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A common genetic variant within the T cell receptor alpha (TCRA)-T cell receptor delta (TCRD) locus (rs2204985) has been recently
found to associate with thymic function. Aim of this study was to investigate the potential impact of donor rs2204985 genotype on
patient’s outcome after unrelated hematopoietic stem cell transplantation (uHSCT). 2016 adult patients were retrospectively
analyzed. rs2204985 genotyping was performed by next generation sequencing, p < 0.05 was considered significant and donor
rs2204985 GG/AG genotypes were set as reference vs. the AA genotype. Multivariate analysis of the combined cohort regarding the
impact of donor’s rs2204985 genotype indicated different risk estimates in 10/10 and 9/10 HLA matched transplantations. A
subanalysis on account of HLA incompatibility revealed that donor AA genotype in single HLA mismatched cases (n= 624)
associated with significantly inferior overall- (HR: 1.48, p= 0.003) and disease-free survival (HR: 1.50, p= 0.001). This effect was
driven by a combined higher risk of relapse incidence (HR: 1.40, p= 0.026) and non-relapse mortality (HR: 1.38, p= 0.042). This is
the first study to explore the role of rs2204985 in a clinical uHSCT setting. Our data suggest that donor rs2204985 AA genotype in
combination with single HLA mismatches may adversely impact post-HSCT outcome and should thus be avoided.
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INTRODUCTION
Six decades ago allogeneic hematopoietic stem cell transplantation
(HSCT) revolutionized the treatment of otherwise incurable hemato-
poietic disorders and utmost malignant ones [1, 2]. The remarkable
progress made in conditioning and graft vs. host disease (GvHD)
prophylaxis regimens as well as in histocompatibility typing methods
has undoubtedly improved the survival rates of transplanted patients
[3]. Nonetheless, remaining morbidity and mortality rates are still
important setbacks to overcome. Relapse of primary disease along
with infection account for more than 60% of post-transplant mortality
100 days up to three years after allogeneic HSCT [4]. Incomplete T cell
reconstitution as a result of impaired thymic recovery after HSCT has
been shown to associate with poor clinical outcomes due to
increased rates of infection, relapse and secondary malignancies [5, 6].

Thymus function is influenced by many factors but primarily
by age and gender [7]. Particularly the age-related progressive
atrophy of thymus known as thymic involution is a long
described physiologic process [8, 9]. Although it does not
lead to complete loss of function with some residual activity
retained even in advanced ages, elderly patients do face higher
risk of infection and relapse post-HSCT compared to younger
ones due to a compromised thymic rebound after transplanta-
tion [10, 11]. Likewise, female gender has been linked with
increased thymic output and slower progression of thymic
involution [9]. This may partly account for the superior survival
rates observed in female recipients compared to male ones
irrespectively of donor gender in a large cohort of 12,000
patients [12].
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Although strongly suspected, first significant evidence regard-
ing the implication of genetic factors in thymic function and rate
of involution came only a few years ago by Clave et al. [11]. After
analyzing more than 5.5 million single-nucleotide polymorphisms
(SNPs) they identified a common genetic variant (rs2204985)
within the T cell receptor alpha (TCRA)-T cell receptor delta (TCRD)
locus in the intergenic Dδ2-Dδ3 segments that was predictive of
thymic function and T cell repertoire diversity. Particularly, in two
independent cohorts it was shown that GG compared to the AA
rs2204985 genotype correlated with a 43–44% increase of signal
joint T cell receptor excision circles (sjTRECs), a surrogate marker of
thymic output [11]. Furthermore, the same group reported that
transplantation of rs2204985 AA human hematopoietic stem cells
(HSC) into immunodeficient mice led to lower thymocyte counts
as well as T cell receptor repertoire breadth [11]. Although the
exact mechanism with which this genetic variation confers its
effect on thymopoiesis remains unclear, the analysis results in the
aforementioned humanized mouse model suggest that rs2204985
variant locally affects TCRD rearrangements. The findings of that
study could find application in HSCT-donor selection as full T cell
immune reconstitution after HSCT relies greatly on the de novo
production of naïve T cells in the thymus of the recipient [6, 7].
During this process, lymphoid progenitors deriving directly from
the graft or arising from the donor HSCs seed the host’s thymus
where a bidirectional crosstalk between thymic stromal cells and
developing thymocytes enables the formation of a broad but self-
tolerant T cell repertoire [7]. Unfortunately, HSCT related factors
like conditioning, opportunistic infections in the early post-HSCT
period, glucocorticoids and GvHD adversely affect this procedure
by directly damaging the sensitive thymic epithelium [7].
As of today, there are no published data regarding the potential

impact of donor’s rs2204985 genotype on the outcome of
unrelated HSCT (uHSCT). We hypothesize, based on the findings
of the aforementioned humanized mouse HSCT model [11], that
the graft’s rs2204985 genotype should have some impact on T cell
reconstitution and subsequently on patient’s outcome after HSCT.
Aim of this study is to investigate this hypothesis by retro-
spectively analyzing a large German cohort of unrelated HSC
transplant pairs.

PATIENTS AND METHODS
Study population and clinical data
This study included a total of 2016 adult patients with hematologic
malignancies (i.e. acute and chronic leukemia, MDS, NHL and myeloma)
who received their first unrelated HSC graft (i.e. peripheral blood stem cells
(PBSC) or bone marrow (BM)) between 2000 and 2013 in a German
transplant center. Sample size was based on a-priori sample size
calculation. Patients not achieving complete remission were not included
in the cohort due to potential confounding by their increased disease
burden and poor prognosis. Stem cell donor searches for cooperating
transplant centers were conducted by the search unit in Ulm.
All clinical data were obtained from the German registry for stem cell

transplantation (DRST), a subset of the EBMT ProMISe database for German
patients. Patient consent was obtained for clinical data collection and
registration in the EBMT database. Consent for histocompatibility testing in
patients and donors was obtained upon initiation of the unrelated donor
search. Treatment decisions along with follow up information from day 0,
day 100 and yearly afterwards were collected by the cooperating
transplant centers based on EBMT surveys (MED-AB-Survey). Missing data
in the EBMT files was retrieved directly from the centers when possible.
The study was approved by the ethical review board of the University of
Ulm (project number 341/17).

Definitions
The disease status prior to transplantation was classified according to
definitions previously used by the EBMT study group [13]. Myeloablative
conditioning (MAC) was defined according to the EBMT MED-AB manual
Appendix III as well as published consensus suggestions [14]. Less intense
regimens were considered as reduced intensity conditioning (RIC) [14].

HLA and rs2204985 genotyping
High resolution HLA-typing (i.e. exons 2 and 3 for HLA-class I, and exon 2
for HLA-class II molecules) for the gene loci HLA-A, -B, -C, -DRB1, -DQB1 and
–DPB1 was readily available. Only transplant pairs with maximum one
single mismatch for the loci HLA-A, -B, -C, -DRB1 and -DQB1 (i.e. 10/10 or 9/
10 HLA-matched) were included in the study. HLA-DPB1 mismatches were
checked for permissiveness by applying the T-cell epitope (TCE) algorithm
as previously described [15].
Genotyping of the rs2204985 in both patients and donors was

performed by next generation sequencing (NGS) on an Illumina Miseq
platform using DNA samples from unrelated donor search. The DNA
sequence of the targeted intergenic region within the TCRA-TCRD locus for
the design of the primers was retrieved from the NCBI SNP database
[16].The oligonucleotide sequences of the forward and reverse
rs2204985 specific NGS primers are as follows:
- fwd 5'-3': GCCTGAATTTAGCAACTGGGAGGAG
- rev 5'-3': GTTTCCCACTGAGGAGTTTGTCGGG
(Metabion International AG, Martinsried, Germany). Sequencing data

analysis was carried out by the open source program for statistical
computing “R”, version 4.1.2 [17].

Outcome endpoints
Overall survival (OS), disease-free survival (DFS), non-relapse mortality
(NRM), relapse, acute graft versus host disease (aGvHD) grade II-IV and
chronic GvHD (cGvHD) were set as clinical outcome endpoints. Overall
survival was defined as time to death from any cause or last follow-up.
Disease-free survival was defined as time to treatment failure with death or
relapse counting as events. Non-relapse mortality was defined as time
from transplantation until any cause of death without previous relapse and
disease relapse serving as competing risk. Relapse incidence was defined
as time to the event of disease recurrence. This event was summarized by
cumulative incidence estimate with death from other causes as the
competing risk. The cumulative incidence of aGVHD grade II-IV, according
to consensus grading [18], and cGVHD were calculated with death and
disease relapse as competing risks. The clinical endpoints for the analysis in
this study were defined according to the EBMT statistical recommenda-
tions [19].

Statistical analysis
Statistical analysis of patient characteristics was performed by chi-squared
test or fisher´s exact test for categorical and Mann-Whitney-U-test for
continuous variables. For OS and DFS survival, Kaplan-Meier analysis with
log-rank testing was used. Comparison of cumulative incidence for NRM,
aGvHD, cGvHD and relapse was done using competing risks analysis as
proposed by Fine and Gray [20]. Cox’s proportional hazards regression
models was used for multivariate analyses of survival endpoints and
competing risks regression was used for competing risks endpoints. All
variables were tested for the affirmation of the proportional hazards
assumption (PHA). Models were stratified for diagnosis and included
adjustments for a center effect. A backward stepwise model approach was
used to select variables for the respective endpoints with a threshold of
0.10 for retention in the model. No significant interactions between the
tested variables (i.e. donor rs2204985) and the adjusted covariates were
detected in any of the models. Significance level was set to p= 0.05. The
open source program for statistical computing “R” (R Core Team), version
4.1.2 was used for all the statistical analyses.

RESULTS
Cohort characteristics
The cohort consisted of 1392 10/10 (69.0%) and 624 9/10 (31.0%)
HLA matched transplant pairs. With respect to rs2204985, three
genotypes were identified (i.e. AA, AG and GG). Overall 25.7%
(n= 519) of donors and 26.2% (n= 528) of patients carried the AA
genotype. No differences regarding the donor rs2204985 geno-
type frequencies were observed between 10/10 and 9/10 HLA
matched HSCTs. Furthermore, the distribution of other clinical
predictors on account of donor rs2204985 genotype was similar
within the 10/10 and the 9/10 HLA matched group, respectively.
These data are summarized in Table 1. The donor rs2204985
genotype frequencies are presented in Table 2. Median follow-up
time was 54.2 months.
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Table 1. Cohort characteristics.

10/10
rs2204985 AG/GG

10/10
rs2204985 AA

P-value 9/10
rs2204985 AG/GG

9/10
rs2204985 AA

Total P-value

Patient age 53 (1–75) 54 (1–73) 0.527 51 (1–74) 52 (5–73) 2016 0.841

AML 426 (40.8) 157 (45.2) 0.479 199 (44) 74 (43) 856 0.529

ALL 153 (14.6) 46 (13.3) 74 (16.4) 29 (16.9) 302

MDS 147 (14.1) 55 (15.9) 58 (12.8) 29 (16.9) 289

NHL 114 (10.9) 31 (8.9) 30 (6.6) 15 (8.7) 190

MM 54 (5.2) 20 (5.8) 32 (7.1) 6 (3.5) 112

AL 64 (6.1) 15 (4.3) 26 (5.8) 5 (2.9) 110

CLL 46 (4.4) 15 (4.3) 16 (3.5) 7 (4.1) 84

CML 36 (3.4) 8 (2.3) 15 (3.3) 6 (3.5) 65

HL 5 (0.5) 0 (0) 2 (0.4) 1 (0.6) 8

Early stage disease 522 (50) 175 (50.4) 0.694 227 (50.2) 88 (51.2) 1012 0.359

Intermediate stage
disease

314 (30) 97 (28) 138 (30.5) 44 (25.6) 593

Advanced stage
disease

209 (20) 75 (21.6) 87 (19.2) 40 (23.3) 411

Donor age 18–30 364 (34.8) 114 (32.9) 0.507 141 (31.2) 48 (27.9) 667 0.857

Donor age 31–45 487 (46.6) 176 (50.7) 205 (45.4) 81 (47.1) 949

Donor age 46–60 164 (15.7) 46 (13.3) 76 (16.8) 32 (18.6) 318

Missing 30 (2.9) 11 (3.2) 30 (6.6) 11 (6.4) 82

HLA-DPB1
permissive

614 (58.8) 213 (61.4) 0.390 240 (53.1) 94 (54.7) 1161 0.889

HLA-DPB1 non-
permissive

426 (40.8) 134 (38.6) 210 (46.5) 78 (45.3) 848

Missing 5 (0.5) 0 (0) 2 (0.4) 0 (0) 7

Year of Tx
2000–2003

5 (0.5) 4 (1.2) 0.295 6 (1.3) 5 (2.9) 20 0.384

Year of Tx
2004–2009

524 (50.1) 165 (47.6) 262 (58) 100 (58.1) 1051

Year of Tx
2010–2013

516 (49.4) 178 (51.3) 184 (40.7) 67 (39) 945

In vivo T-cell
depletion

691 (66.1) 249 (71.8) 0.069 291 (64.4) 109 (63.4) 1340 0.634

No in vivo T-cell
depletion

224 (21.4) 69 (19.9) 81 (17.9) 36 (20.9) 410

Missing 130 (12.4) 29 (8.4) 80 (17.7) 27 (15.7) 266

Graft source PBSC 991 (94.8) 328 (94.5) 0.933 421 (93.1) 159 (92.4) 1899 0.897

Graft source
bone marrow

54 (5.2) 19 (5.5) 31 (6.9) 13 (7.6) 117

P-D CMV neg-neg 347 (33.2) 115 (33.1) 0.464 130 (28.8) 48 (27.9) 640 0.247

P-D CMV neg-pos 85 (8.1) 32 (9.2) 56 (12.4) 12 (7) 185

P-D CMV pos-neg 237 (22.7) 84 (24.2) 123 (27.2) 58 (33.7) 502

P-D CMV pos-pos 326 (31.2) 107 (30.8) 115 (25.4) 45 (26.2) 593

Missing 50 (4.8) 9 (2.6) 28 (6.2) 9 (5.2) 96

KPS 80–100 797 (76.3) 282 (81.3) 0.089 322 (71.2) 112 (65.1) 1513 0.207

KPS < 80 39 (3.7) 14 (4) 22 (4.9) 7 (4.1) 82

Missing 209 (20) 51 (14.7) 108 (23.9) 53 (30.8) 421

MAC 647 (61.9) 197 (56.8) 0.102 307 (67.9) 111 (64.5) 1262 0.479

RIC 398 (38.1) 150 (43.2) 145 (32.1) 61 (35.5) 754

AL acute leukemia undifferentiated, biphenotypic or secondary, M match, MM mismatch, PBSC peripheral blood stem cells, KPS Karnofsky performance score,
MAC myeloablative conditioning, RIC reduced intensity conditioning.
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Donor AA genotype adversely impacts survival after HLA
single-mismatched HSCT
Regarding the effect of donor rs2204985 genotype on the primary
outcome endpoints, weakly significant differences were observed
in the DFS analysis (long-rank p= 0.024) between patients
transplanted with AA and AG/GG grafts, while no statistical
significance was reached as to OS (long-rank p= 0.121) for the

complete cohort. Nevertheless, the respective Kaplan-Meier curves
were indicative of a slightly worse outcome correlating with the
donor AA genotype (see Supplementary Data 1, 2). Considering
that HLA mismatch is a factor that profoundly influences the post-
HSCT immunologic milieu of the recipient we analyzed the 10/10
and the 9/10 HLA matched cases separately. Indeed, analysis in
the subgroup of single HLA mismatched cases (n= 624) revealed
that donor AA genotype associated with markedly inferior OS (1Y
after HSCT: 55.1% vs 70.6%; 5Y after HSCT: 40.7% vs 51%, long-
rank p= 0.004, Fig. 1a) and DFS (1Y after HSCT: 47.6% vs 63.4%; 5Y
after HSCT: 33.9% vs 44.6%, p= 0.002, Fig. 1c) after HSCT as
compared to the donor AG/GG genotypes. These results were
confirmed in the corresponding multivariate models (OS HR: 1.48,
p= 0.003; DFS HR: 1.50, p= 0.001) which are visually displayed as
forest plots in Fig. 2a, b, respectively. This detrimental effect of the
donor rs2204985 AA genotype was not detectable in the fully HLA
matched cases (see Fig. 1b, d). It is of note that the simultaneous
survival analysis on account of donor rs2204985 genotype and

Table 2. rs2205985 genotype frequencies.

HLA 10/10 HLA 9/10 Total P-value

AA 347 (24.9) 172 (27.6) 519 0.095

AG 693 (49.8) 321 (51.4) 1014

GG 352 (25.3) 131 (21) 483

Hardy-Weinberg-Equilibrium test: HLA 10/10 p= 0.873, HLA 9/10 p= 0.422.
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Fig. 1 Univariate OS and DFS. a Overall survival (OS) according to donor rs2204985 in the subgroup of 9/10 HLA matched transplant pairs
(p= 0.004). b Overall survival (OS) according to donor rs2204985 in the subgroup of 10/10 HLA matched transplant pairs (p= 0.847).
c Disease-free survival (DFS) according to donor rs2204985 in the subgroup of 9/10 HLA matched transplant pairs (p= 0.002). d Disease-free
survival (DFS) according to donor rs2204985 in the subgroup of 10/10 HLA matched transplant pairs (p= 0.608).
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Fig. 2 Multivariate OS and DFS. a Forest plot of multivariate analysis for overall survival (OS) in the subgroup of 9/10 HLA matched transplant
pairs. b Forest plot of multivariate analysis for disease-free survival (DFS) in the subgroup of 9/10 HLA matched transplant pairs.
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HLA mismatch depicted in Supplementary 3 of the Supplementary
Data suggests that the AG/GG donor genotype almost abrogates
the adverse effect of HLA mismatch. Further results regarding the
10/10 HLA matched subgroup are presented in the Supplemen-
tary Data (Supplementary 4–7, Supplementary Table 1). Consider-
ing the known effect of age on thymic function we also conducted
a further subanalysis regarding the effect of donor’s rs2204985
genotype on patient’s survival with respect to patient’s age. An
age cut-off of 35 years was set. The latter was selected on the basis
of optimal distribution of the two subgroups due to sample size
considerations so that statistically sound analyses could be
performed. The donor’s genotype appeared to have no effect
on OS in patients aged less than 35 years and who received a
single HLA mismatched graft. In contrast, the effect was markedly
strong in the corresponding older subgroup (i.e. ≥ 35 y), p < 0.001.
The respective Kaplan-Meier curves are presented in the
Supplementary Data (Supplementary 8, 9). Another subanalysis
with respect to patient’s gender revealed that the donor AA
genotype markedly impacted the outcome of male patients
(n= 369, HR: 1.76, p= 0.001) compared to that of female ones
(n= 255, HR: 1.22, p= 0.364). The results of these multivariate
models are presented in Supplementary Table 2A, B.

AA genotype detrimental effect attributed to higher risk of
relapse and NRM
Analysis of the secondary clinical endpoints NRM and RI revealed
that the adverse effect of donor AA genotype on survival was
driven by a combined higher risk of RI (1Y after HSCT: 29.3% vs
18.3%; 5Y after HSCT: 36.7% vs 29.9%, p= 0.048) and NRM (1Y
after HSCT: 28.6% vs 19.9%; 5Y after HSCT: 37.1% vs 29.1%,
p= 0.043). Similar results were seen in the multivariate analyses
for the two respective endpoints. No association was found
between donor rs2204985 genotype and risk of acute or chronic
GvHD. The results of the univariate analyses for NRM and RI are
displayed in Fig. 3a, b, respectively. In Table 3 are summarized the
results of the NRM, RI, aGvHD and cGvHD multivariate models.

DISCUSSION
Optimal T cell immune reconstitution after HSCT is decisive for
clinical success, as impaired thymic recovery has long been
associated with increased risk of opportunistic infections,
transplant-related morbidity and recurrence of primary disease
[7]. It was only a few years ago that thymus function was found to
be genetically predetermined by a common SNP, namely the
rs2204985, located in the intergenic region of the TCRA-TCRD
locus [11]. Intuitively one would wonder if this genetic factor could
also play a role in an HSCT setting. The findings of the same
research group appear to support this notion as the graft
rs2204985 genotype was found to significantly correlate with
post-transplantation thymic output in a mouse/human-HSC
transplantation model [11]. Specifically it was shown that the
graft rs2204985 AA genotype associated with inferior thymic
output compared to the other two (i.e. AG and GG). In this study
we sought to investigate this parameter in a human HSCT setting
through a retrospective analysis of 2016 patients, who received
their first unrelated allogeneic transplant between 2000 and 2013.
While analysis of the combined cohort did not confirm the

initial hypothesis, subanalysis on account of HLA compatibility
revealed that donor rs2204985 genotype was a significant
predictive factor of outcome in single HLA mismatched cases. In
contrast, no significant impact was identified on any outcome
endpoint in the 10/10 HLA matched subgroup. One hypothesis for
this difference observed between these two cohort subgroups
could be that this effect becomes more relevant in an already
endangered thymic milieu. It has been repeatedly reported that
HLA mismatched HSCTs associate with a higher risk of GvHD and
transplant-related mortality [21, 22]. This in turn is known to

impair the thymic output either through direct attack on the
thymic epithelium or indirectly through a secondary T cell
immunodeficiency caused by a more intensive immunosuppres-
sion regimen [23, 24]. This compromised T cell recovery is believed
to be at least partially responsible for the higher RI and NRM rates
observed in HLA mismatched compared to HLA matched uHSCTs
[6, 7]. Under this prism, it is plausible to postulate that the impact
of this thymopoiesis-associating genetic marker may be more
pronounced in an HSCT setting, where thymic function is at higher
risk as already mentioned above. Our subanalysis on account of
patient’s age supports this notion, as the donor’s rs2204985
genotype effect was only detectable—and in fact even more
pronounced as compared to the whole cohort—in the older (i.e.
≥35 y) subgroup of patients. Although the number of cases in the
younger cohort precludes a strong statistical power for this
analysis, it does not cease to be an interesting finding that merits
further investigation in the future. Furthermore, it is of note that
direct comparison of survival with regard to donor rs2204985
genotype and HLA mismatch (Fig. 3 of Supplementary Data)
revealed that donor AG/GG genotype abrogated to a great extent
the detrimental impact of the single HLA mismatch. It should be
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also noted, that another subanalysis with respect to patient’s
gender revealed that the donor rs2204985 genotype effect was
more prominent in the male subgroup. This finding supports
furthermore our hypothesis, that the donor rs2204985 genotype is
mainly relevant in a compromised thymus function milieu (i.e.
older age, male sex and single HLA mismatched HSCT).
Another important finding of this study was that the

detrimental effect of donor AA genotype appeared to be
conferred by a combined higher risk of NRM and RI. Given that
no differences regarding the incidence of GvHD were observed
with respect to this parameter, it is reasonable to assume that
higher infection rates may account for the increased NRM.
Although, we have no complete data regarding infection
incidence, the higher NRM and relapse rates observed in patients
receiving AA grafts are consistent with the assumption that this
genotype adversely impacts the T cell recovery. Last, GvHD and
especially its chronic form have been found to correlate with
severe T cell immunodeficiency [24–26]. In our analysis the AA
donor genotype did not correlate with significantly higher risk of
cGvHD. However, given the relatively high percentage of missing
data regarding this analysis, this aspect needs to be further
clarified in future independent studies. On the other hand, the fact
that better relapse control in patients transplanted with AG/GG
grafts did not translate into higher aGvHD incidence rates is
suggestive of an overall better T cell reconstitution with a broader
but also more self-tolerant repertoire [6, 7]. Although human and
mouse models are not one-to-one comparable, this hypothesis is
supported by the findings of Clave et al. [11] already mentioned
above. The exact mechanism through which the donor rs2204985
exerts its effect remains unclear. It seems, however, that the G
allele correlates with superior thymic function, which in turn
allows for a more complete and efficient immune reconstitution.
This hypothesis is further supported by another mouse HSCT
model, where it was shown that better preserved thymic function
after HSCT correlated with superior immune reconstitution and
decreased incidence of early post-transplantation adverse events
[27]. It would be certainly interesting to investigate in future
studies how this donor genetic marker may impact outcome after
haploidentical HSCT as well as to what extent it might be relevant
for pediatric patients, as both these HSCT settings exhibit distinct
immunological features from the HSCT setting reviewed in
this study.
Limitations of this study constitute missing data regarding

infection incidence rates as well as actual measurement of T cell
reconstitution surrogate markers like sjTRECs or βTRECs in patients
before and after HSCT. Missing data was present for CMV status
(see Table 1), blood group (2.2%) as well as the date of
development of acute and chronic GvHD (aGvHD: 0.6%, cGvHD:
25.9%), limiting particularly the analysis for the endpoint cGvHD
incidence. Another limitation is that patients not achieving
complete remission were excluded, so our results are only
representative for this subgroup of patients. Furthermore, our
cohort represents patients transplanted in Germany and shows a
large proportion of patients treated with ATG as part of the
conditioning treatment as well as a low proportion of patients
treated with tacrolimus based immunosuppression, which may
limit future comparability with other cohorts showing different
features. Last, another limitation of the study is that the limited
cohort size of the 9/10 HLA matched subgroup precluded a
comprehensive subanalysis statistical analysis on whether distinct
HLA-locus mismatches differentially influenced the donor
rs2204985 genotype effect. In our dataset, no statistically
significant interactions were identified for these variables in the
respective multivariate model (data not shown).
In conclusion this is to our knowledge the first study to date

investigating the potential role of the donor genetic determinant
of thymopoiesis, rs2204985, in the outcome of patients receiving

unrelated HSC grafts. Our data suggest that donor rs2204985 AA
genotype in combination with single HLA mismatches may
adversely affect the outcome of HSC transplanted patients and
should therefore be avoided. Older male patients receiving single
HLA-mismatched HSC grafts are expected to benefit the most
from such optimized donor selection. It is of note that one in four
unrelated donors of Caucasian origin is expected to carry the AA
genotype. A weaker relapse and –presumably- infection control
due to compromised T cell reconstitution as a result of the
unfavorable donor AA genotype may account for these findings.
Confirmatory studies in larger independent cohorts are warranted
before final conclusions are drawn.
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