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Diseases spread over temporal networks of interaction events between individ-
uals. Structures of these temporal networks hold the keys to understanding
epidemic propagation. One early concept of the literature to aid in discussing
these structures is concurrency—quantifying individuals’ tendency to form
time-overlapping ‘partnerships’. Although conflicting evaluations and an over-
abundance of operational definitions have marred the history of concurrency, it
remains important, especially in the area of sexually transmitted infections.
Today, much of theoretical epidemiology uses more direct models of contact
patterns, and there is an emerging body of literature trying to connect methods
to the concurrency literature. In this review, we will cover the development of
the concept of concurrency and these new approaches.
1. Introduction
1.1. Temporal network epidemiology, partnership and concurrency
The networks over which sexually transmitted infections spread can, to a high
accuracy, be described as a sequence of sexual events (sometimes known as
‘interactions’, ‘contacts’ or ‘encounters’) between pairs of individuals. These inter-
actions are the atoms of time-resolved sexual networks, in that it is not
meaningful to divide them into sub-events from an epidemiological point of
view. Furthermore, the duration of these events have little impact on disease
spreading, so a concise mathematical representation of the sexual contact patterns
of a population is as a sequence of events (i, j, t), where i and j are the individuals
involved and t is the time of the event. We will call such a sequence of events a
temporal network [1–5]. Temporal network epidemiology [6,7] connects the tra-
ditional compartmental models of theoretical epidemiology [8–10] to temporal
networks that we defined above or related classes of time-varying networks,
which both represent time-varying contact patterns between individuals.

We will primarily focus on sexually transmitted infections for the remainder
of this review. Like static network epidemiology [11–15], temporal network
modelling becomes particularly useful for sexually transmitted infections.
The reason is that for this case, interaction events are relatively well-defined
[16]. This case contrasts to respiratory infections, where the networks are
harder to observe and cross-sectionally denser such that mass-action (i.e.
well-mixed population) models incorporating some heterogeneity across indi-
viduals may be a better approach. However, our discussion can be
generalized to other infectious diseases and their associated temporal networks
if interaction events between individuals are reasonably well-defined.

Many factors determine the likelihood of whether or not one event spreads the
disease from one individual to another—the nature of the interaction, the health
status of those involved, etc.—but one can say for sure that sexual transmissions
can only occur at the times of the events, and between the people involved. The
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Figure 1. Schematic of temporal networks with three nodes that are differ-
ent in the degree of concurrency. (a) Serial monogamy, (b) concurrent
partnerships. A vertical bar represents a time-stamped interaction event
between a pair of nodes, neglecting the duration of the event. The thicker,
shaded lines are examples of time-respecting paths from 1 to 3 and, only in
(b), from 3 to 1. This figure is inspired by fig. 1 of [22].
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structure of a temporal network determines many aspects of
the spread of infections [17–21]. Periodic patterns (circadian
rhythms, seasonal variations, etc.) are examples of purely
temporal structures that can influence spreading. Hetero-
geneities in the number of network neighbours are a more
network-related, yet influential structure.

Some properties of temporal networks inherently depend
on both time and network structure. A fundamental notion
of temporal networks is a time-respecting path—whether a
path exists from one individual to another through a sequence
of events increasing in time. Note that infections can only pro-
pagate along time-respecting paths. Suppose that individual 1
is connected to 2 and 2 to 3. If all events between 1 and 2
happen before the events between 2 and 3, there is no time-
respecting path from 3 to 1 via 2 (figure 1a). If, on the other
hand, the events between 1 and 2 are interspersed with
events between 2 and 3, then there are time-respecting paths
both from 1 to 3 and from 3 to 1 (figure 1b). In the latter case,
it is harder to contain an outbreak. The partnerships between
1 and 2 and between 1 and 3 are concurrent in the second
scenario (figure 1b) but not in the first scenario (figure 1a).

Early network studies of disease spreading over sexual
events were, in many ways, pioneering. One can argue that
Kretschzmar & Morris’s [23] was the first work of modern
computational network science, in the sense that they tuned
the network structure and studied the response of a dynamic
system on the network. However, these early studies did not
consider the temporal network of events as described above.
They used a more coarse-grained network of partnerships.

From a modelling point of view, a partnership is a time
window, associated with a pair of individuals, within
which a disease can spread between them. One typically
assumes the likelihood of contagion per unit of time to be
constant during a partnership and that partnerships do not
take a break and start over again. These early articles rarely
state how one could hypothetically reduce the full infor-
mation of a temporal network of sexual interactions to a
network of partnerships—should one casual, non-recurring
interaction count as a partnership? Furthermore, papers
state a multitude of quantitative definitions of concurrency
[23–32], and several studies point out the difficulty of study-
ing an issue without an agreed definition [27,33–35]. Some of
the existing confusion and controversy probably stems from
the vagueness of the partnership concept. However, concur-
rency is by now so fundamentally rooted in the theory of
sexually transmitted infections that one cannot just ignore it
and start anew. Accordingly, a valuable line of research is
to connect the temporal network structure to the theory of
concurrent partnerships, which is this review’s topic.

This review will cover the theory of concurrency in the
mathematical literature. In particular, we will try to connect
the older literature based on the notion of partnerships
with the newer temporal-network-oriented papers. We first
describe how concurrency can allow for increased degrees
and increased degree heterogeneity, both known to increase
disease spread in standard network epidemiology ignoring
the dynamic structure. Then, we investigate the impacts of
concurrency that cannot be explained without understanding
the dynamic structure. We next touch upon the controversy of
whether or not high levels of concurrency drive the HIV epi-
demics in sub-Saharan Africa. However, we do not make a
full review of this controversial subject. Finally, we discuss
the outlook of temporal network epidemiology and its appli-
cation to understanding the impact of concurrency. We stress
that our contribution is to formulate concepts and models of
concurrency and serve as a tutorial and pointer towards poss-
ible future directions, but not as a review of the empirical
literature. We only refer to the empirical literature where
appropriate to support the conceptual and mathematical
frameworks.

1.2. Notes on terminology
In network science, the terminology is often ambiguous. Net-
work epidemiology is no exception. In this section, we state
operational definitions for the terms that we use. These are
chosen to conform to the literature on both temporal
networks and concurrency.

1.2.1. Event
An event refers to an interaction (u, v, t) between two individ-
uals u and v at time t. In general, it is also common to consider
the duration of each event in temporal network studies. How-
ever, the duration of a single event has no practical meaning
for epidemic modelling. For sexually transmitted infections,
an event represents a potentially infectious sexual interaction
between two individuals.

Typically, one models transmission at an event between
an infectious individual u and a susceptible v as a random
event with a fixed probability. If one has metadata such as
the gender of the individuals or information on condom
usage, the probability of infection may depend on them.

The time between two events between u and v is the
interevent time [36].

1.2.2. Temporal network
In this review, we will reserve temporal network for a sequence
of events (u, v, t) and the set of individuals involved. Different
events may simultaneously occur between different node
pairs in a temporal network.

1.2.3. Partnership
Given a temporal network, a partnership is a set of events
between a pair of individuals such that the events are suffi-
ciently evenly distributed. Throughout a partnership,
disease could spread from one individual to the other indi-
vidual at an equal rate. Mathematically, we typically
represent a partnership by the two individuals involved
and its start and end times, which we often assume to be
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Figure 2. An illustration of the time course of the measures κ1 and κ3
(shown in the bottom panel) in a temporal network (shown by a timeline
plot of the events in the top panel). Here we assume that the first event
of a pair of nodes is the beginning of a ‘partnership’ and that the last
event is the end of it, i.e. we consider the momentary network at the
given time.
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the times of the first and last events between the two individ-
uals, respectively (see figure 2 for an example).
 019
1.2.4. Dynamic partnership network
Sometimes, we let the edges of a partnership network appear
and disappear over time to generate a dynamic partnership
network [17,37].
1.2.5. Momentary network
We refer to the network at a certain time as the momentary
network. Specifically, for dynamic partnership networks, the
partnerships existing at time t define the momentary net-
work. For temporal networks, a node pair i and j forms an
edge in the momentary network at time t if and only if
there is an event between i and j before t and another event
between the same node pair after t. These two definitions
are identical if we construct a partnership network from the
temporal network as we described above, i.e. such that a
partnership lasts from the first to the last event between the
two individuals. If events are not sufficiently evenly distribu-
ted over time during the partnership, the momentary
network may not represent the original temporal network
data well. In other words, the presence of an edge in a
momentary network at time t does not mean that there are
events along the edge around t. Note that this information
would typically be lost when representing sexual contacts
by a dynamic partnership network.
1.2.6. Aggregate network
Finally, we often want to compare epidemic spreading in
time-varying networks with that in the counterpart static net-
works. For a fair comparison, it is necessary to ensure that the
different networks under comparison have the same overall
number of events. To this end, we use the aggregate network,
which is defined as the static network in which the weight
of each edge is the same as the fraction of time for which
the partnership exists in the given dynamic partnership net-
work. For example, if the observation time window is t∈ [0,
100] and u and v are a partnership for t∈ [10, 50] only, then
the weight of edge (u, v) in the aggregate network, which is
static and exists for t∈ [0, 100], is equal to 0.4.
2. Concurrency as a large mean degree
of the network

In network epidemiology in general, higher degrees (more
neighbours) in a contact network signals an easier spread of
disease. This is true both for individuals and for entire net-
works. If an individual has a high degree, it has a higher
chance of getting infected and more opportunities to spread
the infection than a low-degree individual [38]. If the average
degree of a network is higher, an epidemic outbreak would
happen more easily and be more severe than on a sparser net-
work [12]. The average degree is also a typical control
parameter in studies of component size distributions [39,40];
if a component of the network is large, then an infectious
disease may spread on a large scale within it.

The reasoning above applies to a scenario where the net-
work is constant throughout the epidemic scenario in
consideration. If the network changes over a similar time
scale to the epidemics, what static network is most relevant
is a challenging question [41]. Traditionally, the concurrency
literature has assumed momentary networks and disease
spreading faster than the partnership dynamics [23,42]. How-
ever, this approximation fails to capture a full temporal
network picture and thus some outbreak scenarios.

We start by analysing an early model of concurrent
relationships in which increasing concurrency increases the
typical degree. We assume undirected networks although
contagion is asymmetric for some sexually transmitted infec-
tions (e.g. HIV spreads easier from men to women than vice
versa [43]). This assumption is for simplicity and facilitates
model comparison.

In the context of HIV/AIDS, Watts & May carried out a
mathematical analysis of a mean-field-type ordinary differen-
tial equation (ODE) model of epidemic spreading in their
seminal 1992 study [44]. This paper is one of the earliest math-
ematical papers to discuss the concept of concurrency; see [45]
for an earlier mathematical modelling that focused on mon-
ogamy and pair formation and dissolution (i.e. no
concurrency) as opposed to well-mixed populations (i.e. con-
currency). Their model is a variant of the susceptible–
exposed–infectious–recovered/removed (SEIR) model and
explicitly incorporates a timedelay between a sexual encounter
causing transmissionand the eventual transition tobeing infec-
tious aswell as theprobability that an edge formedcontinues to
exist for a given time. They set the rate at which a susceptible
individual is infected, denoted by π(t), where t is the time, to

p(t) ¼ cb
I(t)

S(t)þ E(t)þ I(t)

�

þ p(t� T)S(t� T)
ðt
�1

e�(t�t0)=t

S(t0)þ E(t0)þ I(t0)
dt0

�
, (2:1)

where c is the rate of acquiring new sexual partners, β is the
probability that a susceptible individual is infected byan infec-
tious partner over the duration of the relationship, S(t) is the
fraction of susceptible individuals at time t, E(t) is the fraction
of exposed (infected but not yet infectious) individuals, I(t) is
the fraction of infected and infectious, T represents the (fixed)
duration of the exposed period and τ is the average duration
of partnership.

Equation (2.1) is based on the following explicit and
implicit assumptions. First, those who have developed AIDS,
corresponding to the recovered/removed (R) state in the
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SEIR model, are not sexually active. Note that S(t) + E(t) + I(t)
is not generally equal to one. In the first term on the right-hand
side of equation (2.1), the fraction I(t)/[S(t) + E(t) + I(t)] is
equal to the probability that a new partner is infectious. This
term represents the rate of acquiring infection from new
sexual partners being formed at time t. The second term on
the right-hand side represents the rate of acquiring infection
from an existing partner who acquired infection at time t−T
and thus becomes infectious at time t.

Second, the first term implicitly assumes that if a newly
formed partnership between a susceptible and an infectious
individualwill eventually transmit, itdoes soas soonasthepart-
nership forms. The second term implicitly assumes that if an
partner transitions to infectious during a partnership, and a
transmissionwould occur, it does so as soon as the partner tran-
sitions to infectious. That is, if infection eventually occurs in the
partnership, the transmission is assumed to happen as soon as
the partnership begins or the partner becomes infectious.

Third, the dissolution of partnership obeys a Poisson pro-
cess. Equivalently, e−(t−t

0)/τ in equation (2.1) represents the
probability that the partnership that formed at time t0 remains
at time t.

Fourth, although partnerships are assumed to have expo-
nentially distributed duration, the infection probability is the
same for all partnerships, independently of the age of the
partnership.

Suppose that the exposed period T is short compared to
the typical partnership duration τ. If a partner v of the focal
susceptible individual u is incubating infection (has status
E), then because T is small compared to τ it is likely that v
is still in contact with whoever transmitted to v. Thus, the
second term on the right-hand side as a whole represents
the infection of u due to a concurrent partnership of v. The
authors of [44] essentially varied τ in their analysis to show
that a larger τ, corresponding to stronger concurrency,
enhances epidemic spreading.

However, equation (2.1) indicates that π(t) monotonically
increases with τ, given that β and c, which are parameters
that control the infection rate per partnership and the rate of
pair formation, respectively, are held constant. An increase in
τ implies that a partnership lasts longer, which contributes to
the increase in the degree of the individual (i.e. the number
of edges, or equivalently, neighbours, that the individual has)
averaged over time. The authors also state that cτ is equal to
the number of partners of an average individual [44], i.e. the
mean degree over the nodes in the network. Because a larger
mean degree is well known to enhance epidemic spreading
with other things being equal, their result that epidemic spread-
ing is enhanced by an increase in τ can be parsimoniously
understood as an effect of an increased mean degree [46].

Many modelling studies that investigate the effect of con-
currency, by extending the Watts–May model [47] or
otherwise [48–51], fall in the same class; enhanced epidemic
spreading in those models can be construed as a consequence
of the heightened mean degree of the network.
3. Concurrency as heterogeneity in the
momentary degree distribution

In static partnership networks, it is known that increasing the
heterogeneity in degree can significantly increase the early
growth of an epidemic. This is because the first nodes to
become infected tend to be those nodes with a higher
degree than typical nodes. These nodes then cause more
infections than typical nodes. We now explore some models
and concepts of concurrency in which the concurrency
allows for increased heterogeneity.

Many early investigations into concurrency held the mean
degree fixed and examined the effect of different degree dis-
tributions on the epidemic spread. Kretzschmar & Morris
pioneered concurrency measures that went beyond the
dependence on the mean degree [23,25]. Their analysis
applies to the momentary network, i.e. those pairs who, at
a given time, had events before and would have events
again (see §1.2 for momentary networks). They studied epi-
demic process models on top of dynamic network models
in which pairs form and dissolve across time and measured
the relationship between the epidemic dynamics (such as
the fraction of infected nodes and the speed at which infec-
tion spreads) and the concurrency measures.

They proposed that, when edges share a node, i.e. if a node
has degree k larger than one, then concurrency is present.
Otherwise, if k = 0, with which the node is isolated, or k = 1,
with which the node is in a non-concurrent relationship with
one other node, concurrency is absent, at least around the
focal node. Let the number of nodes be N, and denote the
degree distribution of the network by {p(k) : k = 0, 1, 2,…}; a
fraction p(k) of the nodes has degree k. The mean degree of
the network, denoted by 〈k〉, is given by hki ¼ P1

k¼0 kp(k).
Their first measure of concurrency, denoted by κ1, is the
mean degree, where the mean is taken over the nodes with
degree at least one [23] (the same authors defined the recipro-
cal of this quantity as κ1 in their second paper on the topic,
[25]). One obtains

k1 ¼ hki
1� p(0)

: (3:1)

Note that p(0) is the fraction of the isolated nodes. A larger κ1
means more concurrency. If edges are concentrated in a small
fraction of nodes, which leads to a small value of 1− p(0), the
concurrency is large. The so-called concurrency index, denoted
by κI, proposed later [28], is equal to κ1− 1 if we identify the
degree distributions used in the different studies.

For field measurements, UNAIDS Reference Group on
Estimates, Modelling and Projections, Working Group on
Measuring Concurrent Sexual Partnerships recommended
using the fraction of the population that is neither isolated
nor in just a single relationship as a concurrency measure
[32]. This measure is equal to

P
k�2 p(k) ¼ 1� p(0)� p(1).

This measure also enumerates the nodes with concurrent
relationships (i.e. k≥ 2).

Kretzschmar & Morris also defined a second measure of
concurrency, denoted by κ3, which they mainly used in
their papers (rather than κ1) [25]. Although they also defined
another measure κ2 [23,25], it is a rescaled version of κ3, so we
do not discuss it here.

Suppose that node v has degree k, and denote its neigh-
bours by u1, u2, …, uk. Then, each pair of edges, (v, ui) and
(v, uj), where 1≤ i≠ j≤ k, are concurrent with each other,
increasing the risk of epidemic spreading between ui and uj
through v. There are k(k− 1)/2 such concurrent edge pairs
associated with node v. The concurrency measure is defined
by the sum of the concurrent edge pairs, over all nodes, i.e.
N〈k(k− 1)/2〉, divided by the number of edges in the
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Figure 3. A motivating example for the concurrency measure κ3 (adapted
from [23]). Panels (a) and (b) show two networks of currently active partner-
ships. From a disease spreading point of view, the situation in (a) is worse
than the one in (b). This is more evident if one considers the corresponding
line graphs in (c) and (d ). The concurrency measure κ1—basically the aver-
age degree of the networks—is the same between (a) and (b). However, the
concurrency measure κ3—basically the average degree of the line graphs
shown in (c) and (d ), which correspond to (a) and (b), respectively—
correctly identifies the first situation as being more densely connected
(and thus worse).
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network, i.e. N〈k〉/2, where 〈 · 〉 represents the average over
nodes. Therefore, one obtains

k3 ¼ hk2i
hki � 1: (3:2)

A large κ3 implies a high level of concurrency. A later defined
so-called partnership-based concurrency index, denoted by
κP [28], is equal to κ3− 1. An example of κ1 and κ3 for a tem-
poral network is shown in figure 2.

Another interpretation of κ3 goes as follows. If we select a
partnership (ui, v) uniformly at random, the probability that v
has degree k is not equal to p(k) but rather equals kp(k)/〈k〉
due to the friendship paradox [52]. If v has degree k,
the number of other nodes uj ( j≠ i) that are adjacent to v is
k− 1. Therefore, the expectation of the number of partners
that v has other than ui is given by

X1
k¼1

kp(k)
hki (k � 1) ¼ k3: (3:3)

Under this interpretation, κ3 quantifies the rate at which ui is
at risk of being infected due to v being infected by other
neighbours.

An alternative interpretation of κ3 is that it is (up to a con-
stant factor) the average degree of the line graph of the
original graph [53]. By definition, the nodes of the line
graph represent the edges of the original graph (i.e. network),
and two line-graph nodes are connected if they share a node
of the original graph (see figure 3 for an example).

Numerical simulations of epidemic processes on a tem-
poral network model suggested that the epidemic spread is
faster for larger κ3, supporting that concurrency contributes
to epidemic spreading [25]. This is also the case if 〈k〉 is
kept constant κ3 is varied [28,54,55].

The concurrency measure κ3 and the numerical results
obtained in the aforementioned studies are, in fact, consistent
with the mean-field theory for epidemic processes on static
heterogeneous networks, where heterogeneity refers to that in
the node’s degree. According to the modified degree-based
mean-field theory, which takes into account heterogeneity in
the node’s degree in a network and that a node v cannot infect
the neighbour that originally infected v, the epidemic threshold
for the susceptible–infectious–recovered (SIR)model in terms of
the infection rate, where the recovery rate is set to unity without
loss of generality, is given in [15,56,57] as follows:

bc ¼
hki

hk2i � hki ¼
1
k3

: (3:4)

If β > βc, the final epidemic size is large with a positive prob-
ability. Equation (3.4) indicates that a large κ3 implies that
epidemic spread is facilitated in the SIR model on networks.

The effect of κ3 on epidemic spread can be understood in
terms of concurrency allowing for more heterogeneous
degree distributions which impacts epidemic spread rather
than in terms of how partnerships overlap across time.
Note that κ3 was proposed and at least numerically investi-
gated in the mid-1990s [25], preceding seminal studies of
epidemic processes in networks with heterogeneous degree
distributions (e.g. [56,58,59]). However, the effects of such
heterogeneities were known in the field at the time. One
example of an early way of dealing with degree heterogene-
ities is to multiply the basic reproductive number by the
following correction factor due to Anderson & May [8,16]:

1þ hk2i � hki2
hki : (3:5)

The authors of [23,25] also acknowledge that κ3 is similar
to the so-called effective contact number/rate, which uses
〈k2〉/〈k〉 to quantify the effect of heterogeneous contact rates
in a population on spreading of HIV/AIDS [60–62] (see
[63,64] for qualitatively the same results for gonorrhea trans-
mission modelled by the susceptible–infectious–susceptible
(SIS) model). Other scenarios such as the fraction of isolated
individuals (as investigated through varying κ1, thus control-
ling the frequency of polygamous partnerships) and
assortativemixing, with which high-degree nodes tend to con-
nect to each other, were also investigated in the same study
[25]. These factors can also be mapped to the structure of
static networks; for example, the degree assortativity [65–67].

Other studies investigated the effect of concurrency in
similar manners. In other words, they simulated or mathemat-
ically analysed epidemic process models in which node pairs
form and dissolve over time according to some rules. Then,
by keeping the mean degree, 〈k〉, fixed, either precisely or stat-
istically, they varied model parameters, which changed the
degree distribution and hence the value of the concurrency
measure used, to see how the extent of epidemic spreading
changed [24,42,68–76] (also, fig. 1 in [77] is a succinct example
to contrast networks with the same N and the mean degree,
while the level of concurrency is different). Overall, most of
these studies suggest that an increased concurrency, as
measured by κ3 or otherwise, causes an increase in the size
of epidemic spreading. For example, Bauch&Rand considered
an SISmodel inwhich partners form anddissolve dynamically
[46]. In the model, two isolated individuals form a partnership
at rate ρ/N, and two individuals form a partnership at rate
ρθ/N if either of the individuals already has a different part-
ner. Parameter θ (0≤ θ≤ 1) controls the level of concurrency;
if θ = 0, all the partnerships are monogamous, i.e. no node
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has a degree above one. If θ is larger, larger degrees are
allowed. Finally, any partnership is assumed to break up at
rate σ. They analytically calculated the degree distribution in
the equilibrium, which is a Poisson distribution when θ = 1
and has a thinner tail when θ < 1. The derived degree distri-
butions led to κ3 = ρθ/σ [46]. They also calculated the mean
degree, which we do not show here because the expression is
complicated. They then investigated the effect of κ3 on the
final epidemic size and time evolution of the fraction of
infected nodes, by keeping the mean degree constant. They
showed that the final epidemic size increases with κ3 in most
cases.
 if
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4. Concurrency as a temporal property
of networks

Most of the numerical and analytical results, including those
reviewed in the previous sections, employed dynamic net-
work models to investigate the effect of concurrency on
epidemic spreading. This is valid because concurrency is a
temporal notion. However, the effects of concurrency claimed
by many of these papers are already expected from our
understanding of static network epidemiology (i.e. how the
structure of the static network varies as a concurrency par-
ameter varies, which then affects how infections spread in
the static network). Specifically, various previous results
stated in terms of κ1, κ3, or similar measures are effectively
restatements of the foundational results of mathematical epi-
demiology and network science without referring to
concurrency, i.e. a large mean degree or a high heterogeneity
in the degree distribution given the mean degree yields an
increased level of epidemic spreading in networks. This
raises the question of whether concurrency on its own can
affect how infection spreads or whether it only acts indirectly
by affecting node degrees. More recent analyses that attempt
to single out the effect of concurrency from that of static
network structure say that it has an important role.

A consensus is that k≥ 2 for a node implies the presence
of concurrency and k≤ 1 implies its absence. A majority of
concurrency studies using mathematical/computational
models explicitly or implicitly assume that the degree distri-
bution is measured at a certain point of time, i.e. for the
momentary network (§1.2). Edges in a momentary network
at time t thus represent pairs of nodes that had an event in
the past and will have one again in the future, so that the
partnership is ongoing at time t. Therefore, the momentary
degree larger than one can be used as evidence of concur-
rency [76], and one can quantify this using, for example, κ1
or κ3. Asking whether the momentary degree is larger than
one is also used in survey studies [78]. Then, studies using
a dynamical network model would involve a parameter to
control the level of concurrency (e.g. the propensity that
nodes are polygamous, i.e. k≥ 2 at any given point of time)
and examine how epidemic spreading changes as one
varies the control parameter. The degree distribution in the
equilibrium or averaged over time has mostly been used for
quantifying the level of concurrency. However, there are
different sequences of momentary networks that, when
aggregated across time, produce the same static network.
These different sequences can vary dramatically in how con-
currency appears, and the static network structure cannot
explain the resulting changes in how epidemics spread.
These are fundamentally due to concurrency and not
merely because concurrency facilitates other effects.

To make this point clearer, in the following sections, we
survey some recent results that explicitly aimed to single
out the effect of concurrency without being confounded by
differences in aggregate networks.
4.1. Overlap of time windows of edge activation
Lagarde et al. defined a concurrency measure for each node,
called the individual index of concurrency (IIC), as follows
[79]. Consider two edges incident to node v, denoted by e1
and e2. By considering HIV/AIDS, which their study is
based on, we assume that a sexual partnership is formed
on e1 and e2 during a time window [tstart1 , tend1 ] and
[tstart2 , tend2 ], respectively. Note that the following definition
can be easily generalized to the case in which e1 or e2 is acti-
vated in multiple time windows. Then, we denote the overlap
of [tstart1 , tend1 ] and [tstart2 , tend2 ] by d. Specifically, d is the length
of time for which both edges are activated, thus concurrent.
Because the two time windows of edge activation may over-
lap even if they occur at random times, they calculated the
expected size of the overlap when the two time windows
are independently and uniformly randomly located in
terms of the time, which we denote by ϵ. If d/ϵ = 1, there is
no excess concurrency between e1 and e2 relative to the uni-
formly random case. If d/ϵ > 1, there is concurrency beyond
randomness. Because 0≤ d/ϵ <∞, they defined r = (d/ϵ− 1)/
(d/ϵ + 1) such that −1≤ r < 1; the uniformly random overlap
corresponds to r = 0; higher overlap yields r > 0; and lower
overlap yields r < 0. They summed r over all edge pairs inci-
dent to node v to define v’s concurrency, i.e. IIC. They
performed an interview study in five cities in Africa with an
observation time window of one year. They found no corre-
lation between the IIC value and whether or not the
sampled people are HIV-infected.

Assuming that the event time and its duration are
randomly generated and independent for different edges,
different authors defined the temporal coherency as the prob-
ability that the time windows of activation on two edges
overlap [26,30]. For empirical data of temporal networks,
the same quantity can be measured as the fraction of edge
pairs that have overlapping active time, where the edge
may be optionally assumed to be active all the time between
its first and last event times [27]. The temporal coherency is
similar to a normalized variant of d. Note that one can con-
sider both IIC and temporal coherency for individual nodes
or the entire network (as the average of the quantity over
all the nodes or all the edge pairs in the network).

An important quantity for interpreting how concurrency
impacts disease spread is the reachability of a network. The
reachability is defined for a temporal network as the expected
fraction of node pairs i and jwith a time-respecting path from
i to j starting at a random time between the beginning and
end of the data [80–82] (also see [83] for a mathematical
analysis). The reachability of the temporal network generally
increases as the temporal coherency increases [26,27,30,76].
Concurrency implies that two edges sharing a node simul-
taneously exist. For example, if edge (1, 2) and (2, 3) are
simultaneously active, then during this period 3 is reachable
from 1 and vice versa. If the two edges are activated in non-
overlapping times, then either 3 is not reachable from 1 or
vice versa. This is why reachability is expected to increase



(a) non-concurrent (serial monogamous)

(b) concurrent (polygamous) and quiescent, alternating

(c) concurrent (polygamous) and static

time

Figure 4. Three partnership networks that have the same aggregate net-
work. (a) Dynamic partnership network without concurrency. Each node is
either isolated (k = 0) or involved in a non-concurrent relationship (k = 1)
at each time. (b) Dynamic partnership network with concurrency. At two
out of five times, a cycle graph is formed such that all nodes have degree
2. To compensate for a relatively large mean degree at these times, the net-
work at the other three discrete times are the empty network, where every
node is isolated. (c) Static partnership network with concurrency. The com-
plete graph is presented. The weight of each edge is 1/5 of that of the edge
shown in (a) and (b). The time-averaged network of the dynamic partnership
networks shown in (a) and (b) is the complete network shown in (c).
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as the temporal concurrency increases. By definition, the
reachability ignores infectivity and therefore does not directly
translate into observed epidemics. However, since high aver-
age reachability is positively correlated with the final
outbreak size, the results in [26,27,30,76] are consistent with
the common claim that the concurrency positively contributes
to the severity of outbreaks.

4.2. Epidemic model with a careful control of
concurrency

Related to the reachability argument, let us again consider
two edges that share a node, (1, 2) and (2, 3). In [22], the
authors pointed out that indirect transmission of infection
between 1 to 3 through 2 is possible if events on the two
edges occur concurrently. Figure 1b shows such a case. In
this figure, although the exact timings of the events generally
differ on the two edges, the events on them are concurrently
occurring on a coarser timescale of the entire observation
time window shown in the figure. By contrast, if events on
the two edges are not concurrent, the indirect disease trans-
mission may happen in one direction (e.g. from 1 to 3) but
not in the opposite direction, at least within a time window
of interest (figure 1a). Furthermore, disease transmission
can go faster in the concurrent case than the non-concurrent
case. With reference to figure 1, this is because the pathogen
that has transmitted from 1 to 2 can almost immediately
travel to 3 in the concurrent case, but it must wait in the
non-concurrent case [22]. Crucially, this discussion compares
scenarios that are different in terms of concurrency (no matter
how one measures it) but share the static network structure
including the weight (i.e. number of events) of each edge;
compare the two temporal networks shown in figure 1. The
networks shown in figure 1 are small and for expository
purposes. However, the claim that concurrency mitigates
limitations on transmission pathways and therefore enhances
the epidemic size and speed has a general value because the
same argument holds for larger networks.

In the same study [22], the authors examined a suscep-
tible–infectious (SI) model with births and deaths in
discrete time. They preserved the structure of the aggregate
static network and the weight of each edge in the aggregate
network (and hence the degree of each node) and varied
the amount of concurrency. Specifically, they assumed a
population in which each node had its own degree, and
whenever a partnership ended a replacement partner was
immediately found so that its degree remained fixed.

To investigate concurrency, the authors of [22] looked at
regular random graphs, where each node has the same
degree, ktp, at each point of time. In the serial monogamy
case, ktp = 1. To make a fair comparison with polygamy
cases, they imposed that each node has degree k in the
static network obtained by the aggregation over a time
window. This implies that if ktp is small, the nodes have to
switch the partners rapidly to collect k partners over time.
Note that the concurrency is entirely absent in this case. If
ktp is large, then the concurrency is present, and the nodes
do not rapidly switch the partners. They also carefully con-
trolled the infection rate parameter so that the comparison
across different ktp values is fair, i.e. the weighted aggregate
network does not depend on the ktp value.

They carried out numerical simulations with ktp varied.
They found that concurrency typically enhanced the early
growth of an epidemic, but it typically had a small impact
on the ultimate equilibrium number infected.

4.3. Network fluctuations
In empirical data of temporal networks, events between
nodes are often bursty [36,84], such that there tends to be a
burst of events in some periods and quiescence in others, in
a manner not captured by Poisson processes or ODE
models [1,2,6]. Therefore, individual momentary networks
may carry large fluctuations so that their time average or
ensemble average does not represent the original temporal
network of dynamic partnership network well. Figure 4 com-
pares three dynamic partnership networks in discrete time
that share the same time-averaged aggregate network. Note
that we allow partnerships to form and dissolve several
times for our discussion. Then, the dynamic partnership
network shown in figure 4a completely lacks concurrency
because each node is either isolated (k = 0) or in a non-
concurrent relationship (k = 1) at any discrete time. By contrast,
the dynamic partnership network shown in figure 4b has
some amount of concurrency. At two out of the five times,
each node is involved in concurrent partnerships. At the
other three discrete times, the network in figure 4b is empty.
This is to make the dynamic partnership networks shown in
figure 4a,b have the same amount of partnership averaged
over time for each edge. In fact, the partnership is present
between each node pair one out of the five times in both net-
works. The aggregate network for both dynamic partnership
networks is the static complete graph shown in figure 4c. If
we calculate a concurrency measure such as κ1 or κ3 for the
time average of the two dynamic partnership networks, the
value will be the same. We set the weight of each edge to be
1/5 in figure 4c. Then, all the three networks shown in
figure 4 have the same time-averaged (or equivalently, aggre-
gate) network, which is the complete graph with edge weight
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1/5 (i.e. any of the five time-independent networks shown in
figure 4c).

For the network at each discrete time shown in figure 4a,
we obtain κ3 = 0 because 〈k〉 = 〈k2〉 = 4/5. Therefore, the time
average of κ3 = 0. For the non-empty networks in figure 4b,
we obtain κ3 = 1, which follows from 〈k〉 = 2 and 〈k2〉 = 4.
For the empty network in figure 4b, κ3 is ill-defined since
〈k〉 = 0. However, it makes no sense to assign any value
other than κ3 = 0 in this situation. Then the time average of
κ3 for the dynamic partnership network shown in figure 4b
is 2/5, which is larger than that for the dynamic partnership
network shown in figure 4a. This result is consistent with our
claim above that the dynamic partnership network shown in
figure 4b is more concurrent than that shown in figure 4a. We
emphasize that the calculation of κ3 in this case is possible
only when we examine dynamic partnership networks indi-
vidually at different discrete times, which is different from
calculating κ3 of the aggregate static partnership network.

Furthermore,becauseκ3 isdefined forunweightednetworks,
strictly speaking, one cannot calculate it for the time-averaged
network shown in figure 4c. However, it is hard to imagine any
other generalization of equation (3.2) to weighted networks
than replacing the degree by the node’s strength (i.e. the sum
of the weights of a node’s incident edges). Nevertheless, this
straightforward generalization produces a negative value of
the concurrency for the static weighted network shown in
figure 4c, i.e. κ3 =−4/5, because 〈k〉= 1/5 and 〈k2〉= 1/25.

In [85,86], the SIS model in continuous time is analysed on
dynamic partnership networks that switch from one to another
at regular intervals, which we refer to as switching networks.
Let us now consider figure 4 as representing network dynamics
in continuous time. In switching networks with concurrency,
schematically shown in figure 4b, the epidemic threshold is
smaller (therefore, infection is more likely at least near the
epidemic threshold) than in switching networks without con-
currency, schematically shown in figure 4a, even though the
aggregate network is the same in the two cases. Although it
is only illustrative, figure 4a,b represents the situations in
which fluctuations around the mean of the networks at differ-
ent times are large, such that it is not helpful to approximate the
degree distribution of the network at each time by the time
average. For the same reason, it may be invalid to average a
static network of the daytime with one of the night-time and
analyse the concurrency of the time-averaged network.

4.4. Time average of concurrency versus concurrency
of the time-averaged network

The amount of concurrency may vary over time. For example,
if one looks at the overlap of the time windows of edge acti-
vation, the two edges are concurrent when both edges are
activated. They are not concurrent if either edge is not active.
The latter sounds trivial, but comparison with randomized
cases often requires that the original data or model have
some periods for which the edges are not active. As another
example, in figure 4b, the concurrency is high when the
time-independent network contains a cycle. At other times,
the network is empty, and concurrency is absent.

Some concurrency measures including κ1 and κ3 are
functions of the degree distribution of the network, {p(k) : k= 0,
1,…}. A convenient method to calculate such a concurrency
measure foradynamicpartnershipnetworkmodelmaybe to cal-
culate it for the degree distribution in the equilibrium. However,
crucially, whatwe obtain in the equilibrium is not a single degree
distribution, but a distribution of the degree distribution. For
example, for the network shown in figure 4b, the equilibrium is
characterized by a two-peak distribution of the degree distri-
bution, i.e. p(0) = 1 and p(k) = 0 for k≥ 1 with probability 3/5,
and p(2) = 1 and p(k) = 0 for k≠ 2 with probability 2/5. The two
degree distributions yield different levels of concurrency, e.g.
the κ3 value, and time aggregation of the concurrency measure,
such as a simple time average, tells us how concurrent the
entire dynamic partnership network is. It is incorrect to consider
the time (or ensemble) average of the degree distribution first
(which yields p(0) = 3/5, p(2) = 2/5 and p(k) = 0 for k � {0, 2})
and then calculate the concurrency measure, or consider the
time average of the network first (which yields theweighted net-
work shown in figure 4c) and then calculate the concurrency
measure. The same caveat applies to IIC. One calculates the over-
lapof the timewindowsof edge activation observedat eachpoint
of time,whichone sumsover the entire observation timewindow
to obtain IIC after further manipulations. We emphasize that the
time aggregation of a concurrency measure and the concurrency
measure for the timeorensemble averageof an evolvingnetwork
are generally different from each other. For assessing the effect of
concurrency on epidemic spreading, the former is relevant but
not the latter, because the time or ensemble average of networks
is not the object on which epidemic processes occur.
5. Other temporal networks analyses related
to concurrency

In this section, we will discuss some further methods to
analyse temporal networks inspired by concurrency.

5.1. Start and end times of edges
A central assumption in the traditional concurrency literature
is that a partnership is a meaningful low-level representation
of interactions transmitting disease. This assumption has
some support in the temporal network literature. Holme &
Liljeros [87] concludes that it is a more relevant simplification
of a temporal network to reduce it to a weighted partnership
network than to a static network with events generated with
the same interevent time statistics as in the original data. In
the wake of [84], a line of research seemed to take for granted
that time-stamped event data are well-described as a static
networkwith interevent times sampled from a fat-tailed distri-
bution [88,89]. Holme & Liljeros [87] contrasts this ‘ongoing
link picture’with a ‘link turnover picture’ that rather resembles
the pair-formationmodels of the concurrency literature [23,90–
92]. A temporal network simplified by the link turnover pic-
ture contains information about the first and last events
between two nodes and the total number of events, but noth-
ing about the interevent times. For disease spreading on
empirical temporal networks, it turns out that numerical
results for the link turnover picture closely match simulations
on the empirical data. The ongoing link picture, on the other
hand, tends to overestimate the final outbreak sizes.

5.2. Reducing temporal networks to networks of
concurrent partnerships

The typical way to reduce a temporal network to a static net-
work is to connect any node pair by an edge when the two
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Figure 5. Two ways of projecting time out of a temporal network. (a) A
temporal network. (b) The network of nodes that have an event within
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nodes have one or more events within a particular time
window [1,93,94]. In other words, two nodes u and v form
an edge (u, v), active from t0 to t1, if there is an event
within the interval [t0, t1]. An alternative way to project out
the time from the temporal network is to place edges between
pairs of nodes if they have events both before and after the
interval. This construction gives concurrent partnerships
over the entire interval [t0, t1]. If t0 = t1, we obtain the momen-
tary network. Holme [95] observed that the degree
distributions of momentary networks are closer to power-
law distributions than those of aggregate networks. More
pertinent to this review, however, is that the network of con-
current partnerships is a worse way to project a temporal
network to a static network in the sense that it preserves
the ranking of important nodes worse than a standard
time-windowed network [41] (figure 5).
6. The debate about the concurrency hypothesis
The role of concurrency in the HIV epidemics of sub-Saharan
Africa has been a highly contentious subject. Some regions of
this area have had a hundred-fold higher HIV prevalence than
the world average [96]. When the severity of the epidemics in
sub-Saharan Africa became apparent in the 1990s, researchers
immediately sought explanationswithin this area’s sexual pat-
terns and practices. Concurrency was one such explanation;
promiscuity and polygamy were others, along with the
belief that sex with virgins could cure HIV [97]. Around the
turn of the millennium, a host of studies of sexual behaviours
were published that seemed to suggest that, effectively,
general sexual risk behaviour was not higher in sub-Saharan
Africa than in the rest of theworld—e.g. [98] and further refer-
ences therein. These new empirical data did not change all
theorists’ minds, which set off an acrimonious debate that
we will attempt to give a flavour of in this section.

One side of this polemics asserts that, first, a higher concur-
rency characterizes sub-Saharan Africa’s sexual act patterns
than in the West and elsewhere in the world. Second, simu-
lation studies seem to show that concurrency is an essential
factor for HIV dynamics. Because of these two reasons, concur-
rency is the key driver of the HIV epidemics in these countries
[29]. The other side claims that concurrency does not matter
much, and more likely explanations of the higher prevalence
are co-infections increasing the susceptibility or non-sexual
transmission pathways [99,100].
One seminal paper arguing against the concurrency
hypothesis was [79] by Lagarde and co-authors. This was the
first survey to record both concurrencies—using their metric,
IIC, that we discussed above—and HIV status. The authors
interviewed 9643 persons in five regions of sub-Saharan
Africa. They found no correlation between their concurrency
metric and whether or not a person was HIV positive.

This study was subsequently criticized, mostly due to
alleged methodological flaws. Rothenberg et al. [99] notes
that [79] measures current concurrency only, but HIV positive
must have been infected earlier. Morris et al. [78] argues that
‘the predicted empirical signature of concurrency’s effect on
the transmission is not a correlation between index case con-
currency and their own HIV status, but a correlation between
index case concurrency and their partner’s HIV status’.

To illustrate this argument, consider the scenario of an
individual u having partners v and w in a time period in
which v and w have no other partners. The risk to u depends
on the number of events with v and w, but the ordering of
those events has no effect. However, the probability that u
serves as a conduit of infection between v and w increases
if these events are interspersed. This effect is magnified if
we account for the fact that u would have the highest viral
load in the acute phase shortly after infection [101]. So even
though there is a correlation between the infection statuses
of partners in almost any compartmental model on networks
[102], one person’s concurrency and his/her HIV status could
still be uncorrelated according to [78].

A decade later, another major survey—this time longi-
tudinal, geolocated, and accounting for the possibility that
current concurrency may affect future HIV status—did not
find an association between concurrency levels in commu-
nities and HIV acquisition among women [103]. The
pattern repeated with papers from both sides accusing the
other of withholding information, misinterpreting results,
and committing methodological errors [35,104–106].

A potential explanation of some of these observations is
found in [22], which showed that in many cases concurrency
can play a large part in the early growth of an epidemic even
while it plays little role in the eventual equilibrium reached.
So the apparent observation from some models that the
growth of the epidemic can only be reproduced by incorpor-
ating concurrency may still be consistent with measurements
taken in long-established epidemics which measure a similar
incidence of infection in populations with different levels of
concurrency. There are plenty of further twists and turns in
this debate about the ‘concurrency hypothesis’ that we will
not dwell on further. We will not call a winner of this debate.
7. Outlook
Temporal networks do not capture the full truth about how
contact patterns affect epidemics. They do not typically, for
example, record the type of interaction event (e.g. condom
use) or the biological characteristics of the individuals that
may affect the transmission probability. However, all simpli-
fying assumptions in temporal networks are also used in the
concurrency literature, so predictions based on concurrency
cannot be more accurate than those made by temporal net-
work epidemiology.

From a theoretical point of view, the largest conceptual
simplification in the traditional concurrency literature is
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probably to use ‘partnership’ as the unit transmitting the dis-
ease. Partnerships, as mentioned, are assumed to be capable
of contagion throughout their duration. There is typically
nothing in either questionnaires or theoretical papers that
explicitly prevent a couple from resuming a partnership
after they quit it [23,90,91]. Without allowing partnerships
to resume, the assumption that the transmission rate between
a couple is time-invariant is probably a very coarse simplifi-
cation of the data described by a temporal network. On the
other hand, allowing partnerships to resume means that
serial monogamy is no longer forcing time-respecting paths
to be unidirectional (cf. figure 1). Furthermore, isolated
sexual encounters (i.e. those occurring between two individ-
uals just once) are typically excluded from questionnaires and
mathematical/computational modelling for a few reasons.
The first reason is that it may be too hard to remember the
accurate timing of these encounters [29]. However, the
reason why omitting an isolated sexual encounter would
give more accurate results than to include it at the wrong
time is unclear to us. The second reason is that these events
would be negligible from the viewpoint of disease dynamics
[104]. Epstein &Morris [104] states that ‘When the duration of
concurrency is short, the connectivity of the networks is more
transient, and less conducive to rapid spread.’ Notwithstand-
ing, other papers argue occasional encounters [106,107] and
commercial sex [97] are essential for the epidemics.

Gathering information about peoples’ partnerships might
be more feasible than registering their sexual encounters indi-
vidually for any meaningful period. That is the only
argument we can envision for building a theory on a concept
as nebulous as ‘partnership’. Still, there are datasets gather-
ing individual encounters [108]. If the community had
explained the patterns of such datasets, there might not
have been a decade-long theoretical dispute. It seems necess-
ary to agree on the definition of how to construct a
partnership edge from a temporal network composed of
time-stamped events [41]. Although it would not affect medi-
cal epidemiology, it is expected to pave the way to
standardize the too imprecise language of theorists.

While we can, and should, move forward with temporal
network epidemiology, we are not arguing that we should
forget the traditional concurrency theory. On the contrary,
both the data gathered and the theoretical work done are
so valuable that our job is to link them with temporal net-
work theory. Furthermore, many people in the field are
now so accustomed to discussing sexual contact patterns in
terms of partnerships that it would be nearly impossible to
erase their mental pictures, and abstracting a problem at
different levels can often reveal different insights.

Concurrency is not the only idea that lingers in the scientific
discourse despite newer concepts being more precise and infor-
mative. The ‘basic reproductive number’ R0 is another example
from theoretical epidemiology that is both notoriously hard to
estimate [109] and ill-suited to parametrize theoretical models
[110,111]. Another analogous situation is the idea that ecologi-
cal networks tend to be ‘nested’ [112], for which recent studies
have pointed out that it might be more fruitful to think of nest-
edness as the consequence of more fundamental network
structures [113]. We believe that other concepts will eventually
supersede concurrency, R0, and nestedness, but there is no need
to hurry that development.

How should we use and deepen the concept of concur-
rency? Is concurrency useful for analysing and predicting
real epidemic processes? Based on the discussion above and
in the previous sections, we propose the following issues as
something we should have in mind and understand better
to harness the concept of concurrency.

Measures like κ3 and its variants are, by construction, static.
Of course, if one projects a temporal network to a static network
at a time t, for exampleby constructing themomentary network,
these measures will be functions of t (cf. figure 2). Nonetheless,
by being a static measure, we can analyse it by static network
theory [114–116]. This field has developed tremendously since
the publication of the still most authoritative theoretical concur-
rency papers. Now we know that disease spreading depends
not only on the node’s degree [8,9,11,16,59,117–120] and the
concurrency but also on, e.g.mesoscopic structures of networks
[121,122] and thedensities of short cycles [123–125]. Toproperly
evaluate concurrency by measures like κ1 and κ3, we need to
integrate them in the broader theory of spreading phenomena
on networks.

Furthermore, it is not only the case that other network
structures than concurrency affect epidemics but they also
affect concurrency itself. In simple pair-formation models,
such as the ones in [23,90–92], higher activity (i.e. node’s
degree) means more concurrency. Even though concurrency
is a readily understandable concept and hence appropriate
to communicate to the general public, the average number
of events is even better. Although theoretical epidemiology
was also the first field to study other network structures
such as degree assortativity [120] or heterogeneous degree
distributions [60,126], strangely, the relationship between
these structures is still not fully charted. Our understanding
of how temporal structures are related to concurrency is
even more limited [20,22,27,30,41,51,87]. One such example
is the statistics of the interevent times [6,36,87,127,128]. One
way of understanding temporal effects on concurrency
measures, so far missing in the literature, would be to use
randomized datasets as null models [80,129].

A different feature of networks that impacts concurrency
is higher-order interactions. Hypergraphs and simplicial
complexes, in particular, enable us to represent interaction
among more than two nodes, such as group conversations,
in unified mathematical frameworks [130,131]. Simultaneous
interaction involving at least three nodes implies concur-
rency. Quantifying concurrency for hypergraphs and
simplicial complexes as well as to use epidemic process
models on these structures to study concurrency may be
promising research directions.

Empirical studies of concurrency have almost exclusively
focused on sexually transmitted diseases [33–35,107,132].
Since sexual acts are clearly defined events, these diseases
are appropriate to network epidemiology in general. Other
infections such as influenza [133,134] or COVID-19 [135]
also spread over networks, and concurrency should affect
these as much as sexually transmitted ones. For these dis-
eases, it is common to use other types of networks than
those of individuals to represent contact structures. A node
can represent a location (like a city, hospital ward), group
of people, and so forth, which is an example of higher-
order representations. Also in these models it may be fruitful
to consider concurrency [136–138]. Assuming that a pathogen
can linger at a location, it would be worse if two persons, A
and B, visited it repeatedly and alternately (i.e. the location
having high concurrency), than if A’s last visit to the location
preceded B’s first visit.
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In the last decade, our understanding of the structure of
the networks on which infectious diseases spread improved
tremendously [1,2,36]. Unlike sexual networks, it is the mobi-
lity of people [139,140] that drives proximity networks. The
term ‘partnership’ is even more misleading for such mobi-
lity-induced networks, but the mechanism of concurrency
as an accelerator of epidemics is probably still valid.

Whether concurrency is a useful target for mitigating dis-
ease spread is unclear, and may depend on the phase of the
epidemic [22]. Decreasing concurrency without changing
the total number of events would require that one proactively
changes events’ timing to reduce concurrent events that
nodes experience. Such concurrency-based interventions are
underexplored.

To summarize, there is much work left to unify the theory
of concurrency with temporal network science. We need to
agree on operational definitions of concepts like ‘partnership’
and measures for both individual and system-wide concur-
rency. We also need to carry out more extensive studies to
clarify whether concurrency is a sizable contributor to epi-
demic dynamics on networks compared to other static and
temporal network properties.
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