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Purpose: To evaluate mydriatic handheld retinal imaging performance assessed by point-of-care (POC)
artificial intelligence (AI) as compared with retinal image graders at a centralized reading center (RC) in identifying
diabetic retinopathy (DR) and diabetic macular edema (DME).

Design: Prospective, comparative study.
Subjects: Five thousand five hundred eighty-five eyes from 2793 adult patients with diabetes.
Methods: Point-of-care AI assessment of disc and macular handheld retinal images was compared with RC

evaluation of validated 5-field handheld retinal images (disc, macula, superior, inferior, and temporal) in identifying
referable DR (refDR; defined as moderate nonproliferative DR [NPDR], or worse, or any level of DME) and vision-
threatening DR (vtDR; defined as severe NPDR or worse, or any level of center-involving DME [ciDME]). Reading
center evaluation of the 5-field images followed the international DR/DME classification. Sensitivity (SN) and
specificity (SP) for ungradable images, refDR, and vtDR were calculated.

Main Outcome Measures: Agreement for DR and DME; SN and SP for refDR, vtDR, and ungradable images.
Results: Diabetic retinopathy severity by RC evaluation: no DR, 67.3%; mild NPDR, 9.7%; moderate NPDR,

8.6%; severe NPDR, 4.8%; proliferative DR, 3.8%; and ungradable, 5.8%. Diabetic macular edema severity by
RC evaluation was as follows: no DME (80.4%), noneciDME (7.7%), ciDME (4.4%), and ungradable (7.5%).
Referable DR was present in 25.3% and vtDR was present in 17.5% of eyes. Images were ungradable for DR or
DME in 7.5% by RC evaluation and 15.4% by AI. There was substantial agreement between AI and RC for refDR
(k ¼ 0.66) and moderate agreement for vtDR (k ¼ 0.54). The SN/SP of AI grading compared with RC evaluation
was 0.86/0.86 for refDR and 0.92/0.80 for vtDR.

Conclusions: This study demonstrates that POC AI following a defined handheld retinal imaging protocol at
the time of imaging has SN and SP for refDR that meets the current United States Food and Drug Administration
thresholds of 85% and 82.5%, but not for vtDR. Integrating AI at the POC could substantially reduce centralized
RC burden and speed information delivery to the patient, allowing more prompt eye care referral.
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Diabetic retinopathy (DR) is one of the leading causes of
preventable vision loss globally, especially among the
working-age population.1 The incidence of DR is rising
yearly; hence, there is a constant need to increase DR
screening capacity to prevent blindness among people with
diabetes.2 Teleophthalmology has enabled the systematic,
widescale implementation of community-based DR
screening programs (DRSPs).3,4 With teleophthalmology
DRSPs, screening units are placed at strategic community
locations where patients with diabetes can have their retinal
images taken, which are then analyzed remotely by trained
graders at a centralized reading center (RC). The results are
then sent back to the patient and screening sites, and
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include follow-up details and referral or treatment recom-
mendations whenever appropriate. This process decreases the
need for in-person eye examinations with a clinician and is a
cost-effective approach to delivering a DRSP.5

The establishment of widescale community-based tele-
ophthalmology programs is not straightforward. Significant
hurdles remain in some settings due to resource limitations,
geographic isolation, and high cost of screening equip-
ment.6,7 In recent years, the incorporation of handheld retinal
imaging devices in DRSPs have gained acceptance, as they
are significantly cheaper and allow broader accessibility and
improved portability while maintaining acceptable levels of
sensitivity (SN) and specificity (SP).8e11 One of the main
1https://doi.org/10.1016/j.xops.2023.100457
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challenges for DRSPs is how to ensure early identification
and referral of eyes at risk of vision loss due to the sheer
volume of images that need to be analyzed in a timelymanner.
The training and certification of image graders require
considerable time and financial investment which can be
prohibitive for many health care systems. The integration of
artificial intelligence (AI) in theDRSP can potentially address
this need. Artificial intelligence provides DR assessment at
point-of-care (POC) and, therefore, decreases image-grading
burden by identifying eyes with referable levels of DR
automatically without any significant delay. One of the bar-
riers to the deployment of AI in DRSP, however, is ensuring
accuracy.

Despite the large interest in AI for DR, to the best of our
knowledge there are limited published prospective stud-
ies12e14 and only 3 United States (US) Food and Drug
Administration (FDA)-approved AI algorithms that are
limited to 2 specific tabletop retinal cameras.12e17 There is
a need for more evidence that AI systems for DR evalua-
tion perform as well as human graders in the clinical
setting, especially on handheld retinal images in commu-
nity settings with limited resources. In this study, we
evaluated the performance of handheld retinal images
assessed by AI at the time of imaging in identifying
referable levels of DR, as compared with standard retinal
image graders at a centralized RC in a community-based
teleophthalmology DRSP.

Methods

Population and Sample

This was a prospective comparative study of AI assessment of
referable DR (refDR) and vision-threatening DR (vtDR). A total of
5585 eyes from 2793 adult patients with diabetes from a
community-based DRSP in Central Luzon, Philippines were
included in the study. The inclusion criteria were as follows: (1)
aged � 18 years; (2) previously received a diagnosis of diabetes
type 1 or 2; and (3) consented to undergo fundus photography. The
exclusion criteria were any of the following: (1) the presence of
media opacities such as dense cataracts or corneal scars that pre-
vent sufficient view of the fundus; (2) contraindication to pupil
dilation such as history of hypersensitivity to mydriatic eye drops;
or (3) presence of any active eye infection or inflammation at the
time of imaging visit. Patient enrollment and data collection took
place from September 2021 to August 2022.

The study design complies with the ethical standards of the
Declaration of Helsinki. The study protocol was approved by the
institutional review board of The Medical City (reference num-
ber GVSOVS2021-116). All participants provided informed
consent.

Image Acquisition and Analysis

All participants underwent mydriatic handheld fundus photography
on the Aurora IQ camera (Optomed Ltd) using an imaging protocol
previously described by our group.11 Briefly, the participants
underwent pupil dilation using 1 drop of tropicamide 0.5% þ
phenylephrine 0.5% eye drops, and 5-field (disc-centered,
macula-centered, superior, inferior, and temporal to the macula)
50� retinal images were acquired using the Aurora handheld
camera. All images were obtained by retinal imagers (L.A.C.A.)
who underwent training and certification by the Gloucestershire
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Retinal Education Group (Gloucestershire Hospitals, National
Health Service Foundation Trust, United Kingdom). Additional
training on the use of the handheld camera and the AI system was
provided by the device manufacturer. Before the start of the study,
the retinal imagers had acquired > 2500 retinal images with the
handheld retinal camera in a clinical setting, ensuring proficiency
in handheld image acquisition.

Reading center evaluation was performed independently by 3
masked trained graders who are board-certified ophthalmologists
(G.P.A., K.B.L., and A.V.S.) at a centralized RC using high-
resolution, high-definition, color-calibrated liquid-crystal display
computer displays. The presence of diabetes-related retinal lesions
such as hemorrhages or microaneurysms, venous beading, intra-
retinal microvascular abnormalities, new vessels, preretinal or
vitreous hemorrhage, tractional membranes, and laser marks were
assessed. Diabetic retinopathy severity was assessed using the
international clinical classification for DR (no DR, mild non-
proliferative DR [NPDR], moderate NPDR, severe NPDR, pro-
liferative DR, or ungradable). Diabetic macular edema (DME)
severity was assessed as no DME, DME, center-involving DME
(ciDME [defined as hemorrhages or microaneurysms, or exudates
within 200 mm from the center of the fovea]), or ungradable for
DME. An image is considered ungradable if it is not possible to
visualize retinal features or lesions in � 50% of the image.
Referable DR was defined as moderate NPDR or worse, any
proliferative DR, any DME, or ungradable images, whereas vtDR
was defined as severe NPDR or worse, any proliferative
DR, ciDME, or ungradable images. Discrepancies were adjudi-
cated by retina specialists experienced in image grading (R.P.S. or
P.S.S.), and the adjudicated grade was considered the final
assessment.

Point-of-care AI assessment of 2-field (disc-centered and
macula-centered) images was provided by the Aurora camera’s
integrated AI software at the time of imaging (Aurora IQ, Optomed
Ltd). The POC AI used in this study was SELENA Eyris deep
learning system as reported by Ting et al18 in JAMA. The deep
learning system was trained on detecting DR using a data set of
76 370 images. The reported SN of the SELENA Eyris deep
learning system for refDR was 90.5%, and SP was 91.6%. When
analyzing the retinal images in this study, the images were
analyzed without any preprocessing or postprocessing, regardless
of image quality. The images acquired by the handheld retinal
camera are transferred using wireless local-area network
connectivity for cloud-based server to enable AI-based image
analysis. Using specified severity thresholds of either refDR or
vtDR, the AI software gives an automated score of 0 (eye does not
meet the severity threshold), 1 (eye meets the severity threshold),
or AI failure (ungradable images). A summary of the grading
workflow of RC and POC AI is provided in Figure S1 (available at
www.ophthalmologyscience.org).
Statistical Analysis

Baseline characteristics of participants were presented as means
(standard deviation) or numerical values (percentage). The level of
agreement between POC AI and RC image grading was assessed
using kappa (k). The strength of agreement was determined using
the Landis and Koch interpretation of k statistics (0.20: slight
agreement; 0.21e0.40: fair agreement; 0.41e0.60: moderate
agreement; 0.61e0.80: substantial agreement; 0.81e1.00: almost
perfect agreement). Sensitivity and SP values for refDR, vtDR, and
ungradable images were calculated. Sensitivity and SP perfor-
mance thresholds of 85% and 82.5%, respectively, were used,
following US FDA requirements.12,15 Statistical analysis was
performed using SAS software version 9.4 (SAS, Inc).
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Table 1. Baseline Characteristics and DR/DME Severity by RC
Evaluation

Value ± SD or (%)

Female sex 1798 (64.4)
Age, yrs 59.1 � 10.4
Type 2 DM 2667 (95.5)
Duration of DM, yrs 7.1 � 7.3
DR severity by RC evaluation
No DR 3758 (67.3)
Mild NPDR 540 (9.7)
Moderate NPDR 482 (8.6)
Severe NPDR 271 (4.8)
PDR 213 (3.8)
Ungradable 321 (5.8)

DME severity by RC evaluation
No DME 4490 (80.4)
Non-ciDME 430 (7.7)
ciDME 246 (4.4)
Ungradable 419 (7.5)

Referable DR 25.3%
Vision-threatening DR 17.5%
Ungradable for DR or DME 7.5%

ciDME ¼ center-involving diabetic macular edema; DM ¼ diabetes mel-
litus; DME ¼ diabetic macular edema; DR ¼ diabetic retinopathy;
NPDR ¼ nonproliferative diabetic retinopathy; PDR ¼ proliferative dia-
betic retinopathy; RC ¼ reading center; SD ¼ standard deviation.

Table 2. Agreement Rates and Measures of Performance of Point-
of-Care Artificial Intelligence against Reading Center Evaluation

Threshold Kappa Exact Agreement Sensitivity Specificity PPV NPV

RefDRz 0.66 86.0% 0.86* 0.86* 0.67 0.95
VtDRx 0.54 82.4% 0.92* 0.80y 0.50 0.98
Ungradable 0.47 89.0% 0.80y 0.90* 0.39 0.98

DR ¼ diabetic retinopathy; NPV ¼ negative predictive value; PPV ¼
positive predictive value; refDR ¼ referable diabetic retinopathy; vtDR ¼
vision-threatening diabetic retinopathy.
*refDR or vtDR thresholds that met the 85% sensitivity and 82.5%
specificity rates.
yrefDR or vtDR thresholds that did not meet the 85% sensitivity and
82.5% specificity rates.
zrefDR is defined as moderate nonproliferative DR or worse, any diabetic
macular edema or ungradable images.
xvtDR is defined as severe nonproliferative DR or worse, center-involving
diabetic macular edema or ungradable images.
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Results

Of the 2793 participants, 1798 (64.4%) were women; the
mean (� standard deviation) age of participants was 59.1 (�
10.4) years, and the mean (� standard deviation) duration of
diabetes was 7.1 (� 7.3) years. Type 2 diabetes was present
in 95.5% of patients.

Diabetic retinopathy severity by RC evaluation was as
follows: no DR (3758 eyes [67.3%]), mild NPDR (540 eyes
[9.7%]), moderate NPDR (482 eyes [8.6%]), severe NPDR
(271 eyes [4.8%]), proliferative DR (213 eyes [3.8%]), and
ungradable (321 eyes [5.8%]). Furthermore, DME severity
by RC evaluation was as follows: no DME (4490 eyes
[80.4%]), noneciDME (430 eyes [7.7%]), ciDME (246 eyes
[4.4%]), and ungradable (419 eyes [7.5%]). Referable DR
was present in 25.3% and vtDR was present in 17.5% of
eyes. Images were ungradable for DR or DME in 15.4% of
eyes by POC AI and in 7.5% by the RC. Exact agreement
between RC and POC AI for ungradable images was 89%.
The primary cause of the ungradable images was image
quality in all cases. In 84 (1.5%) eyes, images were gradable
by the POC AI but ungradable by the RC due to poor image
quality preventing the assessment of DR severity in 27
(32.1%) eyes and DME in all 84 (100%) eyes. In 528 (9.4%)
eyes, images were gradable by the RC but ungradable by the
POC AI with 147 eyes (27.8%) having refDR. The baseline
characteristics of participants and DR/DME severity
assessment by RC evaluation are summarized in Table 1.

There was substantial agreement between POC AI
assessment and RC evaluation for refDR (k ¼ 0.66; exact
agreement¼ 86.0%), and moderate agreement for vtDR (k¼
0.54; exact agreement¼ 82.4%) and ungradable images (k¼
0.47; exact agreement ¼ 89.0%). Sensitivity and SP for
refDR were 0.86/0.86; vtDR, 0.92/0.80; and ungradable im-
ages, 0.80/0.90. Images were ungradable for DR or DME in
15.4% of eyes by POC AI. The US FDA SN and SP thresh-
olds of 85% and 82.5% were met by POC AI for refDR.15

Artificial intelligence achieved the vtDR thresholds for SN
but not for SP. On the other hand, POC AI achieved
ungradable thresholds for SP but not for SN. Table 2
summarizes the agreement rates, SN, and SP of POC AI
against RC evaluation. When ungradable images are
excluded from the analysis, the performance of the
algorithm for both refDR and vtDR is improved and meets
the FDA minimum thresholds for SN and SP (Table S3,
available at www.ophthalmologyscience.org).

An assessment of the POC AI false-negative and false-
positive images was performed after 3 months of patient
enrollment. A total of 1477 (26.4%) eyes were evaluated
with 32 false-negative eyes and 216 false-positive for
refDR. Among the POC AI false-negative eyes on RC re-
view, the human grader was more accurate in 29 eyes
(90.6%) and the AI in 3 eyes (9.4%). When the human
grader was more accurate, this was due to image quality in
26 eyes and field discrepancy in 3 eyes. In the subset of the
first 40 (18.5%) eyes graded as false-positive for refDR by
the POC AI, 39 (97.5%) eyes were confirmed by the RC to
have no refDR present and 1 (2.5%) eye was assessed to
have moderate NPDR. The POC AI did not provide an AI
attention map. However, based on RC review of the images,
the potential source of refDR finding by the POC AI is due
to the following: image quality in 18 eyes, drusen or retinal
pigment changes in 12 eyes, macular sheen in 5 eyes,
myopic fundus changes in 2 eyes, epiretinal membrane in 1
eye, and chorioretinal scar in 1 eye.
Discussion

In this study, POC AI assessment of DR severity using
handheld retinal imaging meets the current thresholds for SN
3
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and SP for refDR of 82.5% and 85.0%, respectively. The use
of POC AI and handheld imaging as a DR screening tool has
the potential to decrease the burden on reading centers, espe-
cially in low-income settings or geographically isolated com-
munities. Reliable AI assessment of DR at POC with real-time
output can guide clinical decision-making and referral rec-
ommendations. The handheld retinal camera and imaging
protocol used in this study have been validated against stan-
dard 7-field ETDRS photography.11 The weighted k level of
agreement for referable DR, as compared with ETDRS
standard 7-field photography, is 0.81, with a SN and SP of
0.84 and 0.97, respectively. No lid or lash artifacts were
captured with the handheld retinal cameras. Macular image
quality was the primary cause of RC ungradable images. For
the POC AI, one of the potential reasons for the high
ungradable rate is the difference in the camera type used to
train the algorithm, as compared with the camera used in this
study. The AI algorithm used in the present study trained on
images acquired from tabletop retinal cameras as compared
with a handheld retinal camera used in the previous study.
Additionally, the data set used to train the camera did not
include images from a Filipino population. This lack of rep-
resentation in the AI training set may affect AI performance,
particularly in underrepresented populations or with retinal
cameras not typically used in high-resource settings such as the
camera and population we evaluated in the Philippines.

The exponential increase in the prevalence of diabetes
globally presents a corresponding increase in the prevalence
of DR. According to projections by the International Dia-
betes Federation, approximately 537 million (or around 1 in
10) adults (aged 20e79 years) worldwide have diabetes in
2021.19 This projection suggests that > 1 billion eyes need
to be screened for DR at least once annually, translating to
around 3 million eyes daily. Even with the recent advances
in technology such as low-cost, portable retinal imaging
devices and teleophthalmology, the sheer number of images
that need to be graded in a timely manner places an over-
whelming burden on human graders. Traditionally, the re-
sponsibility of grading the fundus images lies with eye care
clinicians who perform the task when time permits or once
clinical responsibilities are accomplished. Oftentimes there
is not enough time to grade all images captured for the day
and the backlogs grow. Many DR screening programs have
introduced certified and highly trained nonclinical graders to
ease the burden of image analysis on clinicians.20e22 In
these settings, certified ophthalmic image graders have acted
as force-multipliers to alleviate pressures on eye care clini-
cians. However, this is still not enough to cope with DR
screening services’ workload. The use of validated AI al-
gorithms for DR evaluation is uniquely suited to address this
need. Artificial intelligence can provide DR assessment at
POC, identifying eyes with retinopathy automatically and
without any delay; hence, only patients who are at risk of
losing their sight will be referred for an in-person consult.
This use relieves human graders and clinicians of the bulk of
images that need to be evaluated, thereby reducing time
delays, and the requirement for in-person consults is also
minimized.

Before an AI platform can be incorporated into a DRSP,
however, its SN and SP should be ensured to be at par with
4

how human graders are performing. A study on an auton-
omous (i.e., does not require human review) AI-based
grading of DR in primary care screening sites by Abram-
off et al12 exceeded the 85% SN and 82.5% SP end point
targets set by the US FDA. Using the IDx-DR platform,
they were able to achieve 87.2% SN and 90.7% SP in
detecting the presence of more-than-mild DR. This pivotal
trial led to the authorization of the first US FDA-approved
AI system for autonomous use in DR screening.15,23 Since
then, other AI systems have also gained authorization
from the US FDA.16,17,24,25

A prior study in Australia using a previously validated AI
system in a clinical practice setting determined a 92% SP;
however, SNwas not generated due to low incidence of disease
in the study cohort.14 Additionally, the deployed AI system
suffered from a high false-positive rate due to the low dis-
ease incidence and insufficient image quality. The authors
recommended that images flagged by the AI system as having
referable illness should undergo further review by an
ophthalmologist before referral advice is given to the patient.14

In another study incorporating the IDx-DR device in daily
clinical workflow in an existing diabetes care system, SN/SP
for refDR was 0.91/0.84 when using the EURODIAB classi-
fication and 0.68/0.86when using the international scale,when
compared with retina specialists.26 The authors performed a
post hoc analysis and found that overzealous adherence by
the retina specialists to the international scale definitions led
to misclassification of images and subsequent discrepancies
in AI performance.26 Discrepancies in AI accuracy measures
between the 2 grading scales in this case suggest that
differences in the reference standard and settings can impact
the performance of the algorithm. In another study, a trained
and validated AI system was deployed in the general
ophthalmology clinics, a vitreoretinal clinic, and a
teleophthalmology community screening unit among 2
hospital systems in India.13 The SN/SP of the AI system for
refDR was 88.9% to 92.1% and 92.2% to 95.2%,
respectively. The results were consistent across the 2
hospitals, suggesting good reproducibility of the algorithm in
prospective clinical settings.13 Despite performing well in
validation studies under controlled research settings, AI
systems may encounter issues when implemented in clinical
sites or screening programs. Hence, consistency of AI
performance across multiple settings must be assured for
model generalizability. These studies highlight the
importance of external evaluation of AI systems in clinical
settings before wide scale use in DRSPs.

In our study, POC AI achieved SN/SP values of 0.86/0.86
for refDR and 0.92/0.80 for vtDR, respectively, exceeding the
US FDA threshold for refDR but not for vtDR.

The performance values of POC AI are comparable to the
present, US FDA-approved AI systems (Table 4). All AI
systems meet the SN and SP thresholds for refDR.
However, POC AI suffers from a higher AI failure rate,
and upon review this failure rate was mainly due to poorer
image quality on handheld retinal cameras compared with
tabletop cameras used by the 3 FDA-approved systems.
Point-of-care AI was also primarily trained on images from
tabletop cameras and not on handheld cameras which could
have also contributed to this result. It will be imperative to



Table 4. Comparison with FDA-Approved AI Systems

Referable DR* Point-of-Care AIy IDx-DR Eyenuk EyeArty AEYE-DS

Sensitivity 0.86 (0.92) 0.87 0.95e1.00 (0.89e1.00) 0.95
Specificity 0.86 (0.80) 0.90 0.87e0.92 (0.94e0.98) 0.89
Positive predictive value 0.67 (0.50) 0.73 0.46e0.65 (0.27e0.67) 0.54
Negative predictive value 0.95 (0.98) 0.96 0.99e1.00 (0.99e1.00) 0.99
Prevalence, % 32.4 23.8 10.5e12.2 (2.4e4.4) 12.3
AI failure rate, % 15.4 8.0 3.5 0.9

AI ¼ artificial intelligence; DR ¼ diabetic retinopathy; FDA ¼ Food and Drug Administration.
These are presented as a reference only and do not represent comparative performance. It is important to note that each of the DR grading programs
referenced in the table were evaluated using different image sets and grading methods.
*Moderate nonproliferative DR or worse or any level of diabetic macular edema. Based on United States FDA submission.
yValues in () are for vision-threatening retinopathy.
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address this high failure rate in future versions of the software
since this will affect the efficiency and acceptability of POC
AI. Many authors have noted a tendency for algorithms to
underperform when deployed to populations which are
distinct from the ones on which they were trained, leading to
concerns that this could potentially propagate health care
disparities.27e31 Since an AI systemworks well if it is applied
on images similar to those on which it was developed, the
POC AI algorithm may also need to undergo proper opti-
mization using a training set that is comparable to the
intended population. As a caveat, it is important to note that
comparing these AI systems is not straightforward. The dif-
ference in the performance measures among the various AI
platforms may be due to several factors, including difference
in the cameras, image sets and grading methods used, dis-
similar clinical settings, variation in algorithm threshold, or a
combination of these factors. These are presented here
merely as a reference and generally do not represent
comparative performance.

The prevalence of refDR in the POC AI study population
was considerably higher than in other studies due to a sig-
nificant first-pass effect that is observed during the first
round of screening in newly implemented DRSP.32 Since
most patients in the study never had any prior DR
screening visits, a higher level of previously undetected
prevalent disease was noted in the initial year of
screening. This initial large demand on specialized eye
care services will need to be considered in the planning of
the DRSP.33 Our results also suggest that currently, when
using POC AI, only refDR (and not vtDR) may be
applied as the threshold for screening when using
handheld retinal imaging. With the increased accessibility
provided by AI integration into systematic DR screening
programs, the repetitive nature of the retinal examinations
may act as a fail-safe to potentially identify disease that
may have been missed. Although the current threshold for
vtDR was not met with POC AI for handheld imaging,
advances in algorithm development, computational
methods, and the increasing availability of handheld
imaging data sets may substantially improve AI
performance in the future.

The strengths of this study include the prospective study
design, large sample size, enrollment of patients from an
active existing community-based DRSP, use of a standard-
ized imaging protocol by trained imagers, and centralized
RC evaluation by certified graders (board-certified oph-
thalmologists/retina specialists). Additionally, this use
marked the first clinical use of POC AI in the Philippines,
emphasizing the potential to effectively address health care
disparities in underserved regions where access to care is
limited. A limitation of POC AI was that it only grades the
disc- and macula-centered images taken using the handheld
camera. This limitation may also explain, in part, the higher
ungradable rate of POC AI compared with RC evaluation as
there were more fields (and therefore more areas of the
retina) available for assessment in RC. Despite this, we
deemed it was essential to emulate clinical conditions in this
comparative study. Since the patients were recruited in an
active, community-based DRSP that uses a validated 5-field
handheld retinal imaging protocol that has been shown to
perform favorably compared with standard ETDRS 7-field
photography (weighted k, 0.75),11 any POC AI that will
be deployed in the DRSP should perform well enough
compared with the RC evaluation of 5-field images.
Another limitation is that this study focused only on DR and
was not designed to evaluate other retinal lesions that may
be present in people with diabetes and that may require
referral for specialist care. Other issues surrounding AI for
DR screening, such as legal and regulatory approvals and
user acceptability, are beyond the scope of this study and
must be addressed in further investigations. Future work on
POC AI should focus on the reduction of the ungradable rate
and development of systems trained on handheld retinal
images.34

This study demonstrated that POC AI at the time of
imaging, following a defined retinal imaging protocol, using
handheld fundus cameras, has SN and SP for refDR that
meets the current US FDA thresholds. Integrating AI at the
POC in a community-based DRSP could substantially
reduce centralized RC burden and speed information de-
livery to the patient, allowing more prompt eye care re-
ferrals. Looking ahead, health systems globally should start
to explore how AI can be integrated into their existing
DRSP to help cope with the current and expected rise in
demand for DR screening services. Teleophthalmology and
DRSP should strive to take hold of the significant advances
5



Ophthalmology Science Volume 4, Number 3, June 2024
in AI and retinal imaging and build on what can be sus-
tainably used. Paramount to these is maintaining the quality
of care and establishing standards to ensure patient safety
and outcomes are improved. Artificial intelligence for DR
screening can help ensure that every person with diabetes
gets screened at appropriate intervals, and that those with
DR are properly identified and offered timely treatment with
the ultimate goal of saving sight.
6
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