
ORIGINAL RESEARCH ARTICLE
published: 16 February 2012

doi: 10.3389/fmicb.2012.00051

Genome-wide scale-free network inference for
Candida albicans
Robert Altwasser 1*, Jörg Linde1, Ekaterina Buyko2, Udo Hahn2 and Reinhard Guthke1

1 Research Group Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany
2 Jena University Language and Information Engineering Lab, Friedrich Schiller University, Jena, Germany

Edited by:

Franziska Mech, Hans Knöll Institute,
Germany

Reviewed by:

Anke Meyer-Baese, Florida State
University, USA
Steffen Rupp, Fraunhofer
Gesellschaft, Germany

*Correspondence:

Robert Altwasser , Research Group
Systems Biology/Bioinformatics,
Leibniz Institute for Natural Product
Research and Infection
Biology – Hans Knoell Institute,
Beutenbergstr. 11a, 07743 Jena,
Germany.
e-mail: robert.altwasser@hki-jena.de

Discovery of essential genes in pathogenic organisms is an important step in the devel-
opment of new medication. Despite a growing number of genome data available, little is
known about C. albicans, a major fungal pathogen. Most of the human population carries
C. albicans as commensal, but it can cause systemic infection that may lead to the death
of the host if the immune system has deteriorated. In many organisms central nodes in the
interaction network (hubs) play a crucial role for information and energy transport. Knock-
outs of such hubs often lead to lethal phenotypes making them interesting drug targets.To
identify these central genes via topological analysis, we inferred gene regulatory networks
that are sparse and scale-free. We collected information from various sources to comple-
ment the limited expression data available. We utilized a linear regression algorithm to infer
genome-wide gene regulatory interaction networks. To evaluate the predictive power of
our approach, we used an automated text-mining system that scanned full-text research
papers for known interactions. With the help of the compendium of known interactions,
we also optimize the influence of the prior knowledge and the sparseness of the model
to achieve the best results. We compare the results of our approach with those of other
state-of-the-art network inference methods and show that we outperform those methods.
Finally we identify a number of hubs in the genome of the fungus and investigate their
biological relevance.

Keywords: network inference, linear regression, LASSO, reverse engineering, scale-free, Candida albicans, hubs,
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1. INTRODUCTION
Candida albicans is the most important human-pathogenic fun-
gus (D’Enfert and Hube, 2007). Most of the time, it lives as a
commensal in the microbial flora of the host. However, if the
immune system of the host is impaired, it can switch to an aggres-
sive pathogen that can cause systematic infections with a high
mortality rate (Wilson et al., 2002). An important prerequisite of
C. albicans virulence is its ability to react upon environmental
changes such as temperature shifts, pH value changes, or nutrition
supply. C. albicans can react to these environmental conditions
by altering its gene expression pattern. These alteration can create
phenotype changes, like switching from typical yeast-like ovoid
to hyphal growth form (Hube, 2004). These changes in mor-
phology are a crucial part of the infectious ability of C. albicans.
Understanding how these gene expression alterations change the
morphology of the fungus can uncover new therapeutic methods
to counter fungal infections.

Gene expression regulation is primarily mediated by tran-
scription factors but also by post-translational modification or
other mechanisms. Reverse engineering of such mechanisms is an
important part of systems biology (Hecker et al., 2009a). It aims to
uncover essential interactions within the genome of the organism.
This research is facilitated by the growing number of expression
data available (Edgar et al., 2002).

Network inference approaches have been successfully applied in
order to infer small-scale networks and to predict gene interactions
for pathogenic fungi (Guthke et al., 2005, 2007; Linde et al., 2010).
Such networks investigate certain aspects of regulatory processes
and provide valuable information regarding specific gene interac-
tions. However, the number of genes that can be considered using
such approaches is limited. Topological analysis of the full genome
is beyond the scope of this approach.

Different methods for the reverse engineering of genome-
wide inferences have been developed. A common approach is
the use of information-theoretic principles. Some define inter-
actions between genes as statistical dependencies between gene
expression profiles (Margolin et al., 2006). The idea is that statis-
tical dependencies, that can not be explained as artifacts of other
dependencies in the network, are likely to identify direct regulatory
interactions. These methods are also called mutual information.
Common representatives are ARACNE (Margolin et al., 2006),
MRNET (Meyer et al., 2007), and CLRNET (Faith et al., 2007).
Due to the nature of these methods, mutual information networks
are primarily undirected, e.g., the network does not discriminate
between source and target gene of an interaction.

In this work, we use a system of linear equations to model the
regulatory interactions between genes. The idea of this approach
is to model the expression of one gene as the weighted sum of the
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expression of other genes and external perturbations (Gustafsson
et al., 2004). The advantage of this approach is, that it can describe
gene interaction in a quantitative way that takes the direction of the
interaction into account, i.e., it discriminates between the source
and the target gene of an interaction. Topological motives like feed-
back loops can be described as well as dynamic processes within
gene regulatory interactions (Hecker et al., 2009b). A commonly
used algorithm is the so-called LASSO (Tibshirani, 1994). It works
well under the condition, that there are more genes than sam-
ples, which is mostly the case in biological data. This approach
has already been implemented for pathogenic fungi like C. albi-
cans (Linde et al., 2011). However, these models have not been
scale-free.

One of the most severe problems researchers face while defining
network inferences for fungi is the dearth of available information.
So far, there are only few data sets for pathogenic fungi available,
mostly from microarray experiments. This problem becomes even
more serious when modeling networks including a large number
of genes. One approach is the use of proposed gene interactions
called prior knowledge, taken from data sources different from
gene expression data. This concept has been successfully imple-
mented in earlier approaches (Linde et al., 2011) and was used in
this work as well.

Topological analysis of large-scale networks can unravel inter-
esting interactions and regulatory genes with a high number of
interaction partners called hubs. Hubs are essential for the viabil-
ity of the organism since they are a central part of the interaction
network architecture. Because of the large number of interactions,
it is very likely to destroy an essential interaction by knocking out
a hub (Han et al., 2004; He and Zhang, 2006). This property makes
hubs interesting drug targets. Frequently, genome-wide models do
not meet the requirement of scale-freeness, i.e., the distribution of
connections between nodes does not follow a power-law. However,
scale-freeness is a pre-condition for topological analysis and the
detection of hubs because most biological networks exhibit such
a power-law distribution (Barabási and Oltvai, 2004).

In this study, we combine the LASSO with the ridge regression, a
method of regularization, as proposed by Gustafsson et al. (2004),
to infer scale-free networks. We extend this approach to our gene
data by implementing different sources of prior knowledge to our
gene expression data. We use an automatic relation extraction sys-
tem to scan 9,000 research papers in order to get a compendium
of currently known interactions to compare and evaluate our net-
works. We then perform topological analysis on these networks
to identify hubs. We investigate these hubs for their biologi-
cal function. We also compare our algorithm to state-of-the-art
methods.

2. MATERIALS AND METHODS
2.1. DATA
2.1.1. Gene expression data set
We took genome-wide gene expression data of C. albicans from
a collection of Ihmels et al. (2005). The data set consists of tran-
scription data of 6,167 open reading frames (ORF) under 198
conditions ranging from drug application, via stress exposition to
response to mating pheromone. The set contains transcriptional
profiles of cells growing as yeast or hyphal cells taken from four
independent microarray designs. 16.7% of the data are missing.

Four hundred eleven ORFs have more than 50% missing val-
ues. We tested different imputation methods to complete the data
set and applied the best performing method LLS, since the used
network inference method requires complete observations. We
applied the Local Least Squares (LLS) imputation method as pro-
vided by the pca Method (Stacklies et al., 2007) package for R (R
Development Core Team, 2009).

2.1.2. Gold standard
We evaluated the performance of the network inference
approaches with emphasis on the reliability of the predicted inter-
actions. The data set on which this evaluation was based was
generated using text-mining technology. Accordingly, we automat-
ically extracted information about gene regulatory interactions
from full-text research articles in order to collect a set of known
interactions published in the literature. Text mining was based on
JReX (Buyko et al., 2011), a high-performance machine-learning
relation extraction system. JReX identifies pairs of genes as inter-
action pairs exploiting rich syntactic and semantic information.
Using this system, we harvested gene regulation information from
about 9,000 open-access research papers about C. albicans. The
resulting collection contains 509 genes and 1,016 interactions
between them. We are very much aware of the fact that this pro-
cedure has inherent limitations (e.g., f-scores ranging between 50
and 60% are consistently reported for such approaches (Kim et al.,
2011)), but in the absence of a comprehensive manually generated
gold standard, we used this automatically built gold standard to
evaluate the networks inferred using different methods and para-
meter settings. Only 503 genes of the gold standard are part of our
gene expression data set. Therefore, these 503 gold genes were used
to optimize different parameters.

2.2. NETWORK INFERENCE
To infer a regulatory network in C. albicans, we used a modeling
approach based on linear regression. This approach describes the
expression of a gene xi under condition m as the weighted sum of
the expression of the other genes under this condition:

xi(m) =
N∑

j=1,
j �=i

βi,j xj(m) (1)

N is the number of genes and xj = xj(1),. . .,xj(M ) describes the
expression of gene j under the condition 1 to M. β i,j is the coeffi-
cient that describes the influence of gene xj on gene xi. The strength
of the interaction is represented by the absolute value of the coef-
ficient. This coefficients can be positive or negative, representing
activating or inhibiting relations, respectively. A coefficient equal
to zero means there is no interaction between these genes.

The equation system, defined in (1), has more variables than
equations, i.e., more genes than samples. To cope with this prob-
lem and to enhance the interpretability of the inferred network,
we followed the idea of sparseness (Yeung et al., 2002; Leclerc,
2008). This concept tries to maximize the number of zeros in the
interaction matrix B = β i,j. To solve this task, (Tibshirani, 1994)
proposed the Least Absolute Shrinkage and Selection Operator
(LASSO) algorithm. It applies the L1-norm shown in equation (3)
on the interaction matrix B and assigns many weights zero. To find
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the model that fits best to the expression data, we minimized the
residual sum of squares (RSS):

β̂ i,· = arg min
βi,·

M∑

m=1

⎛

⎜⎜⎝xi(m) −
N∑

j=1,
j �=i

βi,j xj(m)

⎞

⎟⎟⎠

2

(2)

subject to
N∑

j=1,
j �=i

∣∣βi,j
∣∣ ≤ μi for i = 1, . . . , N (3)

where μi is a parameter limiting the absolute sum of all β i,·. To
account for the varying reliability of the prior knowledge, we intro-
duce an additional weight parameter ωi,j, denoting the reliability
of interaction β i,j. Hereby we follow a knowledge-driven approach
and extend the equation (3) as presented by Zou (2006):

N∑

j=1,
j �=i

ωi,j
∣∣βi,j

∣∣ ≤ μi (4)

By default, all interactions ωi,j have a value of 1. A small value of
ωi,j means that the interaction is reliable, while larger ωi,j indicate
questionable interactions. Setting ωi,j = 0 means that we trust xi,j

unconditionally.
The prior knowledge was incorporated by the creation of an

N × N penalty matrix �. The component ωi,j of the matrix � is
multiplied by β i,j during the computation of the threshold shown
in equation (4). If a source of prior knowledge predicts an inter-
action between two edges i and j, the penalty of this interaction is
ωi,j = εn where n is the number of prior knowledge sources that
support the interaction. If an interaction is not supported by any
prior knowledge, then ωi,j = 1.

To determine the optimal value for μi, we follow the approach
suggested by Gustafsson et al. (2004, 2005). This approach first
minimizes the L2-norm:

μ
(2)
i =

⎛

⎜⎜⎝
N∑

j=1,
j �=i

(
ωi,jβi,j

)2

⎞

⎟⎟⎠

1
2

(5)

and set μi = cμ(2)
i . The networks created using this method were

proved to be scale-free.
The inference of genome-wide networks is computationally

intensive. However, the calculation of the regression for one gene
is independent from the regression of other genes. This way, the
network inference factorizes and we used parallel computing to
speed up the inference.

3. RESULTS
3.1. PARAMETER ESTIMATION AND NETWORK ASSESSMENT
The result of the inference depends on different parameters, that
need to be estimated. The parameter ε defines the influence of
the prior knowledge. It is too time consuming to perform an

exhaustive search over this parameter exploiting the whole expres-
sion data set. Therefore, we only selected the expression data of
genes, that are included in the gold standard. This subset con-
tained the expression data from 503 genes, called gold genes. With
this subset we investigated the influence of the prior knowledge by
using a search over ten equidistant values each within the inter-
vals 0.01, . . ., 0.1 and 0.1, . . ., 1 and calculated the F-measure
(Van Rijsbergen, 1979) of the inferred networks. The F-measure
incorporates the trade off between the recall (completeness of the
identified interactions within the gold standard) and the precision
(ratio of correctly identified interactions).

F = 2 ∗ precision ∗ recall

precision + recall
(6)

The second parameter to optimize determines the size of the
network, i.e., the number of inferred interactions. LASSO works
with constraint introduced by the parameter μi . As suggested by

(Gustafsson et al., 2004), we first calculate the parameterμ(2)
i via

equation (5) and define μi = cμ(2)
i . Gustafsson et al. fixed c at

0.1 and stated that deviating from this value does not result in
large changes in the selected interactions and still leads to a scale-
free network. Nevertheless, we performed a grid search over 24
different steps for c ranging from 0.00001 to 0.5. We calculated
the corresponding F-measure with regard to the gold standard and
degree of scale-freeness for all inferred networks.

Results show that smaller values for ε, i.e., more influence
of the prior knowledge, yield higher F-measures. For the BIND
prior knowledge, the result of different values of ε is depicted
in Figure 1. Because of these results, we choose ε = 0.1 for the
network construction for all known interactions.

FIGURE 1 | F-measure of the LASSO inference for the 503 gold genes in

which the gold standard and the expression data overlap. We exploited
the BIND prior knowledge. The different graphs represent different values
of ε and therefore different weighting of prior knowledge. It indicates that a
higher influence of prior knowledge yields better results concerning the
F-measure.
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To study the influence of the different prior knowledge sources,
we first constructed a genome-wide network without including
prior knowledge in the model. Subsequently, we constructed net-
works involving all four sources of prior knowledge individually.
After that, we also created one network that used all available prior
knowledge to infer a network.

In the following, we took the full-genomic network that was
supported by all prior knowledge sources (ALL). Since we com-
puted this network for different network sizes, by variation of
parameter c, we selected the one with the highest F-measure, which
was c = 0.2, as illustrated in Figure 2.

In order to compare our approach to state-of-the-art
methods, we also inferred genome-wide networks based on
mutual information, like ARACNE (Margolin et al., 2006),
MRNET (Meyer et al., 2007), and CLRNET (Faith et al.,
2007). The results of the inferred networks can be seen in
Table 1.

The results of these tests are shown in Figure 3. Compar-
ing the LASSO-based networks without or with different prior

knowledge sources, we found that the implementation of prior
knowledge clearly improves the performance of the inference,
especially when exploiting the BIND set of prior knowledge
results in a high F-measure compared to the gold standard. All
LASSO-based inferences outperform the networks constructed
using mutual information. The inferred networks differ remark-
ably in size. While the LASSO-based networks are compara-
bly sparse, having around 6,200–6,900 interactions, the net-
work inferred by ARACNE has around 40,000 interactions. CLR-
NET and MRNET inferred networks contain about 15,000,000
interactions.

All of the networks inferred by LASSO are scale-free, as can be
seen in Figure 4. We calculated the correlation of the degree dis-
tribution to the power-law distribution using Cytoscape (Smoot
et al., 2011). The LASSO network that implemented all prior
knowledge sources has a correlation coefficient of 0.88. This
was the lowest correlation of all LASSO-based methods. In con-
trast, none of the mutual information networks are scale-free, see
Figure 5.

FIGURE 2 | F-measures and number of interactions for different values of

c for the LASSO-based genome-wide inference that used all genes and

all available prior knowledge. The maximum F-measure 0.0018 is reached at
c = 0.2 with a network of 6866 interactions between 6,167 genes.

Table 1 | Results of the genome-wide network inference.

LASSO LASSO +
FAC

LASSO +
PPI

LASSO +
TRANS

LASSO +
BIND

LASSO +
ALL

CLRNET MRNET ARACNE

F-measure 0.0014 0.0015 0.0053 0.0058 0.0067 0.0018 0.00006 0.00006 0.0009

No. of interactions 6,167 6,167 6,167 6,167 6,167 6,866 15,686,064 15,329,450 39,986

The first six rows show the results for LASSO and LASSO with different prior knowledge sources. The sixth row shows the LASSO inference with ALL four sources

of prior knowledge. The last three rows show the results for the mutual information-based networks.
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Figure 6 shows that there is little overlap between the gold
standard, which we extracted from literature concerning C. albi-
cans, and the prior knowledge, extracted from data bases where
C. albicans is underrepresented. Besides BIND and PPI, none of
the prior knowledge sources have a large overlap. Also the prior
knowledge sources and the gold standard barely overlap with each

FIGURE 3 | F-measure obtained by LASSO-based genome-wide

network inferences (left) with or without prior knowledge (FAC, PPI,

TRANS, BIND) and with all four prior knowledge sources (ALL). The
three bars on the right show the results of the mutual information-based
networks.

other. FAC is by far the smallest of the prior knowledge sources
(249 interactions) and only 14 of them are also part of the gold
standard. Therefore, it is not surprising, that the network inferred
exploiting FAC yields the smallest improvement concerning the
F-measure over the network inferred without prior knowledge
(Figure 3). The LASSO without the use of prior knowledge reaches
a F-measure of 0.0014 and the use of the FAC improves this
result to 0.0015. With the information of PPI, LASSO reaches
a F-measure of 0.0053, with TRANS 0.0058 and 0.0067 with
BIND.

3.2. CENTRAL GENES
This study aims at identifying hubs, i.e., genes with high influ-
ence on other genes. (Han et al., 2004) propose that hubs should
have at least six interactions with other genes. Since our networks
have more nodes than those by Han, we considered an out degree
of seven or more to be reasonable. We found 126 genes with an
out degree of at least seven and examined them for their function
(Arnaud et al., 2010). Ten of them are shown in Table 2.

Since there is little information available for C. albicans, most
of the hub genes we found are still not functionally annotated.
We often only found information from ortholog genes in S. cere-
visiae. The information found indicates that the putative hub genes
regulate various cell functions. At least 16 of the 126 hubs are influ-
enced by known antimycotica like amphotericin B, caspofungin, or
the azole group as shown in Table 3. Thirty-one of the identified
hub genes are still not annotated and no functional information is
available.

One of the few well studied networks within yeasts is the so-
called GAL-network. It has been comprehensively studied for S.
cerevisiae (Johnston, 1987; Lohr et al., 1995). It was also used to

FIGURE 4 | Distribution of degrees for the LASSO-based inference without prior knowledge. The red line represents the fitted power-law. The correlation
coefficient of the logarithmical data is 0.95.
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FIGURE 5 | Distribution of degrees for the ARACNE-based inference. The red line represents the fitted power-law. The correlation coefficient of the
logarithmical data is 0.08.

FIGURE 6 | Venn diagram of the four different prior knowledge sources

and the gold standard. Empty fields contain no common interaction.
There is little overlap between the sources of prior knowledge as well as
between the prior knowledge and the gold standard.

investigate transcriptional rewiring between tit C. albicans and
S. cerevisiae (Rokas and Hittinger, 2007). The GAL-network is
responsible for the degradation of galactose. Via GAL10, β-d-
galactose is transferred to α-d-galactose which is transferred to
α-d-galactose 1-phosphate by GAL1. GAL7 then converts α-d-
galactose 1-phosphate to α-d-glucose 1-phosphate. The direct
regulation GAL10 → GAL1 → GAL7 is predicted by the inferred
network models, as can be seen in Figure 7, even though it is not
part of any prior knowledge. Only the interaction GAL1 → GAL7
is part of the gold standard.

Table 2 |Ten genes with the highest out degree of the LASSO network

inferred with all four sources of prior knowledge (ALL).

Gene name Out degree

FET31 29

orf19.7450 28

orf19.1300 25

MAL2 20

orf19.4678 19

orf19.1735 18

SGO1 17

orf19.6715 17

Yor353c 15

PSA2 15

The Figures 8 and 9 illustrate how usage of different sources
of prior knowledge affect the connectivity of genes. PSA2
is involved in nucleotidyltransferase activity and biosynthetic
processes (Arnaud et al., 2010). TKL1 is involved in transketolase
activity, part of the cell wall in yeast form, and possibly essential
for the viability of the organism.

4. DISCUSSION
We inferred genome-wide scale-free gene regulatory network
inference models by exploitation of prior knowledge. The soft inte-
gration of prior knowledge can tackle the problem of insufficient
data and improves the performance of the inference algorithm.
The level of improvement depends on the quality and quantity of
the prior knowledge.
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Table 3 |Table of 16 hubs which are sensitive to antifungal treatment.

Yor353c Domain protein of RAM cell wall integrity signaling network; role in cell separation, azole sensitivity; required for hyphal growth; lacks

orthologs in higher eukaryotes

orf19.5975 Putative zinc finger DNA-binding transcription factor; fluconazole-downregulated; expression regulated during planktonic growth

Hmg2 HMG-CoA reductase; enzyme of sterol pathway; inhibited by lovastatin; gene not transcriptionally regulated in response to lovastatin and

fluconazole

ASR1 Putative heat shock protein; transcription regulated by cAMP, osmotic stress, ciclopirox olamine, ketoconazole; stationary phase enriched

YJR073c Phosphatidylethanolamine N -methyltransferase of phosphatidylcholine biosynthesis; downregulation correlates with clinical development of

fluconazole resistance; amphotericin B; and caspofungin repressed

Cor1 Putative ubiquinol-cytochrome-c reductase; amphotericin B induced; repressed by nitric oxide; protein level decreases in stationary phase

cultures

Taf19 Putative TFIID subunit; mutation confers hypersensitivity to amphotericin B

OPT8 Possible oligopeptide transporter; induced by nitric oxide, amphotericin B

AGP2 Amino acid permease; hyphal downregulated; regulated upon white-opaque switching; induced in core caspofungin response, during cell

wall regeneration, or by flucytosine; fungal-specific

FET31 Putative iron transport multicopper oxidase precursor; flucytosine induced; caspofungin repressed

HIP1 Similar to amino acid permeases; alkaline upregulated; flucytosine induced; fungal-specific (no human or murine homolog)

APT1 Adenine phosphoribosyltransferase; flucytosine induced; repressed by nitric oxide; protein level decreased in stationary phase yeast cultures

ARX1 Putative ribosomal large subunit biogenesis protein; downregulated during core stress response; decreased expression in response to

prostaglandins

Ygr090w Putative U3 snoRNP protein; decreased expression in response to prostaglandins; heterozygous null mutant exhibits resistance to

parnafungin

NOG1 Putative GTPase; mutation confers hypersensitivity to 5-fluorocytosine (5-FC), 5-fluorouracil (5-FU), and tubercidin (7-deazaadenosine);

decreased expression in response to prostaglandins

Imp4 Putative SSU processome component; decreased expression in response to prostaglandins

The data was taken from the Candida Genome Database (Arnaud et al., 2010). Antifungal agents are marked in bold.

FIGURE 7 | Subnetwork GAL-genes using expression data and the full

set of prior knowledge that does not contain these predicted relations.

The connection of GAL10, GAL1, and GAL7 is well studied in many yeast
forms. The network predictions also contain this relationship.

The prior knowledge sources BIND, TRANS, and PPI contain
much more interactions than FAC and have also more inter-
actions in common with the gold standard. Even though they
still have very little overlap with the gold standard, the values of
the F-measure improve strongly. A possible explanation is that
the prior knowledge supports interactions outside the gold stan-
dard, which afterward supports correct interactions from the gold
standard.

This emphasizes the importance of extensive data sets to
improve the performance of the algorithm. However, the com-
bination of all four sources of prior knowledge does not result

in the best performance. With an F-measure of 0.0018, the net-
work is only slightly better than the one created with FAC. This
may indicate contradicting information within the prior knowl-
edge sources. Additional refinement concerning weighting prior
knowledge with regard to its reliability and the combination of
different prior knowledge sources has great potential to further
improve the performance of the algorithm.

In general, we can conclude that the higher the influence of the
prior knowledge, the better the results concerning the F-measure
are, as depicted in Figure 1. But there is another conclusion, that
can be seen in this Figure: the improvement with prior knowledge
is stronger with smaller c-value, i.e., on smaller networks. This
seems reasonable since smaller networks have a more strict con-
straint and the decreased penalty for interactions supported by the
prior knowledge has a stronger effect.

However, the inferences correctly predict parts of the GAL-
network, as can be seen in Figure 7. It shows, that the infer-
ence can uncover regulations even without the help of prior
knowledge. None of the prior knowledge (ALL) suggest these
interactions. The gold standard contains only one of them
(GAL1 → GAL7 ).

It should also be noted that the prior knowledge reflects the
knowledge of other species, in particular S. cerevisiae, whereas
the gold standard contains C. albicans specific knowledge. We
are aware that there are substantial differences between the reg-
ulation of C. albicans on the one hand and S. cerevisiae and
other model organisms on the other hand. Therefore, putting
to much weight on the prior knowledge from these model
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FIGURE 8 | Predicted hub PSA2. The labels on the edges tell which
inference and prior knowledge predicted this interaction. LASSO for
the LASSO inference without prior knowledge. FAC, BIND, TRANS,

and PPI for the inferences with the corresponding prior knowledge
source. ALL for the inference that exploited all four prior knowledge
sources.

organisms can lead to false conclusions. To minimize the prob-
ability of such wrong conclusions, we use the C. albicans specific
gold standard to estimate the optimal weighting of the prior
knowledge.

All of the presented LASSO-based inferences outperform
the models created by mutual information-based methods.
CLRNET and MRNET both produced networks with a com-
parably high number of interactions (15,686,064 with CLR-
NET and 15,329,450 with MRNET). ARACNE on the other
hand produced a network with 39,986. This is by far the
smallest of the mutual information-based networks but still
about five times larger than the LASSO-based networks. How-
ever, with 0.0009 it has a higher F-measure than those of
CLRNET and MRNET, which both have a F-measure of
0.00006. It may be correct to assume a correlation between
the size of the mutual information-based networks and their
F-measure.

The performance evaluation of the network construction algo-
rithm is based on a gold standard obtained by automatic scan-
ning of 9,000 full-text research papers. This leads to a gold
standard of 509 genes and 1,016 interactions. Utilizing this
compendium of known interactions, we optimize the parame-
ters of the algorithm in order to increase the performance

for best results. A major performance criterion is sparseness,
in order to balance comprehensiveness and interpretability of
the model. We focused on optimal sparseness, in order to
locate the most significant interactions and to increase reli-
ability of the predictions. However, compared to the 6,167
genes of the genome-scale networks, this gold standard is still
far from adequate. Therefore, the evaluation of the models
by comparison to the gold standard may favor smaller net-
works.

The combination of these features with the requirement for
scale-freeness is a novel approach. As this is also true for most
biological networks and therefore a requirement for a reason-
able topological analysis to uncover hubs. Since hubs are of great
interest as potential drug targets or biomarker for the develop-
ment of novel therapies against fungal infections, we concen-
trated our effort on such a topological analysis and uncovered
a list of hubs with many not yet described. Further investiga-
tion in this field is still required and continuous improvements
in the available data will also enhance the predictive power of our
approach.

To further check causality of the predicted gene-to-gene rela-
tions, the concept of Granger causality modeling could be applied
as proposed by Shojaie and Michailidis (2010) by truncating
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FIGURE 9 | Predicted hubTKL1. The labels on the edges tell which
inference and prior knowledge predicted this interaction. LASSO for
the LASSO inference without prior knowledge. FAC, BIND, TRANS,

and PPI for the inferences with the corresponding prior knowledge
source. ALL for the inference that exploited all four prior knowledge
sources.

LASSO penalty. However, this approach requires time series
data whereas the data set analyzed in the present work com-
prises both, time series and steady state data under different
conditions.

We applied our approach to the non-model organism C. albi-
cans since there is still little known about this human pathogenic
fungus. However, our approach is not limited to C. albicans and

can be applied to other organisms, where little knowledge is
available, as well.
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