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Abstract
Resistance to chemotherapy in ovarian cancer is poorly understood. Evolutionary models of
cancer predict that, following treatment, resistance emerges either due to outgrowth of an
intrinsically resistant sub-clone, or evolves in residual disease under the selective pressure of
treatment. To investigate genetic evolution in high-grade serous (HGS) ovarian cancers we first
analysed cell line series derived from three cases of HGS carcinoma before and after platinum
resistance had developed (PEO1, PEO4 and PEO6, PEA1 and PEA2, and PEO14 and PEO23).
Analysis with 24-colour fluorescence in situ hybridisation and SNP array comparative genomic
hybridisation (CGH) showed mutually exclusive endoreduplication and loss of heterozygosity
events in clones present at different timepoints in the same individual. This implies that platinum
sensitive and resistant disease was not linearly related but shared a common ancestor at an early
stage of tumour development. Array CGH analysis of six paired pre- and post-neoadjuvant
treatment HGS samples from the CTCR-OV01 clinical study did not show extensive copy number
differences, suggesting that one clone was strongly dominant at presentation. These data show that
cisplatin resistance in HGS carcinoma develops from pre-existing minor clones but that
enrichment for these clones is not apparent during short-term chemotherapy treatment.
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Introduction
Ovarian cancer is the leading cause of death from gynaecological malignancy, in spite of
initially high response rates to chemotherapy treatment. The majority of cases are high-grade
serous (HGS) histotype and present with late stage disease. Adjuvant or neoadjuvant
treatment with platinum-based chemotherapy has response rates of 70–80 % (Herzog, 2004)
but most patients relapse with chemotherapy-resistant disease, and five-year survival is less
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than 35 % (Herzog, 2004; Herzog and Pothuri, 2006). The molecular basis of acquired drug
resistance remains poorly understood (reviewed in (Bast et al., 2009).

Resistance to cisplatin and carboplatin therapy in ovarian cancers is, in part, determined by
homologous recombination (HR) repair pathways (Bhattacharyya et al., 2000). BRCA-null
tumours have impaired repair of platinum induced DNA crosslinking and are preferentially
sensitive to treatment with platinum-based chemotherapy. Intriguingly, it has been shown
that some BRCA-null patients who acquire platinum resistance show reversion or
compensating mutations at relapse, which restore BRCA1 or BRCA2 function (Sakai et al.,
2008; Swisher et al., 2008). These reversions can also be induced in vitro, but it is unknown
whether these secondary mutations in clinical samples arise de novo and are selected during
treatment or are present at low frequency in minor sub-clones prior to exposure to
chemotherapy.

Carcinogenesis is an evolutionary process in which genetic and epigenetic clonal
populations are subject to natural selection, dependent both on their fitness to survive in
their environment and rate of genetic drift (Nowell, 1976), reviewed in (Merlo et al., 2006).
Two potential models for the evolution of chemotherapy resistance in HGS ovarian
carcinoma in vivo are therefore possible. First, genetically heterogenous clones may exist
within the tumour mass prior to treatment, and populations with advantageous mutations are
selected for survival and expansion following clearance of the dominant, sensitive clone by
chemotherapy. Alternatively, if genetic heterogeneity is either not present or does not
determine drug response, resistance could evolve progressively by mutation under the
selective pressure of chemotherapy (Agarwal and Kaye, 2003). Progressive acquisition of
mutations is most likely to occur in the dominant clone since the probability of a resistance
mutation arising in a given sub-clone is dependent on its proportion in the population. The
first model requires the presence of significant genetic heterogeneity within a tumour prior
to treatment and may result in a relapsed genome that is non-linearly related to the majority
clone at presentation. The second model predicts that the “relapsed” genome evolves from a
presentation genome, most likely the dominant clone, with sequential accumulation of
mutations and rearrangements conferring increased drug resistance.

Evidence for genetic heterogeneity prior to treatment and strong selective effects by
chemotherapy has been shown in studies of sequential samples in acute lymphoblastic
leukaemia (ALL), where relapsed disease has different copy number aberrations and point
mutations than at presentation (Mullighan et al., 2008; Zhu et al., 1999). These apparently
novel lesions can be detected at levels between 0.01 % and 1 % of pre-treatment ALL cells,
using PCR assays specific for mutated alleles in the sub-clones (Zhu et al., 1999). Specific
resistance mutations in BCR-ABL can also be identified retrospectively in pre-treatment
presentation samples of ALL that subsequently developed resistance to imatinib (Hofmann
et al., 2003).

It remains unclear whether similar mechanisms can explain the acquisition of drug
resistance in solid tumours. HGS carcinoma has high rates of genomic instability (Bayani et
al., 2002) and somatic TP53 mutation (Ahmed et al., 2010; Kobel et al., 2008), which could
generate genetic heterogeneity. Intra-tumour genetic heterogeneity, has been shown at low
resolution in ovarian and breast cancer (Khalique et al., 2007; Torres et al., 2007) using
heterozygosity (LOH) analyses (≤25 loci) and classical comparative genomic hybridisation
(CGH) (limited to detecting changes of ~ 20Mb). Interestingly however, classical CGH
over-estimates divergence between sub-clones when compared to array CGH data (Liu et
al., 2009). Higher resolution investigation of genomic profiles from different metastatic sites
in relapsed prostate cancer by array CGH showed a small number of sub-clonal changes
present in different metastases (Liu et al., 2009). Sequential studies before and after
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chemotherapy treatment are limited and the most definitive study to date used deep
sequencing of a single relapsed lobular breast carcinoma. This identified 6 point mutations
that were present at frequencies of 1–13 %, in the sample taken at presentation nine years
earlier (Shah et al., 2009).

To determine which model of genetic evolution occurs under the selective pressure of
chemotherapy in HGS ovarian carcinoma we used M-FISH and array CGH profiling to
characterise three unique series of ovarian cancer cell lines established sequentially, before
and after the development of platinum resistance, from three cases of HGS carcinoma in the
early 1980’s. In addition, to ask if genetic heterogeneity is altered in vivo during neo-
adjuvant chemotherapy treatment we profiled six paired samples from the prospective
CTCR-OV01 clinical study.

Results
Cell lines established at different timepoints have different responses to cisplatin

The PEO/PEA series of ovarian cancer cell lines were established as spontaneously
immortalised polyclonal lines from sequential samples from three separate cases of HGS
ovarian cancer (Figure 1) (Langdon et al., 1988). The cell line pairs PEA1/2 and PEO14/23
were established prior to treatment and at platinum-resistant relapse six and seven months
later respectively. The PEO1/4/6 cell series has recently been shown to arise from an
individual with a BRCA2 germline mutation (Sakai et al., 2009). We confirmed that the
hereditary mutation in PEO1 and the secondary mutation in PEO4/6 restoring BRCA
function were present in our stocks of these lines (data not shown). PEO1 was cultured from
relapsed disease 22 months after combination chemotherapy with cisplatin and the patient
was successfully re-treated with platinum-based agents. Relapse more than 12 months after
initial treatment is clinically defined as platinum-sensitive disease (Markman et al., 1991).
PEO4 was derived from further progressive disease 10 months later, prior to re-treatment
with high dose cisplatin. PEO6 was derived 3 months later, after failure to respond to high
dose cisplatin.

We first confirmed that that the matched series of PEO1/4/6, PEO14/23 and PEA1/A2 each
arose from a unique individual using STR genotyping (data not shown). To confirm that
these lines were consistent with HGS histotype and not from endometrioid, clear cell or low-
grade serous tumours we tested for mutations commonly associated with these subtypes in
KRAS (Exon 2), BRAF (exon 15), CTNNB1 (exon 3), PIK3CA (exons 10 and 21). All cell
lines had pathogenic TP53 mutations (Supplementary Table 1) but no other mutations,
consistent with HGS histotype (Ahmed et al., 2010). We then carried out in vitro cisplatin
sensitivity assays to confirm platinum response was comparable with their clinical
presentation. Pre-treatment cell lines, PEA1 and PEO14, were cisplatin sensitive with 40
±27 % and 69 ±6 % viability respectively when treated with 6μM cisplatin (Supplementary
Figure 1). PEO1, which was established at platinum-sensitive relapse, showed the same
degree of sensitivity to cisplatin as PEA1 and PEO14 with 62 ± 20 % viability. The lines
established from treatment-resistant relapsed disease, PEA2, PEO23 and PEO4/6, were
resistant to cisplatin in vitro with an average viability of 97 % (range 93-102 %)
(Supplementary Figure 1).

Since BRCA1/BRCA2 mutation is associated with platinum sensitivity in hereditary ovarian
cancer, and reversion of mutations is a mechanism of resistance in BRCA mutation carriers,
we sequenced BRCA1 and BRCA2 in the pre-treatment lines PEO14 and PEA1. Both of
these platinum sensitive lines had wild-type BRCA1 and BRCA2, confirming that they were
not derived from BRCA mutation carriers and therefore excluding compensating or
reversion BRCA mutations as the mechanism of resistance in these lines (data not shown).
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Cell lines established at different disease stages had extensive karyotypic divergence
We next examined the consensus karyotypes of each cell line series to look for evidence of
sequential genetic change. PEA1/A2, PEO14/23 and PEO1/4/6 were tetraploid, triploid and
diploid respectively. M-FISH (Table 1 and Supplementary Figure 2) identified striking
differences between the chemotherapy sensitive and resistant lines as PEA1 and PEA2 had
only 2/37 derivative chromosomes in common. In addition, one chromosome had junctions
between chromosomes 7, 8 and 6 in both lines but had undergone further unique
rearrangement in both PEA1 (joined to chromosome 11) and PEA2 (two versions joined to
chromosomes 6 and 4). Chromosome painting of chromosomes 5, 8 and 11 confirmed these
observations, thus excluding mis-classification artefacts of M-FISH as a cause of the
differences (Supplementary Figure 3a).

PEO14 and PEO23 shared only 2/18 derivative chromosomes with a common rearrangement
of der(5)t(3;5;10) and a del(9). The der(5)t(3;5;10) was confirmed by chromosome painting
of 3 and 5 (Supplementary Figure 3b) and by FISH (Supplementary Figure 3c).

PEO1 and PEO4 shared 6/28 derivatives, plus five chromosomes that had one junction in
common but had undergone further rearrangement in one or other line (Table 1 and
Supplementary Figure 2). In contrast, PEO4 and PEO6 were virtually identical, with 15/17
derivatives present in both lines (Table 1 and Supplementary Figures 2 and 3d). PEO4 and
PEO6 were independently established 3 months apart (Figure 1) and have been grown for 61
and 17 passages in culture respectively.

As the M-FISH data suggested that sensitive and resistant cell lines were highly genetically
divergent, we next used high-resolution array CGH on the Illumina 1M-duo SNP array
platform to characterise these differences in detail. All of the cell lines showed multiple
copy number aberrations, consistent with an origin of HGS ovarian carcinoma
(Etemadmoghadam et al., 2009). Extensive differences between the sensitive and resistant
lines for each patient were confirmed, as was the high similarity between paired resistant
lines PEO4 and PEO6 (Figure 2). When compared to each of their platinum-sensitive earlier
lines, PEO4, PEA2 and PEO23 showed copy number differences on at least 20
chromosomes (Figure 2a-c) involving 13 %, 37 % and 24 % of the genome respectively. In
contrast, PEO4 and PEO6 only differed on chromosomes 2, 4, 6 and 20 (Figure 2d) at only 4
% of the genome.

Sensitive and resistant sub-clones were not linearly related
The genetic differences within the PEO1/4/6, PEO14/23 and PEA1/A2 series suggested that
the later, platinum-resistant cells were not direct descendants of the earlier lines, but had
diverged independently from a common ancestor. PEA1 and PEA2 were pseudo-tetraploid
with pairs of derivative chromosomes (Supplementary Figure 2), suggesting that each has
undergone genome duplication. However, the derivative chromosomes that show
duplication, and were therefore present before the duplication event, were different for each
line. PEA1 had duplications of der(1)t(1;6), der(3)t(3;6), der(4)t(4;5), der(6)t(10;6) and
der(15)t(15;4), while PEA2 had duplications of der(4)t(4;11), der(7)t(7;18;8), der(10)t(6;10)
and der(11)t(11;3). This suggested that the genetic divergence of these sensitive and
resistant populations started prior to genome duplication. PEO14 contained three derivatives
of chromosome 3 but no normal copies of this chromosome, while PEO23, derived seven
months later, contained two normal copies of chromosome 3 and none of the derivatives
present in PEO14. Chromosome painting of chromosomes 3, 5 and 7 confirmed this M-
FISH data (Supplementary Figure 3b). Similarly, PEO1 contained no normal copies of
chromosome 1, 9, 11 or 17, while PEO4 contained one apparently normal copy of each
(Supplementary Figures 2 and 3d).
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We then focussed on LOH events to further confirm the non-linear relationship within cell
line series. Genotyping calls from the SNP array data showed that all of the series had
chromosome regions where the pre-treatment lines showed LOH while the relapse lines had
both maternal and paternal sequences. PEA1 had LOH on regions of chromosomes 5, 7, 12
and 16 that were heterozygous in PEA2 (Supplementary Figure 4), while PEO14 had a
single region of LOH on chromosome 1 that was heterozygous in PEO23. PEO1 showed
LOH on regions of chromosomes 1–5, 8, 12 and 21, all of which were heterozygous in
PEO4. PEO4 had regions of LOH on chromosomes 6 and 20 that were heterozygous in
PEO6, possibly indicating further divergence even in late stage disease.

Tumour cell survival of initial treatment was not necessarily genetically determined
Given the changes seen between sensitive and resistant disease in PEO14/23, PEA1/2 and
PEO1/4 and the lack of significant differences in the short interval between PEO4/6, we then
asked if array CGH changes were seen in 12 tumour samples taken before and after
neoadjuvant chemotherapy from six cases of HGS (Table 2). These samples were obtained
from the CTCR-OV01 clinical study, which was designed to identify sequential genomic
change during neoadjuvant chemotherapy (Ahmed et al., 2007; Swanton et al., 2007;
Swanton et al., 2009). We confirmed that five of the six pre-treatment samples were wild-
type for BRCA1 and BRCA2 confirming that these were sporadic cases and therefore that
restoration of BRCA function through reversion or compensation would not be a mechanism
of platinum resistance in these tumours. The remaining pre-treatment sample (case 08) had
insufficient DNA available for sequencing.

Array CGH was performed using Agilent’s CGH 44k Microarray. The tumours showed
evidence of genomic instability with multiple copy number aberrations in each sample
consistent with HGS origin. Of the six pairs of primary tumour samples taken before and
after treatment, three showed the same pattern of copy number aberrations in the pre-
treatment biopsy and post-treatment debulking surgery samples (cases OV01-08, 14 and 41).
The remaining three cases (OV01-11, 12 and 17) showed 2–5 differences in debulking
surgical samples compared to initial biopsy (Figure 3 and Table 3). Eight of these were
relatively small, less than 6 Mb, and located at the telomeres, possibly indicating a common
artefact (Figure 3d). However, there was an increase of 38 Mb of 4q31.2-q35.2 and Xq at
debulking surgery in case 11 and gain of the whole of chromosome X in case 12 (Figure 3d).
Pre- and post-treatment paired samples did not show the magnitude of divergence seen
between the PEO1/4, PEO14/23 and PEA1/2 series, although this comparison was not on an
array CGH platform that provided LOH information.

Early events in carcinogenesis
HGS cancer is a genetically unstable disease and shows considerable variation in the genetic
aberrations present between patients (Kobel et al., 2008). This has made it difficult to
identify the key oncogenes and tumour suppressor genes driving HGS cancer development,
and to distinguish between driver and passenger mutations. Given the divergence within
each cell line series we asked which genomic aberrations were common across all time
points for matched cell lines, in order to identify early genomic changes that were present in
the putative ancestral genome.

PEO1/4/6 shared 15 homozygous deletions, ranging in size from 0.8 kb to 2.9 Mb. Four of
these were in regions containing known deletion polymorphisms (listed as structural
variations on the UCSC genome browser, hg18), and of the remaining 11 only six affected
genes. However, three of these included tumour suppressor genes p16INK4a/ARF (Kamb et
al., 1994), WWOX (Paige et al., 2001), and NF2 (merlin) (Curto and McClatchey, 2008;
Trofatter et al., 1993), two affected RAB32 (Schulmann et al., 2005) and GNG7 (Shibata et
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al., 1998), both of which are down-regulated in other tumour types, and one included
KIAA0195, a gene of unknown function (Table 4). PEO14/23 did not have homozygous
deletion of any known tumour suppressor gene, however both lines showed homozygous
loss of JARID2, which represses expression of the oncogene cyclin D1 (Toyoda et al., 2003)
and ezrin, which interacts with NF2 (Curto and McClatchey, 2008).

Interestingly, while 10 homozygous deletions were common to all cell lines within a set,
only one was found in one cell line but not the other from the same series (data not shown).
This suggests that homozygous deletions occur early and clones containing them are
maintained by strong selection. PEA1 and PEA2 did not contain any common non-
polymorphic homozygous deletions affecting genes. However, PEA1 showed heterozygous
deletion of known tumour suppressor gene FAT, which has progressed to homozygous
deletion in PEA2 (data not shown), as a result of loss of the majority of 4q, consistent with
two-hit tumour suppressor gene inactivation.

Discussion
HGS ovarian cancer is a genetically unstable disease with tumours showing highly
rearranged karyotypes with numerical and structural chromosome aberrations (Bayani et al.,
2002). The underlying cause of instability in many cases is likely to be linked to an
extremely high frequency of Tp53 mutation, 97 %, in HGS cancers (Ahmed et al., 2010) and
frequent germline and somatic DNA repair defects (Turner et al., 2004). This genetic
instability has the potential to generate significant genetic diversity. Phenotypic and
transcriptional heterogeneity within solid tumours are frequently reported (Kang et al., 2003;
McAlpine et al., 2008; Ruijter et al., 1996). Whether or not there is a genetic basis for these
differences, or whether they are a consequence of differentiation hierarchies and stemness
within tumours has not been investigated.

We have used a combination of cell line model systems and paired primary tumour samples
to investigate genome evolution, and the role of genetic heterogeneity in response to
chemotherapy in HGS ovarian carcinoma. We observed an extensive and non-linear genetic
divergence between treatment-sensitive and treatment-resistant clones cultured from the
same individual. However, neo-adjuvant treatment with 3–6 cycles of chemotherapy, even
when a clinical response was observed, did not provide significant enrichment for a
substantially different genetic sub-clone.

The extensive non-linear divergence of sensitive and resistant sub-clones that we observed
in the three ovarian cancer cases from which the PEO/PEA lines were derived suggests
profound intra-tumour genetic heterogeneity, consistent for a genomically unstable tumour.
The extent and type of the differences between the early and late cell lines suggests that they
are only very distantly related and have evolved in parallel rather than as a direct
progression. Genetically divergent sub-clones that are intrinsically resistant to platinum-
based treatment may therefore exist within a tumour at the time of presentation and before
treatment begins.

It has recently been shown that a mechanism of cisplatin resistance in PEO4/6 is restoration
of a functional BRCA2 repair pathway. PEO1 has a germline BRCA2 mutation (Sakai et al.,
2009) and our array CGH data confirms loss of the wild-type allele. In PEO4 this region is
still present as a single copy, but a second mutation has occurred which restores the wild-
type amino acid sequence (Sakai et al., 2009). Our data shows extensive differences between
PEO4 and PEO1 confirming that the resistant PEO4 sub-clone in this case is most likely to
have existed prior to treatment, paralleling what has been observed for resistant cells in
leukaemia (Hofmann et al., 2003; Mullighan et al., 2008; Zhu et al., 1999).
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Interestingly, we observed more genomic complexity at presentation than at relapse. There
are three possible explanations for this. Firstly, the relapse genome may have had a slower
growth rate and gone through fewer cell divisions. Secondly, intrinsically resistant cells may
be genomically more stable. This possibility is particularly intriguing given the recent
evidence showing reversion mutations in BRCA1/BRCA2 as a mechanism of resistance
(Sakai et al., 2009; Sakai et al., 2008; Swisher et al., 2008). BRCA defects may be
associated with genomic instability through an increased incidence of double-strand breaks
(Bhattacharyya et al., 2000) and therefore restoration of this repair pathway may stabilise the
genomes of resistant sub-clones. Thirdly, it is possible that cells revert to a more constrained
genome under the pressure of chemotherapy. Although this seems less likely given our
evidence for a non-linear relationship between sensitive and resistant genomes.

While our results showed large genetic differences between cell lines established at different
timepoints during disease course, there were very few differences between profiles before
and during chemotherapy treatment in the same patient. Although the array CGH platform
used to profile clinical samples was approximately one fifth the resolution of the 1M
platform used to profile the cell lines, the heterogeneity observed in the cell lines was not
biased towards either large or small changes. The array CGH data should therefore be
representative of the overall picture of genomic similarity in the clinical samples.

Comparison of primary tumour samples pre-treatment and post three cycles of neo-adjuvant
chemotherapy suggested that much of the residual disease at debulking surgery was not a
genetically different sub-clone. This may be because disease has survived the initial cycles
of treatment for some environmental reason, such as accessibility to drug or tumour-matrix
interaction, or there may be refractory disease present without significant genetic differences
as detectable by array CGH. In the cell line system PEO1, which was established after
treatment with platinum-based chemotherapy, is still sensitive to cisplatin in vitro,
suggesting that this first relapse arose due to failure to clear all sensitive disease. Three neo-
adjuvant cycles of chemotherapy may therefore be too short an interval to remove all of the
treatment-sensitive disease present. Cell line responses to in vitro treatment with cisplatin
were consistent with clinical response at the timepoint when they were derived. This
confirms that the sensitivity of these clones to cisplatin is genetically determined, and
therefore that clinical relapse with resistant disease in these cases was not due to tumour
inaccessibility to drug.

The inability of high-resolution array CGH to detect the effects of selection during initial
treatment suggests that one clone is strongly dominant at the time of presentation. Minor
clones identified in leukaemia (Zhu et al., 1999) and breast cancer (Shah et al., 2009) are
only present as up to 1 % and 13 % of the population respectively and were detected by PCR
or deep sequencing approaches. Given these data we could speculate that a significant,
potentially up to 97 %, reduction in the dominant clone would be needed before minor
subclones could be detected by array CGH, which outputs the consensus genome of a large
number of cells. RECIST criteria require a 30 % reduction in target lesions to classify
patients as achieving partial clinical response. This would be insufficient to identify minor
populations with intrinsic resistance.

Although array CGH fails to identify genetically divergent sub-clones within primary
tumours the magnitude of the changes observed in the cell line system argues against culture
artefacts as an explanation. In spite of genomic instability cell line genomes can be relatively
stable through passages in culture (Roschke et al., 2002). The high similarity of the PEO4
and PEO6 genomes suggests a low rate of change in culture in this system. The few
differences between PEO4 and PEO6 could have arisen in culture although the number is
similar to the small number of differences seen between the CTCR-OV01 samples taken at
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relatively short time intervals. Concordance between matched pairs of cell lines established
from a single patient at a single timepoint is common, having been observed in a more
recently established matched cell line set (Ouellet et al., 2008). Although any individual
rearrangement might have arisen in culture, overall the cell line genomes are likely to
represent a genuine, although not necessarily dominant, clone from the primary tumour.

As a consequence of the extensive divergence between presentation and relapse disease, the
few rearrangements that are common are potentially enriched for the very earliest events in
carcinogenesis. There is a striking enrichment for known and candidate tumour suppressor
genes in the common deletions between PEO1 and PEO4, including homozygous deletions
of p16INK4a/ARF, NF2, and WWOX. These will lead to deregulated proliferation, reduced
apoptosis and loss of contact-dependent inhibition of proliferation. These changes therefore
confer many of the ‘Hallmarks of Cancer’ (Hanahan and Weinberg, 2000) and consequently
may well be what defines these cells as tumour cells. In turn, this suggests that early
homozygous deletions identified in the other pairs may harbour previously unidentified
tumour suppressor genes.

Our results support the model that pre-existing intra-tumour genetic heterogeneity is a major
factor in determining relapse with resistant disease. Our study does not address the degree of
heterogeneity or the proportions of divergent cells that may be present. The presence of a
strongly dominant clone makes finding genetically different sub-clones at a single timepoint
difficult and future studies may benefit from the use of microdissection or flow sorting
techniques in order to sample different populations. Alternatively, analysis of relapse disease
to identify relapse-specific lesions that can be retrospectively identified at low prevalence in
matched presentation disease may prove more effective (Mullighan et al., 2008; Zhu et al.,
1999). The increase in resolution and the range of aberrations that can be detected due to
high-throughput sequencing technologies will be essential in examining the full extent of
heterogeneity within tumours.

There are important clinical implications of genetic heterogeneity within tumours. The
identification of early events and the order in which genetic aberrations occur is extremely
difficult due to large numbers of passenger mutations. By profiling apparent divergent
populations sequentially we may improve the identification of early initiating events.
Quantifying heterogeneity remains a major challenge and future studies will need to address
the problems associated with sample collection, including obtaining samples from end-stage
disease. Identifying different genetic sub-clones would allow therapy either to be targeted at
a common change or personalised to combine therapies targeting different subpopulations.

Materials and methods
Cell culture

Cell lines were grown in RPMI-1640 + 10 % FBS + 1x Penicillin/Streptomycin (all
Invitrogen, Paisley, UK) at 37C, 5% CO2. Cell lines were thawed at passage numbers 34
(PEA1), 31 (PEA2), 71 (PEO1), 61 (PEO4), 17 (PEO6) and 20 (PEO14 and PEO23). STR
typing was carried out using the AmpFLSTR Identifiler PCR amplification kit (Applied
Biosystems, Warrington, UK). Mutation screening was carried out according to the methods
of Ahmed et al. (2010). Genomic DNA for array CGH was extracted from a confluent T75
using the Gentre Puregene cell kit for 1-2×107 cells (Qiagen, Crawley, UK) according to
manufacturer’s instructions into 150ul nuclease-free water.

Cisplatin sensitivity assay
Cells were plated at a density of 3000/well in 96-well plates and allowed to adhere in normal
growth medium. The following day fresh medium with a range of concentrations of cisplatin
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(Sigma-Aldrich, Poole, UK) (0uM, 1.5uM, 3uM, 6uM) was added. After 48 hrs, cell
viability was assayed using a Cell Titre Glo Assay (Promega, Southampton, UK) according
to manufacturer’s instructions.

M-FISH
Metaphases were prepared as previously described in (Alsop et al., 2006). M-FISH was
carried out using the 24XCyte Human mFISH Painting Kit (MetaSystems, Altlussheim,
Germany) according to manufacturer’s instructions. At least 10 metaphases for each line
were captured using a Zeiss Axioplan epifluorescent microscope equipped with camera
VAC-30054 (MetaSystems) and analysed using MetaSystems’ Isis software. An analysis of
the heterogeneity present between metaphases for each line is included in Supplementary
Figure 2.

Primary tumour samples
Primary tumours were obtained from the prospective randomised study, CTCR-OV01,
conducted in the Department of Oncology, University of Cambridge under an ethically
approved protocol (Ahmed et al., 2007). All samples were confirmed as HGS by
histopathological examination and were late-stage (III or IV). Samples were taken before
and after treatment and snap frozen. Sections from all post-treatment samples were
hematoxylin-eosin stained to evaluate the percentage of tumour cells and genomic DNA
isolated using proteinase-K treatment and phenol chloroform purification. Pre-treatment
needle biopsies were too small to allow sectioning as well as DNA extraction and were
processed using TriReagent (Invitrogen) according to manufacturer’s instructions in order to
obtain RNA from the same specimens for other studies (Ahmed et al., 2007; Swanton et al.,
2007; Swanton et al., 2009). Following exclusion of patients with non-serous ovarian cancer
(4), severe treatment toxicity (3), sample collection at only one timepoint (5), insufficient
biopsy material for array CGH (24), low tumour cellularity (4) and poor quality DNA (2) we
were left with six pairs of samples.

Array CGH
Array CGH on primary tumour samples was performed using the Agilent 60-mer
oligonucleotide CGH 44k Microarray (Agilent Technologies, Wokingham, UK) which gives
an average spatial resolution of 35kb. Array CGH on cell line samples was carried out on the
Illumina Human1M-Duo BeadChip (Illumina, Chesterford, UK), giving an average
resolution of 7kb. Experimental details and analysis parameters are given in the
Supplementary Methods. The array data has been deposited in GEO with accession numbers
GSE18453 (primary tumour samples) and GSE18461 (cell line samples).

Resequencing
Sequencing of p53, KRAS, BRAF, CTNNB1 and PIK3CA to confirm that cell lines were of
HGS histotype was carried out according to the method of Ahmed et al. (2010). Details of
BRCA1 and BRCA2 sequencing and primer sets used for both cell lines and primary tumour
samples are given in Supplementary Methods. Sequence traces were analysed in Seqscape
v2.6 (Applied Biosystems, Warrington, UK) and using the UCSC genome browser (http://
genome.ucsc.edu/cgi-bin/hgGateway). Any mutations called by the software were visually
checked to eliminate sequencing artefacts and checked against dbSNP build 130 to remove
any normal polymorphisms.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Experimental design: Cell lines from 3 individuals established at different timepoints
through disease progression were analysed. All patients received platinum-based
chemotherapy. Grey boxes indicate platinum-resistant cell lines.
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Figure 2.
Probe-by-probe subtraction plots of the array CGH profiles for matched cell line pairs. (a)
PEA2 – PEA1 (b) PEO4 – PEO1 and (c) PEO23 – PEO14 show differences (log2 ratio ≠ 0)
on the majority of chromosomes. (d) PEO6 – PEO4 show genuine differences on
chromosomes 4, 6 and 20 plus artefacts caused by homozygous deletions on chromosomes 9
and 16. All subtraction plots show increased noise around some telomeres and centromeres.
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Figure 3.
Array CGH profiles for patient OVO12 at (a) presentation and (b) debulking surgery. (c)
Log2 ratio values of the debulking surgery profile (b) were scaled to match the range in the
presentation array (a) to account for the difference in cellularity. (d) Difference in log ratio
on a probe-by-probe basis between profiles of the two timepoints after correcting for
cellularity. Alternate chromosomes are shown in different colours. The majority of the
genome shows no difference between the samples but the negative difference in the log2
ratio for the X chromosome indicates gain in the debulking surgery sample. Several
chromosomes, e.g. 1p, 7p, show differences in a very small number of markers immediately
adjacent to the telomere or centromere, possibly as a common artefact due to increased noise
in these regions.
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Table 1

Derivative chromosomes identified by spectral karyotyping in the consensus karyotype of matched ovarian
cancer cell lines

Cell line Derivative chromosomes

PEO1 (unique)
der(1)t(1;5), del(1), der(3)t(3;8), der(4)t(4;10), der(8)t(8;1),

der(9)t(9;1), der(10)t(10;3), der(11)t(11;12), der(12)t(11;12), dup(15)
der(17)t(17;6)

PEO1 & PEO4/PEO6 (shared)
der(7)t(8;7;8), der(16)t(16;4), der(19)t(19;7), der(22)t(22;20),

der(X)t(X;22;X)*

PEO1 (part-shared with PEO4/PEO6) der(2)t(6;2), der(5)t(1;5;9), der(9)t(3;9;1), der(10)t(10;17;7),
der(11)t(2;11)

PEO4/PEO6 (part-shared with PEO1)
der(2)t(6;2;20), der(5)t(5;9), der(9)t(9;3), der(10)t(10;17),

der(11)t(2;11;17)**

PEO4/PEO6 (unique) der(1)t(1;17), der(3)t(X;3), del(4), i(8)(q10), del(14), der(14)t(14;X)*,
der(21)t(13;21)

PEO6 (unique) del(6)

PEA1 (unique)

der(1)t(1;6), der(1)t(1;5), der(3)t(3;6), der(3)t(1;3), der(4)t(4;5),
der(6)t(6;10), der(7)t(7;15), der(8)t(8;14), der(8)t(8;22), der(8)t(8;6),

der(9)t(X;9), der(11)t(11;5), der(12)t(16;12), der(15)t(15;4),
der(17)t(13;17), der(17)t(22;17), der (X), t(9;X)

PEA1 & PEA2 (shared) i(5)(p10), del(18)

PEA1 (part-shared with PEA2) der(7)t(11;7;8;6)

PEA2 (part-shared with PEA1) der(7)t(6;7;8;6), der(7)t(4;7;8;6)

PEA2 (unique)
del(1), del(3), der(4)t(4;11), der(4)t(22;4), der(5)t(2;5), del(6),

der(7)t(7;18;8), der(8)t(11;8), der(10)t(6;10), der(11)t(11;3), dup(14),
der(16)t(6;16;6), der(16)t(16;13), der(19)t(19;7), der(22)t(13;22)

PEO14 (unique)
der(1)t(17;1), der(1)t(1;8), der(1)t(1;5), der(3)t(X;3), der(3)t(3;7),

der(5)t(5;2), del(7), del(10), i(11)(q10), der(11)t(19;11), der(12)(?),
del(18), der(21)t(21;18)

PEO14 & PEO23 (shared) der(5)t(5;3;10), del(9)

PEO23 der (1)t(1;7), der(2)t(2;9), i(13)(q10)

*
Not present in PEO6

**
present as der(11)t(2;11;17) in PEO4

Oncogene. Author manuscript; available in PMC 2011 March 02.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Cooke et al. Page 17

Ta
bl

e 
2

C
lin

ic
al

 d
at

a 
fo

r 
6 

ov
ar

ia
n 

ca
nc

er
 c

as
es

 w
ith

 p
ai

re
d 

sa
m

pl
es

 ta
ke

n 
pr

e-
 a

nd
 p

os
t-

ne
o-

ad
ju

va
nt

 tr
ea

tm
en

t

P
at

ie
nt

A
ge

T
re

at
m

en
t

C
yc

le
s

C
A

12
5 

pr
e

C
A

12
5 

po
st

R
es

po
ns

e
P

F
S 

(m
on

th
s)

O
S 

(m
on

th
s)

C
T

C
R

-O
V

01
-0

8
56

P
3

14
28

2
12

91
R

es
po

nd
er

>
 6

0
>

 6
0

C
T

C
R

-O
V

01
-1

1
51

C
3

67
9

39
R

es
po

nd
er

47
>

 6
0

C
T

C
R

-O
V

01
-1

2
73

P
3

87
7

85
4

N
on

-r
es

po
nd

er
24

25

C
T

C
R

-O
V

01
-1

4
68

P-
>

C
+

P
3+

3
75

0
15

37
N

on
-r

es
po

nd
er

11
15

C
T

C
R

-O
V

01
-1

7
61

C
3

91
3

23
5

R
es

po
nd

er
11

16

C
T

C
R

-O
V

01
-4

1
75

P
3

33
99

53
1

R
es

po
nd

er
12

26

P:
 p

ac
lit

ax
el

; C
: c

ar
bo

pl
at

in
; C

A
12

5 
pr

e:
 C

A
12

5 
le

ve
l b

ef
or

e 
ne

oa
dj

uv
an

t c
he

m
ot

he
ra

py
; C

A
12

5 
po

st
: C

A
12

5 
le

ve
l a

ft
er

 3
 c

yc
le

s 
of

 n
eo

-a
dj

uv
an

t c
he

m
ot

he
ra

py
; R

es
po

nd
er

/N
on

-r
es

po
nd

er
: r

es
po

ns
e 

as
 e

va
lu

at
ed

 a
cc

or
di

ng
 to

 G
C

IG
 c

ri
te

ri
a;

 P
FS

: p
ro

gr
es

si
on

-f
re

e 
su

rv
iv

al
; O

S:
ov

er
al

l s
ur

vi
va

l.

Oncogene. Author manuscript; available in PMC 2011 March 02.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Cooke et al. Page 18

Ta
bl

e 
3

D
if

fe
re

nc
es

 b
et

w
ee

n 
pr

es
en

ta
tio

n 
an

d 
de

bu
lk

in
g 

su
rg

er
y 

sa
m

pl
es

 a
s 

id
en

tif
ie

d 
by

 s
eg

m
en

ta
tio

n 
of

 a
 p

ro
be

-b
y-

pr
ob

e 
su

bt
ra

ct
io

n 
of

 tw
o 

ar
ra

y 
C

G
H

 p
ro

fi
le

s

P
at

ie
nt

ch
ro

m
lo

c.
st

ar
t

lo
c.

en
d

Si
ze

 (
kb

)
nu

m
.m

ar
k

C
ha

ng
e 

at
 s

ur
ge

ry

11
4

15
33

66
20

2
19

12
59

44
0

37
89

3
38

0
de

cr
ea

se

11
9

13
24

90
80

0
13

82
84

70
0

57
94

13
8

in
cr

ea
se

11
16

87
23

80
98

87
69

81
43

46
0

17
in

cr
ea

se

11
17

48
53

9
47

46
52

2
46

98
16

5
in

cr
ea

se

11
X

65
67

79
77

15
44

05
10

0
88

72
7

10
74

in
cr

ea
se

12
8

18
15

30
39

13
54

21
0

4
in

cr
ea

se

12
8

14
32

11
21

5
14

62
50

76
5

30
40

95
in

cr
ea

se

12
9

13
51

13
60

5
13

82
84

70
0

31
71

85
in

cr
ea

se

12
11

18
69

66
27

45
31

5
25

58
86

in
cr

ea
se

12
X

26
93

67
7

15
44

05
10

0
15

17
11

18
13

in
cr

ea
se

17
X

15
31

16
32

0
15

44
05

10
0

12
89

42
in

cr
ea

se

17
X

26
93

67
7

13
96

04
64

0
13

69
11

15
96

in
cr

ea
se

Oncogene. Author manuscript; available in PMC 2011 March 02.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Cooke et al. Page 19

Ta
bl

e 
4

C
om

m
on

 n
on

-p
ol

ym
or

ph
ic

 h
om

oz
yg

ou
s 

de
le

tio
ns

 b
et

w
ee

n 
m

at
ch

ed
 c

el
l l

in
e 

pa
ir

s

C
el

l l
in

e 
pa

ir
C

hr
St

ar
t 

(b
p)

E
nd

 (
bp

)
Si

ze
 (

kb
)

G
en

es
 in

vo
lv

ed
 (

R
ef

Se
q)

PE
O

1 
&

 P
E

O
4

6
14

69
12

62
3

14
69

17
01

5
4.

4
R

A
B

32
 (

in
tr

on
ic

)

PE
O

1 
&

 P
E

O
4

9
20

91
13

32
23

83
76

15
29

26
.3

M
ul

tip
le

 in
cl

ud
in

g 
p1

6-
IN

K
4a

 a
nd

 A
R

F

PE
O

1 
&

 P
E

O
4

16
76

70
62

45
77

42
70

46
72

0.
8

W
W

O
X

PE
O

1 
&

 P
E

O
4

17
70

97
39

77
71

00
34

89
29

.5
K

IA
A

01
95

PE
O

1 
&

 P
E

O
4

19
24

63
03

8
24

63
87

6
0.

8
G

N
G

7 
(3

’U
T

R
)

PE
O

1 
&

 P
E

O
4

22
28

32
70

11
28

33
49

29
7.

9
N

F2

PE
O

14
 &

 P
E

O
23

5
15

54
14

74
7

15
54

21
49

5
6.

7
SG

C
D

 (
in

tr
on

ic
)

PE
O

14
 &

 P
E

O
23

6
39

17
72

46
39

18
06

59
3.

4
C

6o
rf

64

PE
O

14
 &

 P
E

O
23

6
15

91
34

79
8

15
92

37
50

0
10

2.
7

E
Z

R
, O

ST
C

L

Oncogene. Author manuscript; available in PMC 2011 March 02.


