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Abstract 

Backgound  Recent studies have suggested a potential role for liraglutide in the prevention and stabilization of atherosclerotic vascular 
disease. However, the molecular mechanisms underlying the effect of liraglutide on atherosclerosis have not been well elucidated. The pur-
pose of this study was to examine whether liraglutide protects against oxidative stress and fatty degeneration via modulation of 
AMP-activated protein kinase (AMPK)/sterol regulatory element binding transcription factor 1 (SREBP1) signaling pathway in foam cells. 
Methods Mouse macrophages Raw264.7 cells were exposed to oxidized low density lipoprotein (oxLDL) to induce the formation of foam 
cells. The cells were incubated with oxLDL (50 μg/mL), liraglutide (0.1, 0.5, 1 and 2 nmol/L) or exendin-3 (9-39) (1, 10 and 100 nmol/L) 
alone, or in combination. Oil Red O staining was used to detect intracellular lipid droplets. The levels of TG and cholesterol were measured 
using the commercial kits. Oxidative stress was determined by measuring intracellular reactive oxygen species (ROS), malondialdehyde 
(MDA) and superoxide dismutase 1 (SOD). Western blot analysis was used to examine the expression of AMPKα1, SREBP1, phosphory-
lated AMPKα1, phosphorylated SREBP1, glucagon-like peptide-1 (GLP-1) and GLP-1 receptor (GLP-1R). Results  Oil Red O staining 
showed that the cytoplasmic lipid droplet accumulation was visibly decreased in foam cells by treatment with liraglutide. The TG and 
cholesterol content in the liraglutide-treated foam cells was significantly decreased. In addition, foam cells manifested an impaired oxidative 
stress following liraglutide treatment, as evidenced by increased SOD, and decreased ROS and MDA. However, these effects of liraglutide 
on foam cells were attenuated by the use of GLP-1R antagonist exendin-3 (9-39). Furthermore, we found that the expression level of 
AMPKα1 and phosphorylated AMPKα1 was significantly increased while the expression level of SREBP1 and phosphorylated SREBP1 was 
significantly decreased in foam cells following treatment with liraglutide. Conclusions  This study for the first time demonstrated that the 
effect of liraglutide on reducing oxidative stress and fatty degeneration in oxLDL-induced Raw264.7 cells is accompanied by the alteration 
of AMPK/SREBP1 pathway. This study provided a potential molecular mechanism for the effect of liraglutide on reducing oxidative stress 
and fatty degeneration.  
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1  Introduction  

Atherosclerosis is the most common pathological process 
underlying cardiovascular diseases (CVD). It is a disease of 
the large- and medium-size arteries that is characterized by a 
formation of atherosclerotic plaques.[1−3] 

Liraglutide, a glucagon-like peptide-1 (GLP-1) analogue 
with 97% homology to native GLP-1, increases insulin se-
cretion and insulin sensitivity.[4] Recent studies have sug-
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gested a potential role for liraglutide in the prevention and 
stabilization of atherosclerotic vascular disease together with 
possible protection against major cardiovascular events.[5] 

AMP-activated protein kinase (AMPK) is a major regu-
lator of glucose and lipid metabolism.[6] It has been reported 
that AMPK activation attenuates oxidized low density lipo-
protein (oxLDL)-induced lipid accumulation in murine ma-
crophages and promotes cholesterol efflux from lipid-laden 
cells.[7] Until now, relatively few studies have investigated 
whether liraglutide could reduce lipid accumulation through 
modulating the AMPK/sterol regulatory element binding 
transcription factor 1 (SREBP1) pathway. 

Foam cells are the characteristic pathological cells in 
atherosclerotic plaques.[8] In the present study, a macro-
phage-derived foam cell model was established, and we 
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examined whether the AMPK/SREBP1 pathway was in-
volved in the effect of liraglutide on reducing oxidative 
stress and fatty degeneration in foam cells. 

2  Methods 

2.1  Cell culture  

Raw264.7 macrophages were purchased from the Amer-
ican Type Culture Collection (ATCC; Manassas, VA, USA). 
The cells were cultured in Dulbecco’s modified Eagle’s 
medium (Gibco-BRL, Grand Island, NY, USA) sup-
plemented with 10% fetal bovine serum (Gbico-BRL) in a 
humidified 37°C incubator with 5% CO2. OxLDL was ob-
tained from DingGuo Biotech (Chongqing, China), liraglu-
tide was provided by Novo Nordisk (Copenhagen, Denmark) 
and exendin-3 (9-39) was purchased from Santa Cruz Bio-
technology, Inc. (Santa Cruz, CA, USA). The cells were 
incubated with oxLDL (50 μg/mL), liraglutide (0.1, 0.5, 1 
and 2 nmol/L) or exendin-3 (9-39) (1, 10 and 100 nM) alone, 
or in combination. 

2.2  Oil Red O staining 

For Oil Red O staining, the cells were fixed with 10% 
formaldehyde for 10 min. After washing with phospha-
te-buffered saline (PBS), the cells were stained with filtered 
Oil Red O solution (60% Oil Red O dye and 40% water) 
(Sigma-Aldrich, St. Louis, MO, USA) at room temperature 
(r.t) for 15 min. The cells were then washed with PBS to 
remove unbound dye and observed under the microscope 
(TE200; Nikon, Tokyo, Japan). 

2.3  Measurement of triglyceride and total cholesterol  

The triglyceride (TG) level was determined in cell lysates 
using a Triglyceride Quantification Kit (Abcam, Cambridge, 
MA, USA) according to the manufacturer’s instructions. 
Briefly, a standard curve was prepared with the TG Stand. 
The cells were homogenized in 5% NP-40 and heated at 
80-100°C for 2-5 min. After centrifugation, 2 μL of lipase 
was added to each standard and sample well, and incubated 
at room temperature for 20 min. A total 50 μL reaction mix, 
containing 46 μL Triglyceride Assay Buffer, 2 μL Triglyc-
eride Probe and 2 μL Triglyceride Enzyme Mix, was added 
to each well and incubated at r.t. for 30-60 min. The optical 
density at 570 nm was measured in a microtiter plate reader 
(ELx800NB; BioTek Instruments, Inc., Winooski, VT, 
USA). 

The level of total cholesterol (TC) in cells was deter-
mined using a Cholesterol Assay Kit from Abcam (Cam-
bridge, MA, USA) following the manufacturer’s instruc-
tions. Briefly, the standard curve was prepared using 2 
μg/μL cholesterol Standard and the cells were lysed by ul-

trasonic wave. The cells were then frozen and thawed three 
times. After centrifugation at 4°C for 10 min, the super-
natant was collected. A total 50 μL Reaction Mix containing 
44 μL Cholesterol Assay Buffer, 2 μL Cholesterol Probe, 2 μL Enzyme Mix and 2 μL Cholesterol Esterase was pre-
pared and added to each well. The plates were incubated at 
37°C for 60 min. The optical density at 570 nm was meas-
ured in a microtiter plate reader (ELx800NB; BioTek In-
struments, Inc.). 

2.4  Measurement of intracellular reactive oxygen  
species production, malondialdehyde and superoxide  
dismutase  

The Reactive Oxygen Species (ROS) Assay Kit was 
purchased from Beyotime (Shanghai, China). After washing 
with PBS, the cells were suspended in the DCFH-DA solu-
tion (10 μmol/L) at a final density of 107 cells/mL and in-
cubated at 37°C for 20 min. Fluorescent intensity was 
measured by a fluorospectrophotometer (F-4000; Hitachi, 
Ltd., Tokyo, Japan). 

The cells were sonicated in 0.1 mol/L Tris-HCl buffer 
(pH 7.4) containing 0.5% Triton X-100, 5 mmol/L β-mer-
captoethanol and 0.1 mg/mL phenylmethylsulfonyl fluoride. 
The homogenates were centrifuged at 1,000 r/min at 4°C for 
5 min, and the supernatants were used for measuring cellu-
lar malondialdehyde (MDA) and superoxide dismutase 
(SOD). MDA was determined using the thiobarbituric acid 
(TBA) method. The level of MDA was measured using a 
Lipid Peroxidation MDA Assay Kit (Beyotime) according 
to the instructions of the manufacturer. The thiobarbituric 
acid reacting substances at a wavelength of 532 nm was 
determined using the EL× 800NB microplate reader (Bio-
Tek Instruments, Inc.). The MDA level is expressed as 
μmol/mg protein. SOD activity was examined by the xan-
thine oxidase method using a Superoxide Dismutase Activ-
ity Assay Kit (BioVision, Milpitas, CA, USA). The absorb-
ance was determined at 450 nm using a microplate reader 
(ELx800NB; BioTek Instruments, Inc.). 

2.5  Western blot analysis 

The primary antibodies, including rabbit monoclonal to 
AMPK alpha 1, rabbit polyclonal to AMPK alpha 1 (phos-
pho S487), rabbit monoclonal to AMPK alpha 1 (phospho 
S496), rabbit polyclonal to SREBP1, rabbit polyclonal to 
SREBP1 (phospho S372) and rabbit polyclonal to SREBP1 
(phospho S439) were purchased from Abcam. The primary 
antibodies, including mouse monoclonal to GLP-1, mouse 
monoclonal to GLP-1R, mouse monoclonal to β-actin, and 
the secondary antibodies (goat anti rabbit IgG/HRP and goat 
anti mouse IgG/HRP) were obtained from Santa Cruz. 

The cells were lysed in RIPA buffer (Sangon Biotech, 
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Shanghai, China) and protein concentrations were quanti-
fied by the BCA method using the BCA Protein Assay Kit 
(Beyotime). A total of 0.50 mg of protein was separated by 
12% SDS polyacrylamide gel and transferred onto polyvi-
nylidene difluoride membranes (Millipore, Billerica, MA, 
USA). The membranes were blocked via incubation with 
tris-buffered saline containing 5% non-fat milk at 37°C for 
2 h. Thereafter, the membranes were incubated with the 
primary antibodies at 37°C for 1 h. Bands were detected by 
horseradish peroxidase-coupled secondary antibody and 
chemiluminescence (ECL Western blotting kit; Pierce, 
Rockford, IL, USA). 

2.6  Statistical analyses 

SPSS 19.0 (IBM Corporation, Armonk, NY, USA) was 
used for statistical analyses. Data were expressed as the 
mean ± SD. The difference between the two groups was 
evaluated using the Student’s t-test. P < 0.05 was considered 
to indicate a statistically significant difference. 

3  Results 

3.1  OxLDL induced foam cell formation in Raw264.7 
cells  

To establish the macrophage-derived foam cell model, 
Raw264.7 macrophages were incubated with 50 µg/mL 
oxLDL for 48 h. It was shown in Figure 1 that oxLDL in-
duced the foam cell formation; the cytoplasmic lipid droplet 
accumulation was visibly increased in Raw274.7 following 
oxLDL treatment. 

3.2  Liraglutide activated AMPK/SREBP1 pathway in 
oxLDL-stimulated Raw264.7 cells  

To investigate the effect of liraglutide on the 
AMPK/SREBP1 pathway in macrophage-derived foam  

 

Figure 1.  Oil Red O staining of Raw264.7 cells exposed to 
oxLDL. × 400. OxLDL: oxidized low density lipoprotein. 

cells, Raw264.7 cells were exposed to oxLDL (50 µg/mL) 
in the absence or presence of liraglutide (0.1, 0.5, 1 and 2 
nmol/L) for 48 h. Treatment with 50 µg/mL oxLDL for 48 
h resulted in a decrease in the amount of AMPKα1 (0.234 
± 0.051 vs. 0.074 ± 0.015, P < 0.01), pho-AMPKα1 (S487) 
(0.158 ± 0.031 vs. 0.060 ± 0.012, P < 0.01) and 
pho-AMPKα1 (S496) (0.136 ± 0.032 vs. 0.038 ± 0.008, P 
< 0.01) in Raw264.7 cells. A significant increase of 
SREBP1 was observed in Raw264.7 cells treated with 
oxLDL (0.014 ± 0.004 vs. 0.141 ± 0.037, P < 0.01). In 
addition, we found that oxLDL shows inhibitory effect on 
the expression of GLP-1 (0.212 ± 0.048 vs. 0.122 ± 0.027, 
P < 0.05) and GLP-1R (0.324 ± 0.054 vs. 0.188 ± 0.039, P 
< 0.05). 

It was shown in Figure 2 that 0.5 nmol/L to 2 nnmol/L 
liraglutide significantly increased the expression of 
AMPKα1, pho-AMPKα1 (S487) and pho-AMPKα1 (S496) 
with the peak value at 1 nmol/L. The expression of SREBP1 
was markedly decreased by treatment with liraglutide at the 
concentrations of 1 nmol/L and 2 nmol/L (Figure 3).  

Next, 1 nmol/L liraglutide was added to treat 
oxLDL-stimulated Raw264.7 cells together with excendin-3 
(9-39), a potent and selective GLP-1 receptor (GLP-1R)  

 
Figure 2.  Effect of liraglutide on AMPK/SREBP1 pathway in oxLDL-stimulated Raw264.7 cells. *P < 0.05, **P < 0.01 vs. 0 nmol/L 
group. OxLDL-stimulated Raw264.7 cells were treated with liraglutide at the concentration of 0.1, 0.5, 1 and 2 nmol/L. The expression of 
AMPKα1, phospho- AMPKα1 and SREBP1 was determined by western blot analysis. β-actin expression was used as an internal control. 
Lane 1, 0 nmol/L; lane 2, 0.1 nmol/L; lane 3, 0.5 nmol/L; lane 4, 1 nmol/L; lane 5, 2 nmol/L. OxLDL: oxidized low density lipoprotein; 
p-AMPKα1: phosphorylated AMP-activated protein kinase alpha 1; SREBP1: sterol regulatory element binding transcription factor 1. 
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Figure 3.  Exendin-3 (9-39) attenuated effect of liraglutide on AMPK/SREBP1 pathway in oxLDL-stimulated Raw264.7 cells. *P < 
0.05, **P < 0.01 vs. oxLDL group; #P < 0.05, ##P < 0.01 vs. oxLDL+lirag group. OxLDL-stimulated Raw264.7 cells were incubated with 
liraglutide (1 nmol/L) and exendin-3 (9-39) at the concentration of 1, 10 and 100 nmol/L. The expression of AMPKα1, phospho-AMPKα1, 
SREBP1 and phospho-SREBP1 was determined by western blot analysis. β-actin expression was used as an internal control. Lane 1, oxLDL 
group; lane 2, oxLDL+lirag group; lane 3, oxLDL+lirag+ex-3 (1 nmol/L) group; lane 4, oxLDL+lirag+ex-3 (10 nmol/L); lane 5, 
oxLDL+lirag+ex-3 (100 nmol/L) group. Ex-3: exendin-3 (9-39); lirag: liraglutide; oxLDL: oxidized low density lipoprotein; p-AMPKα1: 
phosphorylated AMP-activated protein kinase alpha 1; p-SREBP1: phosphorylated sterol regulatory element binding transcription factor 1. 

antagonist, at concentrations of 1 nmol/L, 10 nmol/L and 
100 nmol/L. As shown in Figure 3, we found that compared 
with the liraglutide group, the expression of AMPKα1, 
pho-AMPKα1 (S487) and pho-AMPKα1 (S496) was sig-
nificantly decreased, while the expression of SREBP1, 
pho-SREBP1 (S372) and pho-SREBP1 (S439) was signifi-
cantly increased in the liraglutide+10 nmol/L excendin-3 
group and liraglutide+100 nmol/L excendin-3 group. 

3.3  Liraglutide suppressed oxLDL-induced foam cell 
formation and lipid accumulation in Raw264.7 cells 

To determine the effect of liraglutide on oxLDL-induced 
foam cell formation, Raw 264.7 cells were exposed to oxLDL 
(50 µg/mL) in the presence, or absence of liraglutide (1 
nmol/L) for 48 h, Oil Red O staining was then performed. 
The pictures of Oil Red O staining were shown in Figure 4.  

 

Figure 4.  Liraglutide suppressed oxLDL-induced foam cell formation in Raw264.7 cells. Oil Red O staining of oxLDL-stimulated 
Raw264.7 cells following incubation with liraglutide (1 nmol/L) and exendin-3 (9-39) (1, 10 and 100 nmol/L). Magnification, × 400. Ex-3: 
exendin-3 (9-39); lirag: liraglutide; oxLDL: oxidized low density lipoprotein. 
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It was revealed that the cytoplasmic lipid droplet accumula-
tion was visibly decreased by treatment with liraglutide (1 
nmol/L). When oxLDL-stimulated Raw264.7 cells were 
treated with excendin-3 (1-100 nmol/L) and liraglutide (1 
nmol/L), the cytoplasmic lipid droplet accumulation was 
increased with excendin-3 in a dose-dependent manner. 
Furthermore, we found that the levels of TG and TC were 

significantly increased in Raw264.7 cells treated with 50 
µg/mL oxLDL. Liraglutide (1 nmol/L) inhibited the ele-
vated levels of TG and TC in oxLDL-stimulated Raw264.7 
cells. However, this effect was attenuated by excendin-3 
(9-39). The levels of TG and TC were significantly increased 
when oxLDL-stimulated Raw264.7 cells were treated with 
10 nmol/L and 100 nmol/L excendin-3 (9-39) (Figure 5). 

 
Figure 5.  Liraglutide suppressed oxLDL-induced fatty degeneration in Raw264.7 cells. (A) The level of TG in oxLDL-stimulated 
Raw264.7 cells following incubation with liraglutide (1 nmol/L) and exendin-3 (9-39) (1,10 and 100 nmol/L). (B) The level of TC in 
oxLDL-stimulated Raw264.7 cells following incubation with liraglutide (1 nmol/L) and exendin-3 (9-39) (1, 10 and 100 nmol/L). #P < 0.01 
vs. normal group, &P < 0.01 vs. oxLDL group, *P < 0.05, **P < 0.01 vs. oxLDL+lirag group. Ex-3: exendin-3 (9-39); lirag: liraglutide; 
oxLDL: oxidized low density lipoprotein; TC: total cholesterol; TG: triglyceride. 

3.4  Liraglutide suppressed oxLDL-induced oxidative 
stress in Raw264.7 cells 

As shown in Figure 6, incubation of Raw264.7 cells with 
50 µg/mL oxLDL for 48 h resulted in a significant increase of 
ROS production and MDA, but a significant decrease of SOD. 

Co-treatment with oxLDL and liraglutide (1nmol/L) in-
hibited oxLDL induced ROS and MDA. In the meanwhile, 
the expression of SOD was significantly increased when 
oxLDL-stimulated Raw264.7 cells were treated with liraglu-
tide (1 nmol/L).  

Compared with the liraglutide group, oxLDL-stimulated 
Raw264.7 cells-treated with excendin-3 (1-100 nmol/L) 
showed an increased ROS and MDA, but a decreased SOD 
in a dose-dependent manner. 

4  Discussion 

Foam cells, which are mainly derived from blood ma-
crophages and vascular smooth muscle cells, appear to be 
the characteristic pathological cells in atherosclerotic 
plaques.[8] During the process of atherosclerosis, mononu-
clear cells recruit to the intima of the artery, and transform 
into macrophages.[9] Uptake of modified forms of LDL by 
the macrophages through scavenger receptors [10−13] will lead 
to the formation of foam cells.[14−17] It is well documented 
that the uptake of oxLDL by the macrophage will induce 
foam cell formation and promote the development of 

atherosclerosis.[18−22] In the present study, we established the 
in vitro macrophage derived foam cell model by exposing 
mouse macrophages Raw264.7 cells to 50 µg/mL oxLDL 
for 48 h for studies on atherosclerosis. 

Liraglutide was previously used for the treatment of dia-
betes.[4] Recently, some in vivo studies have revealed the po-
tential function of liraglutde in improving non-alcoholic 
fatty liver disease (NAFLD) and atherosclerotic vascular 
disease.[5,23,24] However, there is no in vitro report about the 
effect of liraglutide on foam cells until now. Increasing evi-
dence shows that oxidative stress plays an important role in 
the pathogenesis of atherosclerosis.[25] Oxidative stress is 
defined as an imbalanced redox state in which pro-oxidants 
overwhelm antioxidant capacity, resulting in an increased 
ROS production. SOD is an important antioxidant enzyme 
which converts naturally- occurring, but harmful superoxide 
radicals to molecular oxygen and hydrogen peroxide. MDA, 
a secondary oxidation product formed during the oxidation 
of polyunsaturated fatty acids (PUFA), is frequently used as 
an index of lipid peroxidation. In the present study, we 
firstly investigated the effect of liraglutide on oxidative 
stress and fatty degeneration in foam cells. Consistent with 
the results obtained from a recent study on NAFLD,[24] we 
revealed a potential novel role of liraglutide in improving 
oxidative stress and lipid accumulation in the macrophage-  
derived foam cell model. The inhibitory effect of liraglutide 
on oxLDL-induced lipid accumulation and oxidative stress 
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Figure 6.  Liraglutide suppressed oxLDL-induced oxidative stress in Raw264.7 cells. (A) The ROS production in oxLDL-stimulated 
Raw264.7 cells following incubation with liraglutide (1 nmol/L) and exendin-3 (9-39) (1, 10 and 100 nmol/L). (B) The level of MDA in 
oxLDL-stimulated Raw264.7 cells following incubation with liraglutide (1 nmol/L) and exendin-3 (9-39) (1,10 and 100 nmol/L). (C) The 
level of SOD in oxLDL-stimulated Raw264.7 cells following incubation with liraglutide (1 nmol/L) and exendin-3 (9-39) (1, 10 and 100 
nmol/L). #P < 0.01 vs. normal group, &P < 0.01 vs. oxLDL group, *P < 0.05, **P < 0.01 vs. oxLDL+lirag group. Ex-3: exendin-3 (9-39); lirag: 
liraglutide; MDA: malondialdehyde; oxLDL: oxidized low density lipoprotein; ROS: reactive oxygen species; SOD: superoxide dismutase. 

was attenuated by the selective GLP-1R antagonist exen-
din-3 (9-39), it demonstrated that this effect is dependent on 
GLP-1R. 

AMPK is a phylogenetically conserved serine/threonine 
kinase that mediates cellular energy homeostasis.[26, 27] When 
activated, AMPK triggers a switch from ATP-consuming 
anabolic pathways to ATP-producing catabolic pathways. 
AMPK activation is associated with the inhibition of TG 
and cholesterol synthesis, lipogenesis, and the stimulation of 
hepatic fatty acid oxidation.[28, 29] AMPK negatively regulates 
several proteins central to the lipid metabolism process, such 
as PPARα, SREBP1 and ChREBP.[30−32] In this study, we 
initially found that in foam cells, liraglutide induced the 
expression of AMPKα1 and pho-AMPKα1, while inhibiting 
the expression of SREBP1 in a concentration-dependent 
manner. In addition, liraglutide-induced activation of 
AMPK/SREBP1 pathway is also dependent on GLP-1R. 

A summary diagram that outlines the potential bio-
chemical mechanisms of the action of liraglutide is shown 
in Figure 7. In foam cells, liraglutide inhibited oxidative 
stress and fatty degeneration, accompanied by the activa-
tion of the AMPK/SREBP1 pathway. As a limitation of 

this study, we only investigated the effect of liraglutide on 
the AMPK/SREBP1 pathway. Further studies are required 
to exclusively block the AMPK/SREBP1 pathway to elu-
cidate whether this pathway mediates the effect of liraglu-
tide on reducing oxidative stress and fatty degeneration. 

 

Figure 7.  A diagram that outlines the potential biochemical 
mechanisms of the action of liraglutide. AMPK: AMP-acti-
vated protein kinase; SREBP1: sterol regulatory element binding 
transcription factor 1. 

In conclusion, we demonstrated for the first time that li-
raglutide could affect the AMPK/SREBP1 pathway in 
oxLDL-stimulated Raw264.7 cells and this effect is 
dependent on GLP-1R. This study provided a potential mo-
lecular mechanism for the effect of liraglutide on reducing 
oxidative stress and fatty degeneration. It may help to im-
prove the treatment of atherosclerotic vascular diseases. 
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