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Abstract: Background: Machine translation (MT) technologies have increasing applications in health-
care. Despite their convenience, cost-effectiveness, and constantly improved accuracy, research
shows that the use of MT tools in medical or healthcare settings poses risks to vulnerable popula-
tions. Objectives: We aimed to develop machine learning classifiers (MNB and RVM) to forecast
nuanced yet significant MT errors of clinical symptoms in Chinese neural MT outputs. Methods: We
screened human translations of MSD Manuals for information on self-diagnosis of infectious diseases
and produced their matching neural MT outputs for subsequent pairwise quality assessment by
trained bilingual health researchers. Different feature optimisation and normalisation techniques
were used to identify the best feature set. Results: The RVM classifier using optimised, normalised
(L2 normalisation) semantic features achieved the highest sensitivity, specificity, AUC, and accuracy.
MNB achieved similar high performance using the same optimised semantic feature set. The best
probability threshold of the best performing RVM classifier was found at 0.6, with a very high
positive likelihood ratio (LR+) of 27.82 (95% CI: 3.99, 193.76), and a low negative likelihood ratio
(LR−) of 0.19 (95% CI: 0.08, 046), suggesting the high diagnostic utility of our model to predict the
probabilities of erroneous MT of disease symptoms to help reverse potential inaccurate self-diagnosis
of diseases among vulnerable people without adequate medical knowledge or an ability to ascertain
the reliability of MT outputs. Conclusion: Our study demonstrated the viability, flexibility, and
efficiency of introducing machine learning models to help promote risk-aware use of MT technologies
to achieve optimal, safer digital health outcomes for vulnerable people.

Keywords: machine translation; machine learning; health/medical translation; digital healthcare
services; vulnerable people; symptoms translation

1. Introduction

Digital technologies are having increasing applications in healthcare and clinical
settings [1–8]. Machine translation (MT) tools are offering rapid, cost-effective solutions to
persistent barriers in health communication caused by language issues, compound by other
socioeconomic factors such as educational levels, health literacy, cultural backgrounds
and so on. The availability, convenience and privacy afforded by online MT tools has
enabled better access to health and medical information among vulnerable people and
communities. However, the risks and harms of the increasing uptake of these MT tools
which are often designed for general purposes [9–12], in clinical or self-diagnosis settings,
are known [13–15]. For people with bilingual skills, higher educational or health literacy
levels, the effect of these MT tools on their health decision making is largely limited, as

Int. J. Environ. Res. Public Health 2021, 18, 9873. https://doi.org/10.3390/ijerph18189873 https://www.mdpi.com/journal/ijerph

https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-7463-9208
https://orcid.org/0000-0002-8528-5193
https://orcid.org/0000-0001-5819-4379
https://doi.org/10.3390/ijerph18189873
https://doi.org/10.3390/ijerph18189873
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijerph18189873
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph18189873?type=check_update&version=1


Int. J. Environ. Res. Public Health 2021, 18, 9873 2 of 11

people can utilise relevant health knowledge and skills or direct contacts with medical
professionals to critically assess the reliability and validity of MT outputs. For vulnerable
people, the increasing use of online MT tools without the necessary bilingual skills and
medical knowledge can have clinically significant consequences.

Research has shown that various factors can contribute to erroneous outputs of MT
tools when applied in specialised medical or healthcare settings. Contrary to previous
models of MT technologies, such as statistical MT or rule-based MT, neural MT tends to
outperform in the translation of difficult medical jargons, more complex sentence struc-
tures and generate more fluent and natural MT outputs. In our study, we focused on
the MT quality issue associated with disease symptoms which are often conveyed in
high frequency, polysemous words in a certain language which require higher levels of
context-dependent interpretation of their meanings. By contrast with signs, symptoms
are the subjective description and assessment of individual health conditions. Important
variability in the semantic meanings of symptoms exists between their usage in general
language versus specialised domains such as health and medicine. They provide first-hand
information from patients to medical professionals in disease diagnosis and confirmation
of cases. In health and medical resources developed for educational, promotion purposes,
an exact, well-defined use of symptom terms can effectively help people to understand
the conditions, progression of their health status. Currently, there is a lack of standardised
bilingual vocabularies of symptoms, despite that symptoms are widely used in interna-
tional guidelines of disease definition and classification, alongside laboratory tests. For
example, the inclusion of symptoms in the detection of dengue fever helped increase
the specificity of disease screening tools, whereas laboratory tests contributed to higher
screening sensitivity [16–19]. In scenarios of limited healthcare sources, accurate symptom
description is more affordable than laboratory tests.

The translation of underdefined symptom terms poses significant challenges to neural
MT systems like Google Translate. Our study aimed to develop effective, affordable
research solutions, countermeasures to the MT issue related to symptoms. We developed
Bayesian machine learning classifiers to predict the likelihood of MT errors in terms of
their treatment of symptoms. The outputs of our models were the probabilities of a certain
original English medical text on disease diagnosis which would cause erroneous symptom
translation using Google Translate. People and MT users with limited medical knowledge
can thus make more informative health decision for themselves and those they care for.

2. Materials and Methods
2.1. Screening of Original English Source Texts

To promote the informed use of MT tools to acquire health information through
computer-aided translation by vulnerable patients and their caregivers, we developed
Bayesian machine learning classifiers to help the public understand the likelihood of in-
accurate self-diagnosis based on outputs of online MT applications. The Merk Manual of
Diagnosis and Therapy (MSD Manuals) are widely used in health education and family
healthcare around the world [20,21]. Its Chinese consumer edition is commissioned to
national leading medical professionals of the Chinese Preventive Medicine Association.
High-quality human translations of MSD Manuals were used as references to evaluate
the quality, reliability of neural machine translation outputs. We screened human, pro-
fessional translations of MSD Manuals for information on self-diagnosis of infectious
diseases and produced their matching neural machine translation outputs for subsequent
pairwise quality assessment by trained bilingual health researchers. Pairwise comparison
between human and machine translations helped use to identify and verify clinically sig-
nificant MT errors (kappa coefficient 0.842, 95% CI: 0.762, 0.922) of symptoms which could
cause inaccurate self-diagnosis of highly transmissible diseases by consumers of the MSD
Manuals.
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2.2. Multi-Dimensional Features

Through the observation of the original clinically significant errors in machine transla-
tion outputs, the language difficulty, morphological or syntactically complex expressions
and the semantic meanings of original English expressions were the main factors con-
tributing to the occurrence of machine translation errors. Thus, the original MSD Manuals
were represented by global, high-level, and multi-dimensional features instead of the
traditional local lexical features (the frequency/occurrence of words, e.g., bag-of-words).
The multi-dimensional features contained both structural and semantic features, which
were extracted by two public available English corpus annotation systems.

2.3. Structural Features

The Readability Studio (Oleander Software) was applied to extract a total of 20 mor-
phological and structural features of the original English texts, containing descriptive
statistics [22–26]. The structural features consisted of four global features of the original
texts of different dimensions: complex sentences (six features), lexical complexity (three fea-
tures), morphological and orthographic complexity (eight features), and content density
(three features). The complex sentence features were average number of sentences per
paragraph, number of difficult sentences (more than 22 words), longest sentence, average
sentence length, passive voice, and sentences that begin with conjunctions. The lexical
complexity features were number of unique words, number of unique long words, and
number of unique monosyllabic words. The morphological and orthographical complexity
features consisted of number of syllables, average number of characters, average number
of syllables, number of monosyllabic words, number of complex (three+ syllable) words,
number of unique three+ syllable words, number of long (six+ characters) words, and
misspellings. The content density features were number of proper nouns, overused words,
and wordy items.

2.4. Semantic Features

For semantic features, USAS (University of Lancaster Semantic Annotation Sys-
tem) [22,23] was utilized to explore the potential relations between clinically significant
symptom errors in MT and the original English words semantic type and expressions. In
total, 115 fine-grained semantic features of the original English health texts were extracted
and annotated by the USAS semantic system. The extracted 115 features fell into 21 major
discourse fields: general and abstract terms (A1–A15, 15 features); the body and the indi-
vidual (B1–B5, five features); arts and crafts (C1); emotion (E1–E6, six features); food and
farming (F1–F4, four features); government and public (G1–G3, three features); architecture,
housing and the home (H1–H5, five features); money and commerce in industry (I1–I4,
four features); entertainment, sports and games (K1–K6, six features); life and living things
(L1–L3, three features); movement, location, travel and transport (M1–M8, eight features);
numbers and measurements (N1–N6, six features); substances, materials, objects and
equipment (O1–O4, four features); education (P1), language and communication (Q1–Q4,
four features); social actions, states and processes (S1–S9, nine features); time (T1–T4, four
features); world and environment (W1–W5, five features); psychological actions, states and
processes (X1–X9, nine features); science and technology (Y1–Y2, two features); names and
grammar (Z0–Z9, Z99, 11 features). These hierarchically arranged semantic types of words
gave us a global view of the distribution of semantic meanings of the original English
texts on disease diagnosis, which were useful for investigating the importance of the word
choice and vocabulary diversity for neural machine translation tools like Google Translate
to provide a reliable and accurate translation.

2.5. Bayesian Machine Learning Classifiers

The Bayesian framework-based methods provide probabilistic predictions of given
samples and are widely used for assisting decision making in medical research [27–29].
Probabilistic learning allows researchers to develop a more intuitive interpretation of
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uncertainty and make utility assessment interpretable and useful to patients and medical
professionals in disease diagnosis. In our study, two Bayesian machine learning classifiers,
relevance vector machine (RVM) and multinomial naïve Bayes (MNB), were used to
develop to predict MT errors of clinical symptoms in Chinese neural MT outputs. RVM
has the identical function as support vector machines (SVM). RVM is known as a sparse
classifier, which is not susceptible to the issue of overfitting, as a result of algorithm
complexity. RVM suits the development of machine learning classifiers on small data sets
like ours because of its enhanced generalization ability [30,31]. MNB is an effective and
easy-to-train Bayes theorem-based statistical classification classifier, which works well on
categorical text data and highly scalable that is less likely to overfit data [32,33].

The collected MSD Manuals (totally 185 samples) were manually annotated as symptom-
error-prone (75 samples) and non-symptom-error-prone (110 samples) English health ma-
terials. To evaluate the performance of the developed RVM and MNB, the annotated data
were randomly split into training data (70%) and testing data (30%) for evaluation. The
training data (129 samples) contained 53 English health materials that were symptom-
error-prone and 76 English health materials that were non-symptom-error-prone. The
testing data (56 samples) contained 22 symptom-error-prone English health materials and
34 non-symptom-error-prone English health materials. We applied both five-fold cross-
validation and holdout validation to evaluate the performance of classifiers using five
evaluation metrics (accuracy, macro F-score, sensitivity, specificity, and area under the
curve, AUC). For five-fold cross-validation, the training data (129 samples) were further
randomly split into five subsets. For each fold, the classifier was trained on the selected
four subsets and validated on the remaining one. This process was repeated five times
during which each subset served as the validation data once. For holdout validation, the
classifiers were trained on the training data (129 samples) and validated on the holdout
testing data (56 samples).

2.6. Feature Optimisation

The original English texts were represented by a total of 135 multi-dimensional features
(20 structural features and 115 semantic features), of which the feature dimension (135) was
larger than the number of training data (129). Aiming at discovering a simple and concise
yet effective features set to develop a simple model with good generalization ability and
lower risk of overfitting, we applied recursive feature elimination (RFE) with support vector
machine (SVM) as the base estimator to perform backward feature reduction and remove
the features that were unimportant [34]. To obtain a set of features that could produce a
stable performance, we performed five-fold cross-validation on training data for recursive
feature elimination. The features with higher five-fold cross-validated performance were
selected by RFE as the optimised features.

To explore the relevance between different aspects (morphological and structural
complexity only; semantic complexity only; and interaction between morphological and
structural complexity and semantic complexity) of original language complexity and
symptom-error-prone in machine translations of public health resources, two optimisation
techniques were applied to extract the most informative features from the original features.
First, the RFE was applied on 20 structural features and 115 semantic features to obtain
the best Structural-Optimised Features (TOF) and Semantic-Optimised Features (SOF)
separately. Then, we applied RFE to perform joint optimisation on the full 135 multi-
dimensional features (Jointly Optimised Features, JOF) to explore the potential interaction
and relations between morphological structural features and semantic features.

Three sets of optimised features were identified by using backward feature selection
RFE with two optimisation techniques: First, jointly-optimised features (JOF, 57 features)
included the number of difficult sentences (more than 22 words), longest sentence, av-
erage sentence length, number of unique words, number of proper nouns, number of
monosyllabic words, number of unique monosyllabic words, number of unique 3+ syllable
words, number of long (6+ characters) words, number of unique long words, misspellings,
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overused words, wordy items, passive voice, A1, A2, A3, A4, A5, A6, A7, A9, A10, A13,
B1, B2, B3, B4, B5, C1, F1, L1, L2, L3, M2, M6, M7, N1, N3, N5, N6, O1, O2, P1, Q1, Q2, S1,
S2, S7, S8, X2, X3, X9, Z5, Z6, Z8, Z99. Second, the structural-optimised features (TOF, 5
features) contained the average number of sentences per paragraph, number of difficult
sentences (more than 22 words), number of unique words, number of syllables, and wordy
items. Lastly, the semantic-optimised features (SOF, 14 features) contained A2, A3, A4, A6,
A7, A13, B1, B2, B3, N5, O1, O2, Z5, and Z99.

Furthermore, to prevent the features with a larger range from dominating the RVM
optimisation process, we performed data normalization to scale the data features to im-
prove the model generalization ability [35,36]. MNB, using discrete features (the number of
feature occurrences), was not required to perform data normalisation. Two normalization
methods were applied in our study: Min-Max normalization (denoted as Min-Max, the
data were scaled to a certain range, e.g., [0, 1]) and L2–norm normalization (denoted as L2,
the data samples were scaled individually to the unit norm, i.e., the sum of the squares of
the data will always be up to 1).

3. Results

We compared the performance of different methods with different feature sets
(structural-optimised features, TOF; semantic-optimised features, SOF; and jointly opti-
mised features JOF) and data normalization techniques (Min-Max and L2) with respect
to AUC, accuracy, f-score, sensitivity and specificity metrics. The results of five-fold
cross-validation (CV) on training data and holdout validation on testing data of different
models are shown in Table 1 and Figure 1. For the RVM classifier, the performance of
RVM with optimised features always outperformed RVM with non-optimised features
(the original full features) on the testing data: using the structural-optimised features,
the AUC and specificity of RVM increased from 0.682 and 0.71 (using structural full
features) to 0.759 and 0.91, respectively; using semantic-optimised features, the AUC
and specificity of RVM increased from 0.894 and 0.91 (using semantic full features) to
0.912 and 0.94, respectively; applying jointly-optimised features, the AUC and sensitivity
of RVM increased from 0.77 and 0.868 (using full structural and semantic features) to
0.82 and 0.878, respectively. With data normalisation, the performances of RVM with
semantic-optimised features and jointly optimised features were both further improved.
The best performing RVM was the one using L2 normalised SOF, with an AUC of 0.937,
a sensitivity of 0.86 and a specificity of 0.94. For MNB that does not require a data
normalization, the best performing model was the one using JOF, with an AUC of 0.933,
a sensitivity of 0.82 and a specificity of 0.97. The performance of MNB with optimised
features was not less consistently improved on the training data (five-fold CV).

These results demonstrated that developing a simple yet highly cost-effective model
with less features indicative of English health materials prone to symptom errors in neural
machine translations was both practicable and applicable. Compared with MNB, RVM
with L2 normalised SOF had higher AUC, sensitivity and specificity, which was selected as
the best performing model for further diagnostic utility assessment and decision making
in our study.

To evaluate the suitableness of the Bayesian machine learning classifiers for assess-
ing whether an original English materials would prompt machine translation errors, we
compared the performance of RVM and MNB with traditional readability formulas: Flesch
Reading Ease Scores (based on average sentence length and average number of syllables
per word), Gunning Fog Index (used average sentence length and percentage of hard
words) and SMOG Index (used polysyllabic words that had more than three syllables).
Applying the readability formulas as binary classifiers, the underlying hypothesis was that
there was a positive correlation between the difficulty of English texts and the number of
errors in the MT outputs of the original English texts. That is to say, the more difficult the
original English health materials were, the more likely the MT systems would produce a
machine translation error as defined in our study. Thus, the materials with Flesch Reading
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Ease Score lower than 60, Gunning Fog Index greater than 12 and SMOG Index greater
than 12 were regarded as difficult to read and symptom-error-prone. As shown in Table 1,
the performance of readability-formula-based binary classifiers was worse than a random
guess (AUC = 0.5), with AUCs of 0.318 (Flesch Reading Ease Scores), 0.277 (Gunning Fog
Index) and 0.283 (SMOG Index). This finding suggested that the symptom-error-prone
materials were not relevant to the readability and complexity of original English health
materials. The easy-to-read materials also had potential to prompt MT systems to produce
a clinically significant symptom error. Thus, it is not suitable and reliable to assess whether
the machine translation of English source materials would contain symptom errors by
utilizing the standard (currently available) readability formulas. The best performing RVM
(AUC: 0.937; sensitivity: 0.86; specificity: 0.94) and MNB (AUC: 0.933; sensitivity: 0.82;
specificity: 0.97) demonstrated that machine learning methods were more suitable, effective
and robust for identifying the symptom-error-prone English health materials on infectious
diseases.

Table 1. Performance of readability formulas, relevance vector machine (RVM) and multinomial naïve Bayes (MNB) on
training and testing data with different features and data normalization methods. CV: cross validation. Bold: to indicate the
best model identified.

Methods

Training
(5-Fold CV) Testing

AUC Mean (SD) AUC Accuracy F-Score Sensitivity Specificity

Readability Formula Based Binary Classifiers

Flesch Reading Ease Scores (60) / 0.318 0.393 0.28 1 0
Gunning Fog Index (12) / 0.277 0.321 0.32 0.36 0.29
SMOG Index (12) / 0.283 0.321 0.32 0.36 0.29

Machine Learning Classifiers using Full Feature Sets (number of features)

Structural Full RVM (20) 0.668 (0.070) 0.682 0.554 0.51 0.32 0.71
Semantic Full RVM (115) 0.801 (0.059) 0.894 0.893 0.89 0.86 0.91
Structural + Semantics Full RVM (135) 0.858 (0.047) 0.868 0.839 0.83 0.77 0.88
Structural Full MNB (20) 0.6957 (0.12) 0.802 0.786 0.77 0.68 0.85
Semantic Full MNB (115) 0.7966 (0.05) 0.909 0.893 0.89 0.82 0.94
Structural + Semantics Full MNB (135) 0.786 (0.058) 0.925 0.911 0.90 0.82 0.97

Machine Learning Classifiers using Different Optimised Feature Sets (number of features)

Structural-optimised (TOF) RVM (5) 0.605 (0.075) 0.759 0.661 0.58 0.27 0.91
Semantic-optimised (SOF) RVM (14) 0.829 (0.042) 0.912 0.893 0.89 0.82 0.94
Jointly-optimised (JOF) RVM (57) 0.846 (0.042) 0.878 0.857 0.85 0.82 0.88
Structural-optimised (TOF) MNB (5) 0.456 (0.118) 0.414 0.554 0.46 0.18 0.79
Semantic-optimised (SOF) MNB (14) 0.839 (0.061) 0.886 0.893 0.89 0.82 0.94
Jointly-optimised (JOF)MNB (57) 0.832 (0.061) 0.933 0.911 0.90 0.82 0.97

RVM using Different, Normalized and Optimised Feature Sets (number of features)

Structural-optimised (TOF) RVM with Min-Max (5) 0.693 (0.069) 0.691 0.696 0.67 0.5 0.82
Structural-optimised (TOF) RVM with L2 (5) 0.345 (0.093) 0.467 0.607 0.38 0 1.0
Semantic-optimised (SOF) RVM with Min-Max (14) 0.847 (0.036) 0.868 0.857 0.84 0.68 0.97
Semantic-optimised (SOF) RVM with L2 (14) 0.845 (0.057) 0.937 0.912 0.91 0.86 0.94
Jointly-optimised (JOF) RVM with Min-Max (57) 0.787 (0.065) 0.860 0.804 0.80 0.82 0.79
Jointly-optimised (JOF) RVM with L2 (57) 0.842 (0.036) 0.947 0.875 0.87 0.86 0.88

Table 2 shows the two-tailed Mann–Whitney U test of RVM with different feature
sets on testing data using five evaluation metric results: AUC, accuracy, f-score, sensitivity
and specificity. The results showed that the overall performance (considering all five
evaluation metrics) of the best performing RVM with L2 normalised SOF was statistically
significantly improved comparing to RVM using Min-Max normalised TOF (p-value: 0.0122,
CI: 0.0685 to 0.4043), RVM with JOF (p-value: 0.0367, CI: 0.0381 to 0.0715), RVM with
structural full feature (p-value: 0.0122, CI: 0.1128 to 0.6004), and RVM with structural
and semantic features (p-value:0.0367, CI: 0.0522 to 0.0367). This result indicates that
the semantic features were more informative and effective for identifying the symptom-
error-prone English health education materials than morphological and structural features.
The machine translation with significant symptom errors was mainly associated with
the bilingual vocabularies and expression of symptoms instead of language syntactically
complexity (e.g., average number of sentences per paragraph, number of difficult sentences
and number of unique words).
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Table 2. The p-value of Mann–Whitney U test (two-tailed) and 95% confidence interval of RVMs
using different feature sets (bold values were significant).

RVM Classifier Pair(s)
Asymptotic 95% Confidence Interval

Lower Upper p-Value

SOF with L2 vs. Structural + Semantic Full 0.0522 0.0367 0.0367

SOF with L2 vs. Structural Full 0.1128 0.6004 0.0122

SOF with L2 vs. Semantic Full −0.0086 0.0534 0.1412

SOF with L2 vs. TOF with Min-Max 0.0685 0.4043 0.0122

SOF with L2 vs. JOF 0.0381 0.0715 0.0367

SOF with L2 vs. JOF with L2 −0.0321 0.0829 0.4633

SOF with L2 vs. SOF −0.0073 0.0489 0.5284

TOF with Min-Max vs. Structural Full −0.2146 0.2934 0.8345

JOF with L2 vs. Structural + Semantic Full −0.0219 0.1199 0.1161

4. Discussion
4.1. Probabilistic Results

Table 3 shows outputs of the readability formula-based binary classifiers and RVM,
MNB machine learning classifiers as probabilities of belonging to either symptom-error-
prone (SEP), and non-symptom-error-prone (NSEP) English health materials. RVM using
L2 normalised structural-optimised feature and MNB using structural-optimised feature (5)
did not differ significantly between English health materials prone to machine translation
errors and those which were not prone to machine translation errors. Outputs of readability
formulas-based classifiers and MNB, RVM classifiers using other feature sets differed
significantly between two sets of original health materials in English on infectious diseases.
The RVM with L2 normalised SOF and MNB with SOF had the highest probability means
(RVM: 0.802; MNB: 0.818) on SEP English health materials and low probability means
(RVM: 0.209; MNB: 0.077) on NSEP English health materials, showing the effectiveness
of the semantic-optimised features and the ability of Bayesian machine classifiers for
distinguishing between the SEP and NSEP English health materials.
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Table 3. Comparison of readability formula and MLC (RVM, MNB) output between symptom-error-prone (SEP) and
non-symptom error-prone (NSEP) English texts (machine learning classifier outputs were assigned probabilities). Bold:
bold values were significant.

Techniques

NSEP English Health
Materials

SEP English Health
Materials

p *
Mean Probability, SD

(n = 34)
Mean Probability, SD

(n = 22)

Flesch Reading Ease Scores (60) 41.088, 9.333 47.591, 10.680 0.0229
Gunning Fog Index (12) 12.774, 1.762 11.232, 1.965 0.0053
SMOG Index (12) 12.694, 1.294 11.582, 1.278 0.0067
Structural Full RVM (20) 0.344, 0.169 0.479, 0.216 0.0230
Semantic Full RVM (115) 0.202, 0.147 0.769, 0.312 <0.00001
Structural-optimised (TOF) RVM (5) 0.370, 0.139 0.451, 0.108 0.0012
Semantic-optimised (SOF) RVM (14) 0.192, 0.171 0.780, 0.290 <0.00001
Structural Full MNB (20) 0.167, 0.321 0.626, 0.431 0.0002
Semantic Full MNB (115) 0.066, 0.239 0.818, 0.394 <0.00001
Structural-optimised (TOF) MNB (5) 0.401, 0.148 0.358, 0.139 0.2867
Semantic-optimised (SOF) MNB (14) 0.077, 0.241 0.818, 0.394 <0.00001
Structural + Semantics Full RVM (135) 0.220, 0.186 0.759, 0.324 <0.00001
Structural + Semantics Full MNB (135) 0.042, 0.178 0.817, 0.394 <0.00001
Jointly-optimised (JOF) RVM (57) 0.201, 0.177 0.776, 0.323 <0.00001
Jointly-optimised (JOF) MNB (57) 0.034, 0.147 0.815, 0.393 <0.00001
Structural-optimised (TOF) RVM with Min-Max (5) 0.353, 0.211 0.511, 0.247 0.0168
Structural-optimised (TOF) RVM with L2 (5) 0.432, 0.0003 0.432, 0.0003 0.6811
Semantic-optimised (SOF) RVM with Min-Max (14) 0.241, 0.127 0.715, 0.336 <0.00001
Semantic-optimised (SOF) RVM with L2 (14) 0.209, 0.180 0.802, 0.250 <0.00001
Jointly-optimised (JOF) RVM with Min-Max (57) 0.243, 0.239 0.744, 0.339 <0.00001
Jointly-optimised (JOF) RVM with L2 (57) 0.224, 0.193 0.789, 0.232 <0.00001

* p values of Mann–Whitney U test.

Figure 2 shows the histograms that displayed the number of symptom-error-prone
(SEP) and non-symptom-error-prone (NSEP) English health materials that fell into each
10% probability bin based on outputs of RVM with L2 normalised SOF (left) and MNB with
SOF (right). For RVM, 94% of NSEP English health materials were assigned a probability
of error-prone < 50% (specificity = 0.94), and 86% of SEP English health materials were
assigned a probability of error-prone ≥ 50% (sensitivity = 0.86), showing considerable
overlap in outputs between the NSEP and SEP texts. For MNB, 94% of NSEP English
health materials were assigned a probability of error-prone < 50% (specificity = 0.94), and
82% of SEP English health materials were assigned a probability of error-prone ≥ 50%
(sensitivity = 0.82). Compared to RVM, as shown in Figure 2, the MNB outputs were less
overlapped outputs between the NSEP and SEP texts. Thus, RVM was more suitable than
MNB for further decision making since it allows the expert to select different thresholds to
gain the desired sensitivity and specificity pairings for diagnostic utility based on different
criteria. On the other hand, with fewer overlapped outputs, changing the thresholds of
MNB will not change the sensitivity and specificity.

4.2. Diagnostic Utility

In Figure 2 (left), nearly 14% of symptom-error-prone MSD manuals were assigned
low probabilities of 21–30%. In order to improve the classifier sensitivity, we can adjust the
probability thresholds to gain the desired sensitivity and specificity pairings. Table 4 showed
that if the probability threshold of the best performing RVM decreased from 0.50 to 0.23, the
model sensitivity increased from 0.86 (95% CI: 0.72 to 1.01) to 0.95 (95% CI: 0.87 to 1.04), but
the specificity decreased from 0.94 (95% CI: 0.86 to 1.02) to 0.71 (95% CI: 0.55 to 0.86). By
contrast, if the probability threshold increased from 0.5 to 0.9, the sensitivity decreased from
0.86 (95% CI: 0.72 to 1.01) to 0.59 (95% CI: 0.39 to 0.80) and the specificity increased from
0.94 (95% CI: 0.86 to 1.02) to 0.97 (95% CI: 0.91 to 1.03). Diagnostic utility (positive likelihood
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ratio LR+, negative likelihood ratio LR−) was also an effective criterion for evaluation of the
assessment tool. The likelihood ratio decided how the prediction changed the probability
of certain outputs (positive likelihood ratio was the ratio of sensitivity to false positivity;
negative likelihood ratio was the ratio of false negativity and specificity). The assessment
tool was regarded as effective and practicable with large positive likelihood ratios and small
negative likelihood ratios. Table 4 shows that 0.6 was the best probability threshold for the best
performing RVM classifier using the 14 L2 normalised semantic-optimised features, including
A2 (affect: modify, change, and cause/connected), A3 (being), A4 (classification: generally
kinds, groups, examples, particular/ general and detail), A6 (comparing: similar/different,
usual/unusual and variety), A7 (definite), A13 (degree), B1 (anatomy and physiology), B2
(health and disease), B3 (medicines and medical treatment), N5 (quantities: entirety, maximum,
exceeding and waste), O1 (substances and materials generally: solid, liquid and gas), O2
(objects generally), Z5 (grammatical bin), and Z99 (unmatched).
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Table 4. Probability thresholds of the best performing RVM using L2 normalised semantic-optimised features. Bold: bold
values were significant.

Thresholds Sensitivity
(95% CI)

Specificity
(95% CI)

Positive Likelihood
Ratio

(95% CI)

Negative Likelihood
Ratio

(95% CI)

0.23 0.95 (0.87, 1.04) 0.71 (0.55, 0.86) 3.25 (1.91, 5.51) 0.06 (0.01, 0.44)

0.25 0.91 (0.79, 1.03) 0.74 (0.59, 0.88) 3.43 (1.93, 6.11) 0.12 (0.03, 0.47)

0.40 0.86 (0.72, 1.01) 0.88 (0.77, 0.99) 7.34 (2.88, 18.71) 0.16 (0.05, 0.45)

0.50 0.86 (0.72, 1.01) 0.94 (0.86, 1.02) 14.68 (3.79, 56.90) 0.15 (0.05, 0.43)

0.60 0.82 (0.66, 0.98) 0.97 (0.91, 1.00) 27.82 (3.99, 193.76) 0.19 (0.08, 0.46)

0.80 0.77 (0.60, 0.95) 0.97 (0.91,1.03) 26.27 (3.76, 183.59) 0.23 (0.11, 0.51)

0.90 0.59 (0.39, 0.80) 0.97 (0.91,1.03) 20.09 (2.82, 142.92) 0.42 (0.25, 0.70)

5. Conclusions

MT technologies offer convenient, cost-effective solutions to existing barriers of access
of vulnerable people to healthcare services in multicultural countries. Although the risks
and harms of the increasing uptake of MT tools in clinical settings are well documented, lim-
ited protective mechanisms or countermeasures have been developed to help alleviate their
impact on communities, people who rely on these low-cost technologies to access medical
services. Our study demonstrated the viability, flexibility, efficiency of introducing machine
learning models to help promote risk-aware use of MT technologies to achieve optimal,
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safer digital health outcomes for vulnerable people. We found that erroneous neural MT
outputs of infectious disease symptoms were associated with a current lack of standardized
bilingual vocabularies of symptoms. The interpretation of subjective symptom terms can
vary substantially between the general and specialised use of these terms, as well as across
individuals: types, severity of pains, ranges and alarming levels of body temperatures,
cognitive abilities, consciousness, physical mobility, types of experienced vision problems
or disturbances, and malfunction of body parts. These were the symptom terms that were
often mistranslated by neural MT tools which could cause misleading self-diagnosis. High-
frequency, polysemous symptom words in Chinese require context-dependent approaches
to medical translation, for which human translators clearly outperformed neural MT tools.
Our research solution to this issue with current neural MT tools when applied in health
and medical settings was the development of high-sensitivity machine learning classifiers
which could effectively predict the likelihood of erroneous MT outputs in terms of the
translation of subjective symptom terms. We believe that the combined use of machine
translation and machine learning tools will help add more needed security to online digital
health aids and tools and help empower vulnerable communities and people.
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