation that must be filled before these findings can be translated to the clinic.
Nonetheless, it may be possible to develop novel therapeutics for neuropathic pain by pharmacological
targeting of immunoregulatory systems in animals without genetic abnormalities. In this review, we
highlight our current understanding of how macrophages mediate the pathogenesis of neuropathic
pain, and how macrophage activity could be modulated to develop new pharmacological approaches
for the relief of intractable neuropathic pain.

2. Peripheral and Central Sensitization

It is well known that pain sensation is processed by a discriminative set of primary afferent
neurons [39,40]. Unmyelinated C-fibers and thinly myelinated Aδ fibers act as nociceptors,
while myelinated Aβ fibers are tactile sensors [41,42]. Noxious stimuli such as heat, cold, pressure,
and chemicals are converted to electrical activity by distinct cation channels (e.g., transient receptor
potential (TRP) channels and sodium channels) that elicit action potentials [43–46]. Primary afferent
neurons producing glutamate or neuropeptides transmit peripheral information to secondary neurons
in the spinal dorsal horn [39,40]. During neuropathic pain, the expression and sensitivity of these
channels become dysregulated and elicit ectopic activity of nociceptive DRG neurons [46–48]. Despite
the complexity of the underlying mechanisms, the close relationship between ectopic activity and
pro-inflammatory mediators has been noted in several studies [21,22,49,50]. Because many nociceptive
DRG neurons express pro-inflammatory cytokine and chemokine receptors that are upregulated after
nerve injury, pro-inflammatory molecules can directly sensitize nociceptors, such as TRP channels, in
C-fibers leading to hypersensitivity. For example, IL-1β, TNFα, IL-6, CCL2, and CCL3 are well-known
enhancers of nociceptor activity [31–34,51]. Thus, long-lasting neuroinflammation resulting from
upregulation of inflammatory molecules by damaged tissue and infiltrating leukocytes can contribute
to the ectopic discharge of sensory neurons, resulting in peripheral sensitization.

Prolonged abnormal transmission of pain signaling into the spinal dorsal horn due to peripheral
sensitization triggers central sensitization [6,52,53], characterized by increased excitability of
pain-processing neurons and activation of glial cells (microglia and astrocytes) [17,54–56]. These glial
cells have been the focus of increasing attention in the past few decades, and their critical contribution
to spinal neuroinflammation underlying neuropathic pain is now well characterized [29,57–60].
Microglia and astrocytes are activated by several neurotransmitters derived from primary afferent
neurons, such as cytokines, chemokines, and nucleotides. Activation of glial cells induces a variety
of pro-inflammatory factors that directly or indirectly sensitize pain-processing neurons in the
spinal dorsal horn [17,54–56,61]. Similar to the peripheral response, typical inflammatory cytokines
(IL-1β, TNFα, IL-6), chemokines (CCL2 and CCL3), and growth factors are upregulated in the
dorsal horn after nerve injury, and inhibition of these molecules reverses neuropathic pain [62–65].
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These pain-facilitating molecules function to sensitize ionotropic glutamate receptors such as
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor and N-methyl-D-aspartate
(NMDA) receptors [39,55,56,66]. Because AMPA and NMDA receptors play central roles in pain
processing in the spinal cord, modulation of their sensitivity by pro-inflammatory mediators derived
from activated glial cells is also important for the pathogenesis of neuropathic pain.

3. Accumulation of Macrophages in Injured Nerves

Macrophages are a fundamental component of innate immunity and play pivotal roles in the
regulation of inflammatory responses and in the host defense against pathogens [67,68]. Upon tissue
injury or infection, chemotactic factors, such as chemokines, recruit circulating monocytes to
the site of damage. The monocytes then differentiate into macrophages that orchestrate the
inflammatory response through cytokine and chemokine production to repair damaged tissues
and/or eliminate the source of infection [67–69]. In addition, the majority of tissues contain resident
macrophages that contribute to the maintenance of tissue homeostasis and the resolution of localized
inflammation [70–72]. The variety of receptors expressed by tissue-resident macrophages enables
their rapid activation by pro-inflammatory cytokines, chemokines, and DAMPs (e.g., high mobility
group box 1, HMGB1) produced by damaged cells [71,73–75]. Following nerve injury, resident
macrophages and Schwann cells synergistically initiate inflammatory responses and elicit long-lasting
neuroinflammation through the recruitment of circulating leukocytes to the site of injury [25,29,76].

Neutrophils and lymphocytes also infiltrate into the sites of peripheral nerve injury in
rodents [37,77–80], and depletion of either cell types using experimental drugs or genetic ablation
significantly reduces neuropathic pain resulting from neuroinflammation [35–37,81,82]. Figure 1
shows a typical analysis of infiltrating macrophages, neutrophils, and T lymphocytes in the injured
and contralateral sciatic nerves of mice 1 week after partial sciatic nerve ligation by flow cytometry
using well-characterized marker of each leukocyte. An increased number of CD11b+ cells was seen
in the injured nerve compared with the intact nerve. This population contains F4/80+ macrophages,
while the F4/80− population included Ly6G+ neutrophils and CD3+ T lymphocytes. The abundance
of each cell type is clearly higher in the injured than in the intact nerve. Importantly, macrophages
make up the largest population of infiltrating cells, supporting the notion that they may play a central
role in the regulation of neuroinflammation.

Macrophage accumulation is consistently observed in rodent models of experimental neuropathic
pain [38], including that resulting from physical nerve damage (e.g., partial sciatic nerve ligation and
chronic constriction injury) [83–85], diabetes, and chemotherapy (paclitaxel and vincristine) [86–89].
Notably, targeted inhibition or depletion of macrophages prevents neuroinflammation and pain
hypersensitivity in these neuropathic pain models [36,88,90,91]. Collectively, these studies strongly
support a critical role for macrophages in peripheral neuroinflammation leading to neuropathic pain.
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Figure 1. Flow cytometric analysis of leukocytes infiltrating injured nerves. Mice were subjected to 
partial sciatic nerve ligation, and the sciatic nerves were isolated on day 7 after injury. Representative 
forward scatter (FSC) versus side scatter (SSC) plots show total events collected from control (A) or 
injured (B) sciatic nerves. Representative plots of CD11b versus F4/80 from the gates of each FSC/SSC 
plot demonstrate that CD11b+ F4/80+ macrophages are much more abundant in the injured nerves (D) 
than in the control nerves (C). Representative plots of Ly6G versus CD3 from the F4/80− population 
indicate a similar increase in infiltrating Ly6G+ neutrophils and CD3+ T lymphocytes in the injured (F) 
compared with the control (E) nerves. 

4. Macrophage Polarization and Neuroinflammation 

Macrophages are remarkably plastic and can be polarized towards some functionally distinct 
phenotypes [67,68,92]. Molecules known as “pathogen-associated molecular patterns,” such as 
bacterial lipopolysaccharides (LPS), and interferon-γ, a cytokine produced by T helper type 1 (Th1) 
cells, induce the differentiation of classically activated (M1) macrophages that facilitate and 
exacerbate inflammation [93,94]. In contrast, Th2 cytokines (IL-4 and IL-13) promote differentiation 
into alternatively activated (M2) macrophages, which suppress inflammation and promote its 
resolution [75,95]. M1 macrophages are characterized by high expression of pro-inflammatory 
cytokines such as IL-1β, IL-6, TNFα, and receptors such as Toll-like receptor 4 (TLR4, the LPS 
receptor), major histocompatibility class II (MHC II), and CD86 [75,93,94]. M1 macrophage-dominant 
molecules are preferentially upregulated through signaling via signal transducer and activator of 
transcription 1 (STAT1) and interferon regulatory factor 5 (IRF5) pathways [75,94,96,97]. In contrast, 
M2 macrophages abundantly express the anti-inflammatory cytokine IL-10 and the scavenger 
receptors CD163 and CD206 (mannose receptor C type 1) [75,94]. Unlike M1 macrophages, the 
dominant signaling pathways are via STAT6 and IRF4 in M2 macrophages [97,98]. Chemokine 
expression patterns also differ between M1 and M2 macrophages [92,93,99,100]; thus, CCL2, CCL3, 
CCL4 and CCL5 are highly produced by M1 macrophages, whereas CCL18, CCL22 and CCL24 are 
abundantly expressed by M2 macrophages [99–102]. 

The soluble mediators produced by M1 and M2 macrophages are functionally antagonistic 
[94,97], and the balance between M1 and M2 macrophages is therefore closely related to the 
progression of inflammatory disorders, including neuropathic pain [103,104]. Prolonged activation 

Figure 1. Flow cytometric analysis of leukocytes infiltrating injured nerves. Mice were subjected to
partial sciatic nerve ligation, and the sciatic nerves were isolated on day 7 after injury. Representative
forward scatter (FSC) versus side scatter (SSC) plots show total events collected from control (A) or
injured (B) sciatic nerves. Representative plots of CD11b versus F4/80 from the gates of each FSC/SSC
plot demonstrate that CD11b+ F4/80+ macrophages are much more abundant in the injured nerves (D)
than in the control nerves (C). Representative plots of Ly6G versus CD3 from the F4/80− population
indicate a similar increase in infiltrating Ly6G+ neutrophils and CD3+ T lymphocytes in the injured (F)
compared with the control (E) nerves.

4. Macrophage Polarization and Neuroinflammation

Macrophages are remarkably plastic and can be polarized towards some functionally distinct
phenotypes [67,68,92]. Molecules known as “pathogen-associated molecular patterns,” such as
bacterial lipopolysaccharides (LPS), and interferon-γ, a cytokine produced by T helper type 1
(Th1) cells, induce the differentiation of classically activated (M1) macrophages that facilitate and
exacerbate inflammation [93,94]. In contrast, Th2 cytokines (IL-4 and IL-13) promote differentiation
into alternatively activated (M2) macrophages, which suppress inflammation and promote its
resolution [75,95]. M1 macrophages are characterized by high expression of pro-inflammatory
cytokines such as IL-1β, IL-6, TNFα, and receptors such as Toll-like receptor 4 (TLR4, the LPS receptor),
major histocompatibility class II (MHC II), and CD86 [75,93,94]. M1 macrophage-dominant molecules
are preferentially upregulated through signaling via signal transducer and activator of transcription 1
(STAT1) and interferon regulatory factor 5 (IRF5) pathways [75,94,96,97]. In contrast, M2 macrophages
abundantly express the anti-inflammatory cytokine IL-10 and the scavenger receptors CD163 and
CD206 (mannose receptor C type 1) [75,94]. Unlike M1 macrophages, the dominant signaling pathways
are via STAT6 and IRF4 in M2 macrophages [97,98]. Chemokine expression patterns also differ
between M1 and M2 macrophages [92,93,99,100]; thus, CCL2, CCL3, CCL4 and CCL5 are highly
produced by M1 macrophages, whereas CCL18, CCL22 and CCL24 are abundantly expressed by M2
macrophages [99–102].
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The soluble mediators produced by M1 and M2 macrophages are functionally antagonistic [94,97],
and the balance between M1 and M2 macrophages is therefore closely related to the progression
of inflammatory disorders, including neuropathic pain [103,104]. Prolonged activation of M1
macrophages has been reported to drive non-resolving neuroinflammation that underlies the
pathogenesis of neuropathic pain [103–105]. Under normal conditions, tissue-resident macrophages
are predominantly M2-like and function to protect the peripheral nervous system from damage and
to maintain tissue homeostasis [70,72]. However, when the balance tilts in favor of M1 macrophages
at the population level, the upregulated expression of M1-dominant molecules has diverse effects
on the surrounding cells [75,92,93]. In addition, inflammatory chemokine secretion recruits
circulating leukocytes into the inflamed tissue, resulting in long-lasting inflammation [67,69,106].
Since macrophage polarization and activation can be diverse in response to environmental
cues [107,108], inhibition of M1 macrophage differentiation has been proposed as a pharmacotherapy
for the treatment of neuroinflammatory diseases such as neuropathic pain.

5. Roles of Cytokines and Chemokines in Neuropathic Pain

Cytokines and chemokines regulate many aspects of the immune response, including cell-to-cell
interactions [109–112]. IL-1β, IL-6 and TNFα are well-characterized M1 macrophage-dominant
cytokines and enhancers of inflammation [92,99,101]. Emerging evidence suggests that these
cytokines are upregulated in injured nerves and may contribute significantly to neuropathic
pain [17,21,29,113,114]. These cytokines are also produced by Schwann cells and infiltrating leukocytes,
suggesting indicating that interactions between these cell types plays a role in injury-induced
neuroinflammation [22,25,30,49]. Indeed, upregulation of pro-inflammatory cytokines has been observed
in diverse neuropathic pain models (e.g., nerve ligation, diabetes, and chemotherapeutics) [17,38,56,115],
and inhibition of their functions using neutralizing antibodies, receptor antagonists, intracellular
signaling pathway inhibitors, or genetic ablation significantly reduce hypersensitivity associated with
neuroinflammation [23,29,89,116–118].

Chemokines are small chemotactic cytokines that also play fundamental roles in
neuroinflammation [110,119,120]. These molecules recruit circulating leukocytes into the inflamed
tissue and activate various cell types via engagement of cell surface receptors [69,120]. Of the
four chemokine families, CC-chemokines are the most well-established regulators of neuropathic
pain [30,121–123]. In particular, many studies have demonstrated that CCL2 is upregulated in
macrophages and damaged Schwann cells following nerve injury [26,51,124,125], and pharmacological
or genetic inhibition of CCL2 and/or its receptor CCR2 markedly alleviates neuropathic pain [126–128].

Recently, CCL3 (macrophage inflammatory protein-1α, MIP-1α) and CCL4 (MIP-1β) have
been shown to be upregulated in macrophages and Schwann cells following nerve injury, and
to play critical roles in orchestrating long-lasting neuroinflammation in the peripheral nervous
system [23,30,123,129]. Because their receptors (CCR1 and CCR5) are also expressed on macrophages
and Schwann cells, CCL3 and CCL4 can act in an autocrine fashion to drive intracellular signaling
for upregulation of inflammatory molecules such as IL-1β. Accordingly, blockade of CCL3, CCL4,
CCR1, or CCR5 function with neutralizing antibodies or inhibitors prevents the upregulation of
IL-1β and other M1-dominant cytokines and thus reduces neuropathic pain [23,129]. CCL5 also
contributes to the upregulation of M1-dominant cytokines and the recruitment of circulating monocytes,
neutrophils, and T lymphocytes to the site of injury [130]. Previous reports have shown that these
chemokine receptors are expressed on DRG neurons [33,34,51,131], indicating that CC-chemokines
can not only activate inflammatory cells but also directly sensitize nociceptive neurons and enhance
pain processing. The CXC-chemokine ligand 2 (CXCL2, also known as macrophage inflammatory
protein-2, MIP-2) plays a pivotal role in generating neuropathic pain by mediating interactions
between macrophages and neutrophils [35]. CXCL2 and its receptor CXCR2 are upregulated in
both cell types in the environment of injured nerves [35]. Neutralizing anti-CXCL2 antibodies or
CXCR2 antagonists abolish neutrophil and macrophage infiltration and the upregulation of cytokines
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underlying neuropathic pain [35]. Therefore, inflammatory cytokines and chemokines derived
from M1 macrophages and surrounding inflammatory cells could be novel therapeutic targets for
neuropathic pain associated with neuroinflammation (Figure 2). Given that pharmacological inhibitors
(e.g., neutralizing antibodies and small compounds) of these key mediators are currently used for
inflammatory diseases in the clinic [132–135], further investigations can facilitate developing effective
medications for neuropathic pain.
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Figure 2. Generation of neuropathic pain by macrophage-driven inflammation in the peripheral
nervous system. After nerve injury, activated resident cells (Schwann cells and macrophages) produce
soluble factors such as damage-associated molecular patterns (DAMPs) that activate nearby cells
and recruit circulating leukocytes (macrophages, neutrophils, and lymphocytes) to the site of injury.
Macrophages are the most abundant infiltrating leukocyte population and are thought to play
a central role in regulating peripheral neuroinflammation. Tissue-resident and infiltrating leukocytes
communicate through the release of pro-inflammatory mediators such as cytokines and chemokines,
which convey nociceptive information to dorsal root ganglia (DRG) neurons. Persistent ectopic activity
of DRG neurons induces central sensitization characterized by the enhanced activity of pain-processing
neurons and the activation of microglia and astrocytes. Pharmacological targeting of macrophages
or macrophage-derived pro-inflammatory molecules by nicotinic acetylcholine receptor (nAChR)
ligands, Th2 cytokines, and inhibitors of cytokines and chemokines can suppress macrophage-driven
neuroinflammation after nerve injury. The reduction in neuroinflammation improves both peripheral
and central sensitization and alleviates intractable neuropathic pain.

6. Phenotypic Shift of Macrophages by Cytokines

Since M1 macrophages produce many of the key cytokines and chemokines underlying
neuropathic pain [30,99,103,122], modulation of macrophage polarization is likely to have a major
effect on the pathogenesis of neuropathic pain. Several lines of evidence indicate that IL-4 and
IL-13 polarize macrophages toward an M2 phenotype by binding to their receptors, which are
composed of heteromeric complexes IL-4 receptor α (IL-4Rα)/common γc chain and IL-4Rα/IL-13Rα1,
respectively [136,137]. Downstream signaling through these receptor complexes is mediated by
phosphorylation of STAT6 and activation of IRF4, which upregulates the expression of M2-dominant
molecules [97,98]. As mentioned, the progression of inflammatory diseases is strongly influenced by
the balance between M1 and M2 macrophages [94,138,139]; accordingly, treatment with Th2 cytokines
can improve the severity of many diseases by inducing a phenotype shift from the M1 toward the
M2 phenotype [140–142]. These findings suggest that pharmacological targeting of macrophage
polarization using Th2 cytokines may also improve neuropathic pain.
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Expression level of IL-4Rα is increased upon nerve injury, mainly due to elevated production by
infiltrating macrophages [103]. Notably, addition of IL-4 to LPS-stimulated macrophages in vitro or to
isolated injured nerves ex vivo decreases the production of M1-dominant molecules (IL-1β and CCL3)
and increases that of M2-dominant molecules (IL-10 and CD206) through activation of STAT6 [103].
Consistent with this, administration of IL-4 to injured nerves may directly shift the phenotype of
induced macrophages from M1 toward M2, resulting in the relief of neuropathic pain [103]. Moreover,
IL-13 shows similar effects to IL-14, and it also suppresses neuropathic pain by shifting the balance
towards M2 macrophages [104]. These recent findings substantiate previous reports demonstrating that
neuropathic pain is abolished or attenuated by inhibition of M1-dominant molecules or enhancement
of anti-inflammatory cytokines such as IL-10 [17,22,23,30,130,143,144]. It is important to note that
IL-4 and IL-13 are beneficial not only during the early phase of nerve injury but also during the
middle/late phases, which is similar to the effects of ligands of α4β2 nicotinic acetylcholine receptor
(nAChR) [103,104,145]. Since these effects are independent of the pathophysiological stage, infusion of
Th2 cytokines may be an attractive pharmacotherapy of neuroinflammation-induced neuropathic pain,
particularly since exogenous Th2 cytokines are unlikely to cause severe adverse effects (Figure 2).

7. Inhibition of Macrophages by Nicotinic Acetylcholine Receptors

Although therapeutic agents that act on pro-inflammatory mediators have had considerable
success in the clinic [146–149], the effectiveness of single molecularly targeted inhibitors is sometimes
limited [150–153], implying that combination multi-targeted therapy may be necessary for successful
treatment of inflammatory diseases.

The peripheral immune system is modulated by the central nervous system [146,154]. Emerging
evidence indicates that vagus nerve activation can suppress inflammation through nAChR-mediated
inhibition of macrophage function [155–158]. Consistent with this, nicotine treatment improves
a variety of intractable inflammatory diseases in rodents [146,156,157,159,160]. nAChRs are
ligand-gated cation channels consisting of homo- or hetero-pentameric complexes formed from distinct
subunits [161,162]. The first subtype to be demonstrated to have inhibitory effects on macrophages was
α7 [155]. Nicotine treatment can inhibit the production of inflammatory cytokines by LPS-stimulated
macrophages via activation of α7 nAChR signaling. Moreover, a number of studies have reported
that nicotine treatment suppresses various inflammatory diseases by inhibiting production of M1
macrophage-dominant factors such as IL-1β, TNFα, and HMGB1 [156,159,160]. In contrast, neither
nicotine nor other α7 nAChR ligands affect the production of M2 macrophage-dominant molecules
such as IL-10 [146,156]. Although the majority of reports focused on the anti-inflammatory property of
α7 nAChR, some studies have found that the α4β2 nAChR subtype has similar effects, depending on
the tissue injury or disease [163,164].

Macrophages and neutrophils that accumulate around injured nerves express both α7 and α4β2
nAChRs [145,165], and administration of nicotine to the site of injury suppresses upregulation of
M1-dominant cytokines and neuropathic pain [165]. Importantly, the suppressive effects of nicotine are
reversed by selective antagonism of the α4β2, but not α7, subtype, revealing the dominant role of α4β2
nAChR in the regulation of inflammatory macrophage-driven neuropathic pain [145]. Furthermore,
engagement of α4β2 nAChR by either local or systemic administration of the selective ligand
TC-2559 markedly reduced neuropathic pain [145]. TC-2559 treatment of LPS-stimulated macrophages
suppressed the expression of IL-1β and CCL3 by M1 macrophages by inhibiting the phosphorylation of
STAT3 [166], a key transcription factor for these cytokines [167,168]. The observation that α4β2 nAChR
ligands are effective in reducing neuropathic pain in rodents during the early, middle, and late phases of
nerve injury suggests that α4β2 nAChR expressed on macrophages could be a novel pharmacological
target (Figure 2).
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8. Conclusions

In this review, we have highlighted the critical roles of macrophages in regulating neuropathic pain
caused by peripheral neuroinflammation. A growing body of evidence supports the contribution of
infiltrating leukocytes, including macrophages, to the pathogenesis of neuropathic pain, as demonstrated
in several animal models. Since macrophages play a central role in regulating peripheral sensitization,
cytokines and chemokines derived from these cells are potential targets for novel therapeutics,
particularly as combination therapies. Approaches that use physiological modulators of macrophage
function (e.g., nAChR ligands and Th2 cytokines) may be more effective and have greater safety
margins because they function as endogenous immunoregulators. Most importantly, these approaches
are effective at the early, middle, and late phases of neuropathic pain after nerve injury.

Although several molecules have been shown to prevent or dramatically relieve neuropathic
pain in rodent models, their efficacy has not yet been evaluated in humans. Most rodent studies
have employed single experimental models, and there are major systemic and anatomical differences
between rodents and primates. The evidence that macrophages contribute to the pathogenesis of
neuropathic pain in humans is obviously more circumstantial because of the difficulty in performing
functional studies in humans [169–172]. Among the key questions that remain are whether infiltrating
leukocytes mediate the sensory abnormality, and whether neuroinflammation parallels neuropathic
pain in patients. The basic components of the inflammatory response are similar in rodents and
primates; however, further studies will be necessary to identify the mechanisms that regulate
neuroinflammation-associated neuropathic pain in humans. Development of novel evidence-based
pharmacotherapies that target macrophage-driven neuroinflammation will undoubtedly open up
a new avenue for the treatment of intractable neuropathic pain.
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