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Abstract: Ever increasing demands of data traffic makes the transition to 6G communications in the
300 GHz band inevitable. Short-channel field-effect transistors (FETs) have demonstrated excellent
potential for detection and generation of terahertz (THz) and sub-THz radiation. Such transistors
(often referred to as TeraFETs) include short-channel silicon complementary metal oxide (CMOS).
The ballistic and quasi-ballistic electron transport in the TeraFET channels determine the TeraFET
response at the sub-THz and THz frequencies. TeraFET arrays could form plasmonic crystals with
nanoscale unit cells smaller or comparable to the electron mean free path but with the overall
dimensions comparable with the radiation wavelength. Such plasmonic crystals have a potential of
supporting the transition to 6G communications. The oscillations of the electron density (plasma
waves) in the FET channels determine the phase relations between the unit cells of a FET plasmonic
crystal. Excited by the impinging radiation and rectified by the device nonlinearities, the plasma
waves could detect both the radiation intensity and the phase enabling the line-of-sight terahertz
(THz) detection, spectrometry, amplification, and generation for 6G communication.

Keywords: 6G communications; plasmonic crystals; field-effect transistor arrays; plasma wave
instabilities; terahertz detection; terahertz generation; line-of-sight detection; silicon CMOS; travelling
wave amplifier; terahertz radiation

1. Introduction

Within literally one generation, the Internet revolutionized our lives and proved to
be a lifesaver during the COVID-19 pandemic. The wireless communication during the
pandemic increased about 40%. Teleconferencing increased by about 300% [1]. It was
mostly enabled by one material—silicon—and by one device—the field-effect transistor—
albeit with a lot of help from germanium, III–V, and some other materials. We now use
4G and emerging 5G technology, but the 6G communications will be another transforma-
tional jump in communications (see Figure 1). 6G will raise applications in telemedicine,
teleconferencing, defense, industrial controls, cyber security, the Internet of Things, au-
tonomous unmanned cars, robotics and stay-at-home work and conferencing to a much
higher level [2–11]. 6G will expand the wireless high-speed communications to the space,
sea, and upper atmosphere.

Analyzing the spectrum of possible pandemic outcomes using the Pandemic Equa-
tion [12] shows that the pandemic tail and even possible spikes might still be with us for
years to come driven by new emerging COVID-19 virus variants, such as the Delta vari-
ant. This makes the planned transition to the 6G communications using the sub-terahertz
(sub-THz) range to be even more important. This 300 GHz range has been identified as the
range between 252.72 GHz to 321.84 GHz [13].
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Figure 1. Communication evolution from 4G to 6G. 
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THz) range to be even more important. This 300 GHz range has been identified as the 
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Among the technologies to support such a transition, the plasmonic crystal technol-
ogy has the potential to become a winner. A unit cell of such a crystal has small dimen-
sions to support the ballistic or quasi-ballistic transport and plasmonic resonances, while 
the overall size of the crystal is sufficiently large to efficiently capture or emit a sub-THz 
or a THz beam (see Figure 2) [14–33]. 
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Figure 2. Plasmonic crystal concept: multi finger (grating gate) (from [14]) (a) and two-dimensional 
plasmonic array (from [15]) (b). 

For example, the critical unit cell dimensions for silicon at room temperature might 
be on the order of 20 to 50 nm depending on the mobility and electron density. For the 240 
to 320 GHz range, the overall dimension of the plasmonic crystal device could be in the 
millimeter range. Unique circuit applications for the plasmonic crystal devices could 
range from the line-of-sight detection [34], spectroscopy [35,36], homodyne [37–39] or het-
erodyne detection [40–43], frequency to digital conversion [44], and travelling wave am-
plifiers [45]. 

Figure 1. Communication evolution from 4G to 6G.

Among the technologies to support such a transition, the plasmonic crystal technology
has the potential to become a winner. A unit cell of such a crystal has small dimensions
to support the ballistic or quasi-ballistic transport and plasmonic resonances, while the
overall size of the crystal is sufficiently large to efficiently capture or emit a sub-THz or a
THz beam (see Figure 2) [14–33].
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For example, the critical unit cell dimensions for silicon at room temperature might be
on the order of 20 to 50 nm depending on the mobility and electron density. For the 240
to 320 GHz range, the overall dimension of the plasmonic crystal device could be in the
millimeter range. Unique circuit applications for the plasmonic crystal devices could range
from the line-of-sight detection [34], spectroscopy [35,36], homodyne [37–39] or heterodyne
detection [40–43], frequency to digital conversion [44], and travelling wave amplifiers [45].

Plasma waves were first predicted by Tonks and Langmuir in 1929 [46]. In 1952, David
Pines and David Bohm introduced the term “plasmon” [47]. The seminal works of Stern
and Ferrell [48] and Chaplik [49] considered plasma waves in semiconductors. The promise
and demonstrations of the THz generation by unstable resonant plasma waves [50–60],
and of the THz detection by both resonant [61–66] and decaying [67–84] plasma waves
has stimulated a lot of interest to this research area and resulted in the demonstration of
the THz plasmonic detection in Si [70–75], III–V [76–78], III–N [79–82], monolayer, bilayer,
and bipolar graphene [64,65,85–90]. In this paper, we analyze the applications of this
technology for future 6G communications.
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2. Plasmonic TeraFETs

Field-effect transistors operating in plasmonic regimes and often referred to as Ter-
aFETs have already demonstrated an impressive performance in the sub-THz and THz
range (see Table 1).

Table 1. TeraFET detector performance at sub-THz and THz frequencies (data from [82]).

Detector Type Frequency (THz) Noise Equivalent Power
(pW/Hz1/2)

AlGaN/GaN TeraFETs 0.49–0.65 25–31

AlGaN/GaN TeraFETs 0.7–0.9 30–50

65 nm Si CMOS 0.8–1 100

65 nm Si CMOS 0.65 17

65 nm Si CMOS 0.72 14

90 nm Si CMOS 0.6 48–70

130 nm Si CMOS 0.26 8.4

Grated gate structures [14–33,77,78,89–91] demonstrated a better performance com-
pared to single TeraFETs and a promise of THz radiation. Most of the room temperature
results are for damped plasma wave detection by field-effect transistors. Figure 3 presents
the largest calculated resonant quality factors for the single TeraFETs and the plasmonic
frequencies at which these maximum quality factors are obtained.
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Figure 3. Estimated values of the maximum quality factor Qm, and the frequency at which this value
is achieved, fm, for Si, GaN, InGaAs, and p-diamond TeraFETs (data from [92,93]). Parameters used
in the calculation: mobilities for Si 0.1450 m2/Vs, for GaN 0.2 m2/Vs, for InGaAs 1.2 m2/Vs, and
for p-diamond 0.53 m2/Vs; effective masses: for Si 0.19, for GaN 0.23, for InGaAs 0.041, and for
p-diamond 0.663.
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The quality factor values, Q, shown in Figure 3, were obtained using the following
equation:

Q = ωpτe f f (1)

Here ωp = sk is the plasma velocity, k = π/(2L) is the wave vector of the fundamental
plasmonic mode for a TeraFET detector, and s is the plasma wave velocity:

s = vth((1 + exp[−qUo/(ηkBT)]) ln[1 + exp[qUo/(ηkBT)]])0.5 (2)

Uo = Ug − UT is the gate voltage swing, Ug is the gate-to-source voltage, Ug − UT is the
threshold voltage, h is the subthreshold ideality factor, 1/τe f f = 1/τm + νk2 is the effective
scattering frequency, ν is the electron fluid viscosity, L is the channel length, τm = µm/q is
the momentum relaxation time, m is the low field mobility, m is the electron effective mass,
q is the electronic charge, kB is the Boltzmann constant, and T is the temperature.

The quality factors in Figure 3 are much smaller than that for the photonic crystals
operating in near infrared or visible range and using, for example, gold nanoparticles [94].
Moreover, the values in Table 2 represent the upper bound of the quality factors of the THz
TeraFETs that could be achieved. Parasitic elements [95], surface scattering [96], quantum
reflection [97] from the contact regions all conspire to reduce the quality factors. Oblique
waves were mentioned as another reason for the quality factor reduction [98], which,
however, was not confirmed by numerical simulations [99]. For example, the calculation
in [91,92] predicts the quality factor for InGaAs at 77 K of 18. In fact, the measured quality
factor at 110 K was 1.4 [100]. The resonant behavior for Si TeraFETs at room temperature
for the 20 nm NMOS (Q = 7) is predicted for 11 THz, which is a larger frequency that
the optical phonon frequency in Si (~8 THz). At such frequency, coupling with lattice
vibrations should be accounted for. However, the data in Figure 3 provide the guidance for
searching for the resonant plasmonic response at room temperature.

Table 2. Performance of THz detection devices (data from [101–103]).

THz Detector Mechanism Speed
Operating

Temperature
(K)

Responsivity
(kV/W or A/W)

NEP
(pW/Hz−1/2)

Golay cell Thermal Slow 300 10–100 kV/W ~100

Bolometer Thermal Slow 4.2 ~100 kV/W ~0.1

Schottky diode Rectification Fast 300 0.1 to 1.5 kV/W 2.7 to 40

GaN TeraFET Plasmonic Fast 300 1.1 kV/W 40

Grated Gate
TeraFET Plasmonic Fast 300 2.2 to 23 kV/W 0.5 to 50

Resonant
tunnelling diode

Resonant
tunnelling Fast 300 7.3 A/W 7.7

Resonant
tunnelling diode

Resonant
tunnelling Fast 300 0.9 kV/W 2.5
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Table 2 compares the performance of THz TeraFET detectors with other THz detectors.
As seen, the achieved TeraFET performance is at or above the state-of-the-art. Since the
TeraFET technology is still developing, it is expected to become a leading THz detection
technology. In addition to fast speed, tunability, and operating in a wide temperature
range, possibly the greatest advantage of TeraFETs is the compatibility with the Si CMOS
technology. All THz communication components, detectors, generators, and modulators
operating in the 300 GHz band could be implemented using Si CMOS TeraFETs. This
makes this technology especially appealing for the 6G communication integrated circuits.

The bandwidth is determined by the received power, Pr, the signal-to-noise ratio, SN,
and the detector noise equivalent power, NEP [104].

BW =
P2

r
SN2NEP2 (3)

Pr =
c2GrGtPt

A(4πR f )2 (4)

Here, Pt is the transmitted power, c is the speed of light, Gr and Gt is the receiving and
transmitting antenna gains, A is the propagation loss, R is the communication distance,
and f is the communication frequency. The state-of-the-art Si FET emitters using frequency
multiplication generate in the order of a hundred of microwatts power in the 300 GHz
range [105,106]. However, the TeraFET output power could be increased using a series
connection of TeraFETs [107] and even more by using the plasmonic crystal TeraFETs
discussed in the next section with the estimated power output on the order ~100 mW [20].
Calculations using Equations (3) and (4) show that this power might be sufficient if the
receiver NEP could be reduced to 0.1 pW/Hz1/2 from the current value of 0.5 pW/Hz1/2

(see Table 1). As seen from Equations (3) and (4), this increase in the transmitted power
enable orders of magnitude increases in the bandwidth and/or in the communication
range.

TeraFETs could detect and generate THz radiation. However, their modulation speed
is limited by the transistor cutoff frequency, fT [108]. The upper bound of fT is given
by [108]:

fTo =
vs

2πL
(5)

where L is the channel length and vs is the electron saturation velocity. For silicon longer
channel devices, vs is ~105 m/s and could be ~50% higher in short-channel devices [109].
However, as shown in [110], the maximum modulation frequency peaks at the inverse
effective electron relaxation time, which was taken as the electron momentum relaxation
time, τm = mµ/q, where m is the electron effective mass.

The contribution of this effect into fT could be estimated as follows:

fT =
1

1/ fTo + τm
(6)

Figure 4 shows dependence of the cutoff frequency on the channel length for vs = 105 m/s
and vs = 1.5 × 105 m/s with and without accounting for the electron momentum relaxation
time. As seen, Si TeraFETs could be modulated at sub-THz frequency, enabling their
application for the 300 GHz band 6G communication.

(The bandwidth is BW ≈ 2 fT , since the TeraFETs could be modulated at frequencies
on the order of fT .)



Sensors 2021, 21, 7907 6 of 16

Sensors 2021, 21, x FOR PEER REVIEW 6 of 17 
 

 

Calculations using Equations (3) and (4) show that this power might be sufficient if the 
receiver NEP could be reduced to 0.1 pW/Hz1/2 from the current value of 0.5 pW/Hz1/2 (see 
Table 1). As seen from Equations (3) and (4), this increase in the transmitted power enable 
orders of magnitude increases in the bandwidth and/or in the communication range. 

TeraFETs could detect and generate THz radiation. However, their modulation 
speed is limited by the transistor cutoff frequency, fT [108]. The upper bound of fT is given 
by [108]: 

2
s

To
vf
Lπ

=  (5) 

where L is the channel length and vs is the electron saturation velocity. For silicon longer 
channel devices, vs is ~105 m/s and could be ~50% higher in short-channel devices [109]. 
However, as shown in [110], the maximum modulation frequency peaks at the inverse 
effective electron relaxation time, which was taken as the electron momentum relaxation 
time, /m m qτ μ= , where m is the electron effective mass. 

The contribution of this effect into fT could be estimated as follows: 

1
1/T

To m

f
f τ

=
+

 (6) 

Figure 4 shows dependence of the cutoff frequency on the channel length for vs = 105 
m/s and vs = 1.5 × 105 m/s with and without accounting for the electron momentum relax-
ation time. As seen, Si TeraFETs could be modulated at sub-THz frequency, enabling their 
application for the 300 GHz band 6G communication. 

 
Figure 4. Dependence of the cutoff frequency on the channel length for vs = 105 m/s (two bottom 
curves) and vs = 1.5 × 105 m/s (two top curves) with (bottom line in each set) and without (top line in 
each set) accounting for the electron momentum relaxation time. 

(The bandwidth is 2 TBW f≈ , since the TeraFETs could be modulated at frequencies 

on the order of Tf .) 

  

Figure 4. Dependence of the cutoff frequency on the channel length for vs = 105 m/s (two bottom
curves) and vs = 1.5 × 105 m/s (two top curves) with (bottom line in each set) and without (top line
in each set) accounting for the electron momentum relaxation time.

3. Plasmonic Crystals

Figures 5–8 show different plasmonic crystal implementations proposed for detecting,
processing, and generating the THz radiation. Figure 5 illustrated the Dyakonov–Shur
(DS) instability mechanism [50] that relies on the difference in the reflection coefficients
from the channel boundaries due to the differences in the velocities of the plasma waves
propagating from the source to the drain (s + v) and reflected from the drain (s − v). Here, v
is the electron drift velocity. The largest increment corresponds to the boundary conditions
of the short-circuited source and open drain. Having finite impedances at the source and
drain reduces the increment [111,112].
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Figure 6 shows two possible implementations of the plasmonic boom structures. The
plasmonic boom instability [19,20] occurs when the electron velocity exceeds the plasma
velocity. It is similar to the sonic boom occurring when a jet achieves a supersonic velocity.
In a plasmonic crystal, such instability should be very effective if the electron drift velocity
repeatedly goes higher and lower than the plasma velocity. In the structure shown in
Figure 6a, the plasma frequency is modulated via having the periodic pattern of varying
electron densities. In contrast, the structure shown in Figure 6b corresponds to the same
plasma frequency spectrum in all the regions. However, the electron drift velocity is higher
in narrower regions and smaller in the wider regions. Using narrow protruding regions
called plasmonic stubs allows for the phase control in plasmonic 1D, 2D, and 3D plasmonic
crystals, schematically shown in Figure 7. The stubs could be gated as shown in Figure 6
and, therefore, tunable, allowing for the optimized phase relations [113].

The tunable transmission by the grated gate structure was described in [114]. The
transmission minima at the fundamental plasma frequency and its harmonics were ob-
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served in the temperature range from 4.2 K to 170 K. THz generation by a grating gate
structure, due to a plasmonic boom instability was proposed, for the first time, in [19] and
observed in [115].

The idea of adjusting the phase shifts in the unit cells of a plasmonic crystal for
the vector detection of generation could be also applied to a travelling wave amplifier
concept [45] (see Figure 9). Feeding the phase-shifted terahertz (THz) signal into the stages
of a TeraFET amplifier dramatically increases the response (see Figure 10). The number
of stages is only limited by the THz beam cross-section. As seen from Figure 10, this
“traveling wave amplifier” approach enables orders of magnitude enhancement in the THz
detector responsivity.
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4. TeraFET Sources

As mentioned above, the state-of-the-art Si FET emitters using frequency multiplica-
tion generate in the order of a hundred of microwatts power in the 300 GHz range [106].
However, the TeraFET output power could be increased using a series connection of Ter-
aFETs [107] and even more by using the plasmonic crystal TeraFETs discussed above with
the estimated power output on the order ~100 mW [20]. Table 3 compares the performance
of the existing THz electronic sources.
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Table 3. THz electronic sources operating at 300 K unless stated otherwise (see also [116–127]).

THz Emitter Frequency
(THz)

Output Power
(mW) 300 K

DC Power
(mW)

Efficiency
(%) Reference

40 nm Si CMOS 0.266 0.69 1790 0.039 [7]

GaAs pHEMT 0.144–0.432 0.063 @300 K
0.278 @77 K

180
(estimated) 0.1 [60]

130 nm SiGe HBTs 0.25 7.08 1960 0.36 [116]

130 nm SiGe
BiCMOS 0.34 1.02 1700 0.87 [117]

Schottky diode
frequency

multipliers
0.05–520 1900–200 - 38–5 [123]

Gunn diodes 0.1–0.3 0.05–0.023 - - [124]

IMPATT diodes 0.1–300 400–10 - - [125]

Resonant tunnelling
diode array 1–1.98 0.7 - - [126]

THz
plasmon-emitting
graphene-channel

transistor

1–7.6
0.01 @5.2 THz

0.001 @7.6 THz
@100 K

- - [127]

Terahertz plasmon amplifying graphene-channel transistors have been also proposed
(see [128] and references therein.) Vacuum electronic sources could produce THz radiation
in a large range of frequencies and output powers. Free electron lasers generated up to
500 kW peak power [129] in the range of 0.1 to 2.73 THz; BWO lamps generate from 50 mW
to 10 kW power in the 0.2 to 0.65 THz range [130]; and klinotrons produce up to watts of
power in the range 0.1 to 0.5 THz [131], with gyrotrons producing kilowatts of power in the
THz range [132]. However, THz electronic sources, especially Si CMOS, have the highest
potential for 6G communications in the 300 GHz band. The progress in developing this
technology has been incremental but important. The Si CMOS and BiCMOS plasmonic
sources, even in the 300 GHz band, where plasmons quickly decay, have a promise of
orders of magnitude improvement by developing circuits with matched phases between
the stages (see reference [45] for the description of this concept).

5. Other TeraFET Applications

TeraFET technology will also enable THz applications including astronomical sci-
ence [133–135], earth observation [136], sensing [137–139], chemical analysis [140,141],
homeland security, concealed weapon and explosive detection [142,143], industrial con-
trols [144,145], compact radars [146,147], structural integrity testing, spacecraft tiles con-
trol [144], Internet of Things (IoT), biotechnology [148–150], medicine [151,152], including
cancer diagnostics [153], and non-destructive VLSI testing during the manufacturing pro-
cess [154] and in-situ checking of the THz scans of chips [155–159]. Artificial intelligence
processing of the VLSI THz scans allows distinguishing between genuine and fake VLSI
for hardware cyber security applications [158]. Figure 11 shows the THz frequency ranges
for different applications of the THz technology.
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The THz range for 6G applications is extended to 10 THz to include communications in
space [133] and between computer chips [160]. The development of 6G THz communication
technology will be very beneficial for all other THz applications.

6. Conclusions

Short-channel TeraFETs and TeraFET plasmonic crystals have great potential for
supporting transformational 6G communications technology in the 300 GHz band and
beyond. The TeraFET physics involves ballistic or quasi-ballistic transport with the channel
dimensions being smaller than or close to the electron mean free path in the TeraFET
channel. GaAs plasmonic THz imaging arrays have already been commercialized [161].
Si CMOS deep submicron TeraFETs have also demonstrated excellent performance. This
technology could support 300 GHz line-of-sight detectors, travelling wave amplifiers,
spectrometers, and generators. III-N-based TeraFETs could find applications in the 6G
communication towers because of their potential of delivering a higher power [162,163]. In
a longer run, TeraFETs based on novel plasmonic materials, such as graphene, graphene-
based heterojunctions, and p-diamond, might compete with GaAs and Si CMOS TeraFETs,
and might even extend THz communications to higher THz frequencies.
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