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Abstract

When handling a structured population in association mapping, group-specific allele effects

may be observed at quantitative trait loci (QTLs) for several reasons: (i) a different linkage

disequilibrium (LD) between SNPs and QTLs across groups, (ii) group-specific genetic

mutations in QTL regions, and/or (iii) epistatic interactions between QTLs and other loci that

have differentiated allele frequencies between groups. We present here a new genome-

wide association (GWAS) approach to identify QTLs exhibiting such group-specific allele

effects. We developed genetic materials including admixed progeny from different genetic

groups with known genome-wide ancestries (local admixture). A dedicated statistical meth-

odology was developed to analyze pure and admixed individuals jointly, allowing one to dis-

entangle the factors causing the heterogeneity of allele effects across groups. This

approach was applied to maize by developing an inbred “Flint-Dent” panel including

admixed individuals that was evaluated for flowering time. Several associations were

detected revealing a wide range of configurations of allele effects, both at known flowering

QTLs (Vgt1, Vgt2 and Vgt3) and new loci. We found several QTLs whose effect depended

on the group ancestry of alleles while others interacted with the genetic background. Our

GWAS approach provides useful information on the stability of QTL effects across genetic

groups and can be applied to a wide range of species.

Author summary

Identification of genomic regions involved in genetic architecture of traits has become

commonplace in quantitative genetics studies. Genetic structure is a common feature in

human, animal and plant species and most current methods target genomic regions

whose effects on traits are conserved between genetic groups. However, a heterogeneity of

allele effects may be observed due to different factors: a group-specific correlation between

PLOS GENETICS

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008241 March 4, 2020 1 / 27

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Rio S, Mary-Huard T, Moreau L, Bauland

C, Palaffre C, Madur D, et al. (2020) Disentangling

group specific QTL allele effects from genetic

background epistasis using admixed individuals in

GWAS: An application to maize flowering. PLoS

Genet 16(3): e1008241. https://doi.org/10.1371/

journal.pgen.1008241

Editor: Nathan M. Springer, University of

Minnesota, UNITED STATES

Received: June 10, 2019

Accepted: January 29, 2020

Published: March 4, 2020

Copyright: © 2020 Rio et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: Genotypes, Allele

ancestries, phenotypes, R scripts to run analyses,

and summary GWAS statistics are available at: Rio

Simon, 2020, “FlintDent GWAS dataset,” https://

doi.org/10.15454/OQT5CY, Portail Data INRAE, V1.

All other relevant data are within the paper and its

Supporting Information files.

Funding: This research was supported by the

”Investissement d’Avenir” project (Amaizing, ANR-

10-BTBR-0001). SR is jointly funded by the

http://orcid.org/0000-0001-7014-8789
http://orcid.org/0000-0002-7195-1327
http://orcid.org/0000-0001-9916-2744
http://orcid.org/0000-0002-8427-1726
http://orcid.org/0000-0002-5073-5713
http://orcid.org/0000-0002-5697-7780
http://orcid.org/0000-0001-6125-503X
https://doi.org/10.1371/journal.pgen.1008241
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008241&domain=pdf&date_stamp=2020-03-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008241&domain=pdf&date_stamp=2020-03-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008241&domain=pdf&date_stamp=2020-03-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008241&domain=pdf&date_stamp=2020-03-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008241&domain=pdf&date_stamp=2020-03-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008241&domain=pdf&date_stamp=2020-03-16
https://doi.org/10.1371/journal.pgen.1008241
https://doi.org/10.1371/journal.pgen.1008241
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.15454/OQT5CY
https://doi.org/10.15454/OQT5CY


the alleles of the tagged marker and those of the causal variant, a group-specific mutation

at the causal variant or an epistatic interaction between the causal variant and the genetic

background. We propose a new method adapted to structured populations including

admixed individuals, which aims to identify these genomic regions and to unravel the pre-

vious factors. The method was applied to a maize inbred diversity panel including lines

from the dent and the flint genetic groups, as well as admixed lines, evaluated for flower-

ing time. Several genomic regions were detected with various configurations of allele

effects, with evidence of epistatic interactions between some of the loci and the genetic

background.

Introduction

Quantitative traits are genetically determined by numerous regions of the genome, also known

as quantitative trait loci (QTLs). The advent of high density genotyping of single nucleotide

polymorphisms (SNPs) has opened the way to the identification of QTLs in diversity panels.

These studies, referred to as genome-wide association studies (GWAS), use the linkage dis-

equilibrium (LD) between the SNPs and causal variants at QTLs underlying the traits of inter-

est. The panels evaluated in GWAS often include sets of individuals with complex pedigrees or

genetic structure [1]. The latter is a common feature in human, animal and plant species and

arises when groups of individuals cease to mate with each other and start to be subjected to dif-

ferent evolutionary forces, such as drift or selection [2].

Applying GWAS in a diversity panel including individuals from different groups raises the

issue of spurious associations. The stratification of a population into genetic groups generates

LD between loci that are differentiated between groups but not necessarily genetically linked.

When a given trait is characterized by contrasted group-specific means, all these SNPs will cor-

relate to it and may be detected as false positives. An efficient control of these spurious associa-

tions can be done by taking structure and kinship into account in the statistical model [1, 3].

This procedure will however limit the statistical power at differentiated SNPs, making them

difficult to detect in multi-group GWAS, especially in case of rare alleles [4].

In a structured population, group-specific allele effects can be observed at SNPs, and testing

an overall effect using a standard GWAS model may not be effective if the QTL effect is of

opposite sign in the different groups. Such effects can result from group differences in LD

between SNPs and QTLs across genetic groups. A different LD extent or linkage phase

between linked loci can be explained by specific dynamics of population size such as bottle-

necks or expansions [5, 6]. Such patterns of LD were identified in numerous species including

human [7, 8], dairy and beef cattle [9, 10], pig [11], wheat [12] and maize [13–16]. A genetic

mutation appearing in a QTL region may also lead to group-specific allele effects if it occurred

in a founder specific of the genetic group. Several Mendelian syndromes of obesity were

shown to result from mutation within specific ethnicities in human [17]. Another possibility

consists in QTLs interacting with other loci that have differentiated allele frequencies between

groups (i.e. interacting with the genetic background). In human, this possibility was discussed

for a candidate gene associated with a higher risk of myocardial infarction in African Ameri-

can than in European populations [18, 19]. Another example is a SNP in the promoter region

of HNF4A gene which was associated with a higher risk of developing type 2 diabetes in Aske-

nazi compared to United Kingdom populations [20]. This locus was later proven to be inter-

acting with another gene in the Askenazi population [21]. In maize, evidences of QTLs with

group-specific allele effects can also be found, even though the cause of these differences
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remains unclear. The presence of allelic series has been demonstrated for QTLs associated

with flowering time, including Vgt1 [22]. A QTL with group-specific allele effects was also

identified in a maize diversity panel for a phenology trait [23]. More generally, studying the

stability of QTL allele effects across genetic backgrounds is an important issue. In human, it

determines the ability of a genetic marker to predict the predisposition of an individual to

develop a genetic disease across ethnic groups. In plant or animal breeding, it conditions the

success of introgressing a favorable allele coming from a source of diversity into an elite genetic

material.

Different GWAS strategies were adopted to address this issue depending on the species. In

human, GWAS mostly focused on a specific genetic group, and these group-specific studies

were compared later through meta-analyses [24, 25]. Some of these meta-analyses revealed

highly conserved effects between populations [26, 27] while other put in evidence more differ-

ences [28]. In dairy cattle, the first GWAS studies focused on a specific breed [29–31]. More

recently, multi-breed GWAS were conducted to refine QTLs locations by taking advantage of

the low LD extent observed in such composite populations [32–34]. In maize, the possibility to

use seeds from different origins and generations led geneticists to assemble GWAS panels with

a broad range of genetic materials [35–37]. These panels often include a limited proportion of

admixed individuals that were derived from crosses between individuals from different genetic

groups. The genomes of these admixed individuals consist in mosaics of fragments with differ-

ent ancestries. Admixture events are a common feature in living species and can contribute to

the successful colonization of new environments [38, 39]. In plants, innovative admixed

genetic materials were created to enable high statistical power of QTL detection along with a

wide spectrum of genetic diversity studied, such as nested association mapping (NAM) [40] or

multi-parent advanced generation inter-cross (MAGIC) [41]. Both NAM and MAGIC popula-

tions are of great interest to study the stability of QTL effects in a wide range of genetic back-

grounds. However, they generally include a limited number of founders and do not address

the stability of QTL allele effects across genetic groups.

This study aimed at evaluating the interest of producing admixed individuals, derived from

a large set of parents, in order to decipher the genetic architecture of a trait using innovative

GWAS models. The objectives were (i) to demonstrate the interest of multi-group analyses to

identify new QTLs, (ii) to highlight the interest of applying multi-group GWAS models to

identify group-specific allele effects at QTLs and (iii) to show how admixed individuals can

help to disentangle the factors causing the heterogeneity of allele effects across groups: local

genomic differences or epistatic interactions between QTLs and the genetic background. To

our knowledge, no method has been proposed in the literature to address the last objective.

This method was applied to a maize inbred population evaluated for flowering traits, including

dent, flint and admixed lines. Maize flowering time is an interesting trait to analyze in quanti-

tative genetics studies. It is considered as a major adaptive trait by tailoring vegetative and

reproductive growth phases to local environmental conditions.

Materials and methods

Genetic material and genotypic data

Genetic material consisted in a panel of 970 maize inbred lines assembled within the “Amaiz-

ing” project. It gathered 300 dent lines, 304 flint lines and 366 admixed doubled haploids, fur-

ther referred to as admixed lines. The dent lines were those included in the “Amaizing Dent”

panel [42] and the flint lines were those included in the “CF-Flint” panel [16]. The dent and

flint lines aimed at representing the diversity of their respective heterotic group used in Euro-

pean breeding and included several breeding generations. The admixed lines were derived
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from 206 hybrids between flint and dent lines, mated according to a sparse factorial design

(Fig 1), followed by in situ gynogenesis [43] to produce fixed admixed inbred lines. Each dent

or flint line was involved in 0 to 11 hybrids (1.21 in average), each leading to 1 to 4 admixed

lines (1.77 in average). In total, 171 dent lines and 172 flint lines were involved as parents of

admixed lines.

All the flint and dent lines were genotyped using the 600K Affymetrix Maize Genotyping

Array [44]. Residual heterozygous data was treated as missing and all missing values were

imputed independently within each group using Beagle v.3.3.2 and default parameters [45].

The few heterozygous genotypic datapoints imputed by Beagle (0.00084% of all datapoints)

were randomly assigned to homozygous genotypes. The admixed lines were genotyped with a

15K chip provided by the private company Limagrain which included a reduced set of SNPs

from the 50K Illumina MaizeSNP50 BeadChip [46]. Eight check lines were genotyped with

both 600K and 15K genotyping technologies to standardize the reference alleles (0/1) on the

set of shared SNPs between the 600K and 15K datasets (9,015 SNPs). Admixed lines were then

imputed to 600K SNPs using the following procedure, illustrated in S1 Fig. The positions of

recombination breakpoints and the parental origins of the alleles for admixed lines were deter-

mined with the set of 9,015 shared SNPs. SNPs for which parental lines carry different alleles

allowed us to identify the parental line that transmitted its allele to its admixed progeny. For a

given admixed line, changes of parental origins of alleles along a given chromosome indicated

the location of recombination breakpoints. A smoothing of parental allele origins was per-

formed for the few SNPs indicating discordant information with respect to the chromosome

block in which they were located. In this case, we considered the underlying genotypic data-

point as missing. Parental origins of alleles in admixed lines were imputed up to 600K using

adjacent SNP information. If a set of SNPs to be imputed was located within a recombination

interval, the new position of the breakpoint was positioned at half of that ordered set, accord-

ing to the physical position of the SNPs along the chromosome (average proportions of SNPs

Fig 1. Diagram of admixed lines production from hybrids obtained by mating dent and flint lines according to a sparse factorial

design.

https://doi.org/10.1371/journal.pgen.1008241.g001
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located within such intervals was 0.93% for a given admixed individual). Alleles at SNPs were

then imputed based on their origin using parental genotypic data. The MITE associated with

the flowering QTL Vgt1 [47, 48] was also genotyped for all the individuals (0: absence, 1: pres-

ence). There was a total of 482,013 polymorphic SNPs in this dataset, for which we had infor-

mation for each individual concerning the SNP allele (0/1), its ancestry (dent/flint) and the

genetic background (dent/flint/admixed) in which it was observed.

The dent genome proportion of the admixed lines ranged from 0.16 to 0.86 with a mean

equal to 0.51 (S2 Fig). Possible selection biases were studied along the genome by comparing

the observed allele frequencies with the expected allele frequencies given the pedigree. No

major pattern was observed, suggesting no or minor selection biases among the admixed lines

(S3 Fig). A PCoA was performed on genetic distances computed as Dl,l0 = 1 − Kl,l0, with Kl,l0

being the kinship coefficient between lines l and l0 computed following Eq (2)—see below—

assuming a common genetic background for all individuals, i.e. using an average frequency of

allele 1 at each locus. The flint and dent lines are clearly distinguished on the two principal

coordinates, with a small overlapping region in the center of the graph, while the admixed

lines fill the genetic space between the two groups (Fig 2). The same PCoA calculated using the

set of 9,015 shared SNPs between the 600K and 15K datasets showed a very similar structure

pattern on the first two axes, as shown in S4 Fig.

LD between pairs of loci was estimated separately in the dent and the flint datasets using

the square correlation r2 between loci pairs. We only considered SNPs for which at least ten

Fig 2. PCoA on genetic distances with coloration of individuals depending on their genetic background: dent, flint or admixed.

https://doi.org/10.1371/journal.pgen.1008241.g002
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individuals carried the minor allele in both dent and flint datasets. For each group, LD was cal-

culated and averaged for sets of loci pairs characterized by a similar physical distance ranging

from 0 to 2 Mbp, considering a sliding window of 1Kbp. The inter-group LD comparison

revealed a higher LD extent in the dent than in the flint genetic group (S5 Fig), which was con-

sistent with previous studies [13–16]. As suggested by [9], the persistence of LD linkage phases

across flint and dent genetic groups was evaluated by computing the correlation between the

r estimated in each group, along the same sliding window of 1Kbp. We also studied the consis-

tency of LD linkage phases between groups by computing the correlation between their signs

in the two groups, giving a value of “0” and “1” for a negative and a positive r, respectively. LD

phases were very consistent over short physical distances but began to diverge dramatically

when the loci were distant by more than 100-200 Kbp (S6 Fig).

Phenotypic data

All the lines were evaluated per se at Saint-Martin-de-Hinx (France) in 2015 and 2016 for

male flowering (MF) and female flowering (FF), in calendar days after sowing. Each trial was

a latinized alpha design where every line was evaluated two times on average. Field trials were

divided into two blocks of 33 sub-blocks each comprising 36 plots. To avoid competition

between genetic backgrounds, dent, flint and admixed lines were sown in different sub-

blocks. Three check lines were repeated in all sub-blocks (B73, F353 and UH007). Each plot

consisted in a row of 25 plants. MF and FF were measured as a median value within the

whole plot.

The contribution of Genotype x Environment (GxE) interactions to the phenotypic vari-

ance and the level of broad-sense heritability were investigated using the following model:

Yjklrc ¼ mþ bj þ ak þ Gkl þ ðG� bÞjkl þ Xjr þ Zjc þ Ejklrc

Gkl � N ð0; s2
Gk
Þindependent

ðG� bÞjkl � N ð0; s2
ðG�bÞjk

Þindependent

Ejklrc � N ð0; s2
Ej
Þ independent;

where Yjklrc is the phenotype, μ is the intercept, βj is the fixed effect of trial j, αk is the fixed

effect of genetic background k (dent, flint, admixed, or the different checks: B73, F353 and

UH007), Gkl is the random genotype effect of line l in genetic background k (not for checks)

with s2
Gk

being the genotypic variance in genetic background k, (G × β)jkl is the random GxE

interaction of line l in genetic background k for trial j, with s2
ðG�bÞjk

being the GxE variance in

the genetic background k for trial j, Ejklrc is the error with s2
Ej

being the error variance for trial

j, Xjr and Zjc are the row and column random effects in trial j, respectively, as defined by the

field design. All random effects are independent of each other. The row and column effects

were modeled as independent or using an autoregressive model (AR1), as determined based

on the AIC criterion (S1 Table). Least squares means (Y�kl), further referred to as phenotypes

(Ykl), were computed over the whole design using the same model, with genotypes as fixed

effects: Y�kl ¼ m̂ þ
1

2

P2

j¼1
b̂ j þ âk þ ĝkl where γkl is the fixed genotype effect of line l in genetic

background k. Model parameters were estimated using ASReml-R and restricted maximum

likelihood (ReML) [49].
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General polygenic model

In this study, the following general polygenic model was considered:

Ykl ¼ mþ ak þ Gkl þ Ekl ð1Þ

where Ykl is the phenotype (least squares mean) of line l in genetic background k among the N
individuals of the sample, μ is the intercept, αk is the genetic background effect with k 2 {D, F,

A} for dent, flint and admixed genetic background, respectively, Gkl is the random genetic

value of the line with

gD

gF

gA

2

6
4

3

7
5 being the concatenated vector of the genetic values in each genetic

background where

gD

gF

gA

2

6
4

3

7
5 � N

0

0

0

2

6
4

3

7
5;

KDs
2
GD

KD;FsGDF
KD;AsGDA

KF;DsGDF
KFs

2
GF

KF;AsGFA

KA;DsGDA
KA;FsGFA

KAs
2
GA

2

6
6
4

3

7
7
5

0

B
B
@

1

C
C
A, Kk,k0 is the kin-

ship matrix between individuals from genetic background k and k0 computed following Eq (2),

s2
Gk

is the genetic variance in genetic background k, sGkk0
is the genetic covariance between

genetic background k and k0, Ekl is the error associated with line l in genetic background k with

Ekl � N ð0; s2
EÞ independent and identically distributed, and s2

E is the error variance.

The kinship between lines l from genetic background k and l0 from genetic background k0,
Kkl,k0l0, was computed following [50]:

Kkl;k0 l0 ¼

PM
m¼1
ðWlm � fmkÞðWl0m � fmk0 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PM
m¼1

fmkð1 � fmkÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PM

m¼1
fmk0 ð1 � fmk0 Þ

q ð2Þ

where Wlm is the genotype of line l at locus m coded 0/1 and fmk is the frequency of allele 1 at

locus m in genetic background k. Note that Eq (2) simplifies to the kinship estimator proposed

by [51] when l and l0 belong to the same genetic background.

GWAS models

In this study, three GWAS models were applied to different population samples (Table 1). The

GWAS strategies were (i) to analyze dent and flint lines separately using a standard GWAS

model M1, (ii) to analyze dent and flint lines jointly using a GWAS model M2 accounting for

allele ancestry (confounded with the genetic background) and (iii) to analyze dent, flint and

Table 1. Population sample to which each GWAS model was applied with the corresponding number of SNPs conserved for the analysis (at least 10 individuals car-

rying the minor allelic state).

Dent Flint Dent + Flint Dent + Flint + Admixed

M1 ✔ (247,759) ✔ (282,278) ✘ ✘
M2 - - ✔ (288,093) ✘
M3 - - - ✔(256,951)

✔: model was applied to the sample

✘: model was not applied to the sample but can theoretically be, provided the addition of a genetic background effect

- : model cannot be applied to the sample or would simplify into another model

Note that the number of SNPs in multi-group GWAS (M2 and M3) is higher than the minimum number of SNPs in single group GWAS (M1 (Dent)). SNPs carrying

redundant information within a single group were indeed reduced to a single SNP for M1 and may no longer carry redundant information when datasets are pooled (M2

and M3)

https://doi.org/10.1371/journal.pgen.1008241.t001
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admixed lines using a GWAS model M3 accounting for both allele ancestry and the genetic

background of the individuals. All models aimed at detecting a SNP effect, defined as a con-

trast effect between alleles 0 and 1 at a given SNP.

Standard GWAS model M1. The first GWAS model M1 [1] was applied separately to the

dent and flint datasets. For each SNP among the M loci, one has:

Yil ¼ mþ b
m
i þ Gil þ Eil

where b
m
i is the effect of the SNP allele i at locus m (Table 2). All other terms are identical to

those appearing in Eq (1), and the kinship was computed following Eq (2) which simplifies to

the kinship estimator proposed by [51]. The existence of a SNP effect was tested using hypoth-

esis H0 : D
m
¼ b

m
1
� b

m
0
¼ 0.

Multi-group GWAS model M2. We applied a multi-group GWAS model M2 jointly to

the flint and dent datasets, specifying the allele ancestry (confounded with the genetic back-

ground). For a given SNP m, one has:

Yijl ¼ mþ b
m
ij þ Gijl þ Eijl

where b
m
ij is the effect of the SNP allele i with ancestry j at locus m, as defined in Table 2. All

other terms are identical to those appearing in Eq (1). At a given SNP, the following hypotheses

were tested:

• H0 : D
m
D ¼ b

m
1D � b

m
0D ¼ 0

• H0 : D
m
F ¼ b

m
1F � b

m
0F ¼ 0

• H0 : D
m
DþF ¼ D

m
D þ D

m
F ¼ 0

• H0 : D
m
D� F ¼ D

m
D � D

m
F ¼ 0

Hypotheses D
m
D and D

m
F test the existence of a dent and a flint SNP effect, respectively.

Hypothesis D
m
DþF tests for a general SNP effect while D

m
D� F tests for a divergent SNP effect

between the dent and flint ancestries.

Multi-group GWAS model M3. We applied a multi-group GWAS model M3 jointly to

the flint, dent and admixed datasets, specifying the allele ancestry and the genetic background

of the individual. For a given SNP m, one has:

Yijkl ¼ mþ b
m
ijk þ Gijkl þ Eijkl

Table 2. Allelic states observed in each GWAS model, resulting from a combination of SNP alleles, their ancestry

and the genetic background in which they are observed.

SNP Ancestry Genetic background Allelic states

M1 {0, 1} - - {0, 1}

M2 {0, 1} {D, F}a - {0D, 1D, 0F, 1F}

M3 {0, 1} {D, F} {D, A, F} {0DD, 1DD, 0DA, 1DA, 0FA, 1FA, 0FF, 1FF}

0: SNP reference allele

1: SNP alternative allele

D: Dent ancestry or genetic background

F: Flint ancestry or genetic background

A: Admixed genetic background
a confounded with the genetic background

https://doi.org/10.1371/journal.pgen.1008241.t002
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where b
m
ijk is the effect of the SNP allele i with ancestry j at locus m in genetic background k, as

defined in Table 2. All other terms are identical to those appearing in Eq (1). At a given SNP,

16 hypotheses were tested (Table 3). Hypotheses referred to as “simple” (D
m
DD, D

m
DA, D

m
FA and

D
m
FF) were tested to identify QTLs with a significant SNP effect for each combination of

ancestries and genetic backgrounds. For instance, D
m
DA tests whether a dent SNP effect (differ-

ential effect between alleles 0 and 1 of dent ancestry) is significant in the admixed genetic

background. Hypotheses referred to as “general” (D
m
FFþFA, D

m
DDþDA, D

m
DAþFA, D

m
DDþFF and,

D
m
DDþDAþFAþFF) were used to identify QTLs with a mean SNP effect over ancestries and genetic

backgrounds. For instance, D
m
FFþFA tests for a general flint SNP effect in the flint and the

admixed genetic backgrounds and D
m
DDþDAþFAþFF tests for a general SNP effect over ancestries

and genetic backgrounds. Hypotheses referred to as “divergent” (D
m
DA� FA, D

m
DD� DA, D

m
FF� FA,

D
m
DD� FF, D

m
DA� FF, D

m
DD� FA, D

m
ðDDþDAÞ� ðFFþFAÞ, D

m
ðDDþFFÞ� ðDAþFAÞ, D

m
ðDD� DAÞ� ðFF� FAÞ) were tested to iden-

tify QTLs with a contrasted SNP effect between ancestries and/or genetic backgrounds. For

instance, D
m
DD� DA tests for a divergent dent SNP effect between the dent and the admixed

genetic backgrounds, which amounts to testing an epistatic interaction between the SNP and

the genetic background (see S1 Appendix for details).

On a biological standpoint, a QTL with contrasted SNP effects between groups can be

caused by (i) a local genomic difference due to a group-specific genetic mutation for all or part

of the lines and/or to group differences in LD or (ii) an interaction with the genetic back-

ground. Under the first hypothesis, one expects that the effect of a SNP depends on its

ancestry but not on the genetic background (admixed or pure, see Fig 3a). Under the second

Table 3. Linear combinations tested with M3 compared to hypotheses tested using other GWAS models (M1 and M2).

Type D
m
DD

a D
m
DA

b D
m
FA

c D
m
FF

d M1 M2

D
m
DD simple +1 0 0 0 ✔ ✔

D
m
DA simple 0 +1 0 0 - -

D
m
FA simple 0 0 +1 0 - -

D
m
FF simple 0 0 0 +1 ✔ ✔

D
m
DDþFF general +1 0 0 +1 - ✔

D
m
DDþDA general +1 +1 0 0 - -

D
m
FFþFA general 0 0 +1 +1 - -

D
m
DAþFA general 0 +1 +1 0 - -

D
m
DDþDAþFAþFF general +1 +1 +1 +1 - -

D
m
DD� FF divergent +1 0 0 -1 - ✔

D
m
DD� DA divergent +1 -1 0 0 - -

D
m
FF� FA divergent 0 0 -1 +1 - -

D
m
DA� FA divergent 0 +1 -1 0 - -

D
m
ðDDþDAÞ� ðFFþFAÞ divergent +1 +1 -1 -1 - -

D
m
ðDDþFFÞ� ðDAþFAÞ divergent +1 -1 -1 +1 - -

D
m
ðDD� DAÞ� ðFF� FAÞ divergent +1 -1 +1 -1 - -

a D
m
DD ¼ b

m
1DD � b

m
0DD

b D
m
DA ¼ b

m
1DA � b

m
0DA

c D
m
FA ¼ b

m
1FA � b

m
0FA

d D
m
FF ¼ b

m
1FF � b

m
0FF

✔: hypothesis also tested using the corresponding GWAS model

- : hypothesis not tested using the corresponding GWAS model

https://doi.org/10.1371/journal.pgen.1008241.t003

PLOS GENETICS Disentangling group specific QTL allele effects from genetic background epistasis in GWAS

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008241 March 4, 2020 9 / 27

https://doi.org/10.1371/journal.pgen.1008241.t003
https://doi.org/10.1371/journal.pgen.1008241


hypothesis, we expect a SNP effect, for a given ancestry, to vary depending on the genetic back-

ground. One example would be a QTL with a strong SNP effect in a dent genetic background,

but none in the flint genetic background, while the SNP effects would be of intermediate size

for alleles of both ancestries in the admixed genetic background (see Fig 3b). Note that other

complex configurations are possible, justifying the inclusion of all tests in the analysis.

For the three GWAS models, a SNP was discarded if its minor allelic state, as defined in

Table 2, was carried by less than 10 individuals, or if it carried a redundant genetic information

(genetic information identical to that of another SNP already included in the dataset). To

avoid prohibitive computational times, a two-step strategy was adopted for the inference of

models M2 and M3. In a first step, the parameters of the “null” model of Eq (1) were estimated.

The variance parameters were then plugged into their respective covariance matrices in order

to derive a genetic covariance matrix G and an error covariance matrix R. In a second step, a

model was fitted that included SNP fixed effects, as defined in M2 (or M3), and two random

effects (one genetic effect and one error effect) with covariance matrices G and R, respectively.

Note that this strategy corresponds to fitting M2 (or M3) while keeping some variance ratios

fixed to their respective values obtained in the “null” model.

Model parameters were estimated using ReML and the linear combinations of fixed effects

were tested using Wald tests, both implemented in the R-package MM4LMM [52]. P-values

were computed using the X 2ð1Þ asymptotic null distribution of the Wald statistic, as presented

in [4]. The false discovery rate (FDR) was controlled by applying the procedure of [53] jointly

to the whole set of tests defined by each GWAS strategy, and repeatedly for each trait. All

GWAS strategies were evaluated for their ability to control type I error and for their statistical

power, using simulated phenotypes. Results are presented in S2 Appendix. In general, all mod-

els correctly controlled for false positives, and a higher power was observed for multi-group

models, notably due to their ability to identify QTLs with complex configurations of effects.

For a given hypothesis tested, significant SNPs were clustered into QTLs if they were

located within a physical window of 3 Mbp, leading to a LD below 0.05 between markers of dif-

ferent QTLs.

Fig 3. Schematic of allele effects when divergent SNP effects are observed between groups, depending on the biological hypothesis:

(a) local genomic difference between groups (LD or mutation) and (b) allele effects interacting with the genetic background. The

denomination of the allelic states on the x-axis include the SNP allele (0/1), its ancestry (D/F) and the genetic background in which it is

observed (D/A/F), as presented in Table 2.

https://doi.org/10.1371/journal.pgen.1008241.g003
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Results

Associations detected and comparison of GWAS strategies

We observed a substantial phenotypic variability within the dent, flint and admixed genetic

backgrounds for both traits. The variance components estimated in the phenotypic analysis

are summarized in S1 Table. GxE variances were limited and the broad sense heritabilities

were high for each genetic background, ranging from 0.88 in the admixed lines to 0.96 in the

dent and flint lines for both MF and FF. The model parameters estimated using the general

polygenic model of Eq (1) are presented in S2 Table and showed a larger genetic variance in

the dent compared to the flint and admixed genetic backgrounds.

For each GWAS model, two levels of FDR were used: 5% and 20% to declare a SNP as sig-

nificantly associated. The number of significant SNPs detected and the corresponding number

of QTLs were summarized in Table 4 for both traits. The location of QTLs detected using a

FDR of 20% was represented along the genome in Fig 4 for MF and in S7 Fig for FF. All

Table 4. Number of SNPs associated with each trait, depending on the GWAS strategy, using a FDR of 5% and 20%. The number of corresponding QTLs is also

indicated.

MF FF

5% 20% 5% 20%

SNP QTL SNP QTL SNP QTL SNP QTL

M1
a 7 2 56 24 8 3 38 14

Δm (Dent) 4 1 35 12 4 1 22 6

Δm (Flint) 3 1 21 13 4 2 16 8

M2
a 6 2 10 5 6 2 9 5

D
m
D 4 1 5 4 4 1 4 1

D
m
F 2 1 4 2 2 1 4 3

D
m
DþF 1 1 3 2 2 1 2 1

D
m
D� F - - - - - - 1 1

M3
a 3 2 56 17 - - 13 5

D
m
DD 1 1 41 1 - - 4 1

D
m
DA - - 1 1 - - - -

D
m
FA 2 1 9 1 - - 1 1

D
m
FF - - 1 1 - - - -

D
m
DDþFF - - 9 3 - - 3 2

D
m
DAþDD - - 5 3 - - - -

D
m
FFþFA - - 3 2 - - - -

D
m
DAþFA - - 11 4 - - 1 1

D
m
DDþDAþFAþFF - - 19 5 - - 16 1

D
m
DD� FF - - 6 1 - - - -

D
m
DD� DA

b - - - - - - - -

D
m
FF� FA

b - - 2 2 - - - -

D
m
DA� FA - - 4 4 - - - -

D
m
ðDDþDAÞ� ðFFþFAÞ - - 2 2 - - - -

D
m
ðDDþFFÞ� ðDAþFAÞ

b - - - - - - 1 1

D
m
ðDD� DAÞ� ðFF� FAÞ

b - - 1 1 - - - -

a number of SNPs detected over the set of tests (a given SNP can be detected using different tests)
b hypothesis testing an interaction between the QTL and the genetic background

https://doi.org/10.1371/journal.pgen.1008241.t004

PLOS GENETICS Disentangling group specific QTL allele effects from genetic background epistasis in GWAS

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008241 March 4, 2020 11 / 27

https://doi.org/10.1371/journal.pgen.1008241.t004
https://doi.org/10.1371/journal.pgen.1008241


associations are listed in S3 and S4 Tables. Note that some SNPs were declared significant by a

model (e.g. M1) but were discarded with another model (e.g. M3) because of the filtering on

the frequency of each allelic state.

First, a standard GWAS model M1 was applied separately to the dent and the flint datasets.

Based on a 20% FDR, 35 SNPs were associated with MF in the dent dataset while 21 SNPs were

associated in the flint dataset. These SNPs can be clustered into 12 QTLs in the dent dataset

and into 13 QTLs in the flint dataset. Interestingly, none of these SNPs were detected in both

datasets and they only pointed to one common QTL between datasets, which was located in

the vicinity of Vgt2 on chromosome 8 [15].

Secondly, dent and flint datasets were analyzed jointly using model M2, which takes into

account the dent or flint ancestry of the allele. Note that the allele ancestry is confounded with

Fig 4. Position of QTLs detected with (a) M1, (b) M2 and (c) M3 for MF using a FDR of 20%. The size of the grey dots is proportional to the

-log10(pval) of the test at the most significant SNP of the region. Red vertical lines correspond to the location of the QTLs presented in section

“Highlighted QTLs”. Note that major QTLs detected by a model may be discarded with another model because of filtering on allele frequencies.

https://doi.org/10.1371/journal.pgen.1008241.g004
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the genetic background in this model. Based on a 20% FDR, 10 SNPs were associated with MF

and were significant for D
m
D (5 SNPs), D

m
F (4 SNPs) and D

m
DþF (3 SNPs). Some SNPs displayed

more than one significant test, which explains why the total number of SNPs over the four

tests did not sum to 10. These SNPs can be clustered into 5 QTLs that were significant for D
m
D

(4 QTLs), D
m
F (2 QTLs) and D

m
DþF (2 QTLs). Some QTLs were already detected using M1 such

as the QTL located in the vicinity of Vgt3 on chromosome 3 [54, 55] detected in the dent data-

set. Other QTLs were specific to M2 like the QTL located chromosome 1 detected using D
m
D� F

for FF, or specific to M1 such as the QTL located on chromosome 2 detected in the flint data-

set. Based on a 20% FDR, a larger number of QTLs was detected with M1 compared to M2 for

both traits.

Finally, the dent, flint and admixed lines were analyzed jointly using model M3 which dis-

tinguished the allele ancestry and the genetic background. The existence of a dent SNP effect

was tested in the dent (D
m
DD) and in the admixed genetic backgrounds (D

m
DA), and similarly for

the flint SNP effect (D
m
FF and D

m
FA). Several hypotheses on general and divergent SNP effects

were also tested between ancestries and genetic backgrounds (Table 3). Based on a 20% FDR,

56 SNPs were associated with MF and were significant for D
m
DDþDAþFAþFF (19 SNPs), D

m
FF� FA (2

SNPs), D
m
DA� FA (4 SNPs) and others. These SNPs can be clustered into 17 QTLs that were signif-

icant for D
m
DDþDAþFAþFF (5 QTLs), D

m
FF� FA (2 QTLs), D

m
DA� FA (4 QTLs) and others. Some of the

QTLs were already detected using M1 and M2 such as the QTL located in the vicinity of Vgt3
on chromosome 3, while several QTLs were specific to M3 such as the QTL detected in chro-

mosome 2 using D
m
FA. Several QTLs were detected as showing a divergent SNP effect, including

hypotheses testing an interaction with the genetic background. Based on a 20% FDR, a similar

number of QTLs was detected using M3 and M1 for MF and M3 was intermediate between M1

and M2 for FF.

Highlighted QTLs

Among the 17 QTLs detected for MF with M3, six QTLs were selected and studied in further

details. These QTLs had (i) at least one significant test among M3 hypotheses based on a FDR

of 20%, and (ii) a large frequency for each allele with a minimum of 23 lines carrying the

minor allelic state (Vgt1). Among them, SNPs were located in the vicinity of known maize

flowering QTLs: Vgt1 [22, 47, 48], Vgt2 [15] and Vgt3 [54, 55]. For all QTLs, information con-

cerning their physical position along the genome, the frequency of each allelic state and their

-log10(pval) at each test was summarized in Table 5. The distribution of the phenotypes is illus-

trated for each allele after adjusting for the variation due to the polygenic background in Fig 5,

and their location along the genome is indicated by red vertical lines in Fig 4.

The SNP matching Vgt1 region on chromosome 8 was detected as associated with MF (20%

FDR) using D
m
ðDDþDAÞ� ðFFþFAÞ (-log10(pval) = 5.96) in M3. This QTL showed a contrasted effect

between alleles of different ancestries with an apparent inversion of effects (Fig 5a). This obser-

vation was supported by a high -log10(pval) for the tests related to a divergent SNP effect

between ancestries: D
m
D� F (3.83), D

m
DD� FF (3.90), D

m
DA� FA (4.13) and D

m
ðDDþDAÞ� ðFFþFAÞ (5.96). Con-

versely a low -log10(pval) was detected for tests D
m
DD� DA and D

m
FF� FA, which would have other-

wise suggested an interaction with the genetic background. These results support the existence

of a local genomic difference at Vgt1 between the dent and the flint genetic groups for MF, but

no interaction with the genetic background.

The SNP matching Vgt2 region on chromosome 8 was detected as associated with MF (20%

FDR) using D
m
DDþDAþFAþFF (-log10(pval) = 6.68) in M3. This QTL showed a conserved effect

across ancestries and genetic backgrounds (Fig 5b). This observation was supported by a high

-log10(pval) for tests related to a general SNP effect: D
m
DþF (6.04), D

m
DDþFF (6.30), D

m
DDþDA (5.23),
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Table 5. Information regarding the six highlighted QTLs. The -log10(pval) of M2 and M3 were obtained by training the complete GWAS models with all the genetic com-

ponents presented in Eq (1) on the six SNPs that were previously detected using the approximate model.

Vgt1 Vgt2 Vgt3 QTL4.1 QTL2.1 QTL7.2
Trait MF MF MF MF MF MF

SNP AX-91103145 AX-91100620 AX-91583310 AX-91218190 AX-90601996 AX-91744673

Chromosome 8 8 3 4 2 7

Position (Mbp) 132.53 123.50 158.97 31.10 7.04 173.73

Allele frequency

0DD 242 230 97 115 75 243

1DD 58 70 203 185 225 57

0DA 138 119 48 53 50 161

1DA 41 58 141 127 134 30

0FA 164 81 92 107 74 113

1FA 23 108 85 79 108 62

0FF 238 162 158 161 102 210

1FF 66 142 146 143 202 94

-log10(pval)

M1

Δm (Dent) 1.85 4.26� 10.99��� 4.96� 0.05 1.00

Δm (Flint) 2.36 . 2.74 . 0.88 0.31 1.24 1.20

M2

D
m
D 2.03 . 4.19 � 9.42 ��� 3.51 � 0.02 0.98

D
m
F 2.15 . 2.55 1.20 2.42 . 1.36 0.91

D
m
DþF 0.00 6.04 �� 7.81 ��� 0.49 0.68 0.11

D
m
D� F 3.83 � 0.54 3.20 � 5.54 �� 0.77 1.60

M3

D
m
DD 2.44 . 4.06 � 8.69 ��� 3.81 � 0.07 1.53

D
m
DA 3.66 � 3.23 � 1.63 1.30 0.43 3.14 �

D
m
FA 1.31 1.30 2.29 . 0.97 8.99 ��� 0.18

D
m
FF 1.78 2.96 . 0.92 3.18 � 1.31 1.41

D
m
DDþFF 0.21 6.30 �� 7.11 ��� 0.40 0.77 0.18

D
m
DDþDA 4.39 � 5.23 �� 6.09 �� 3.30 � 0.19 0.41

D
m
FFþFA 2.09 . 2.63 . 2.10 . 2.49 . 6.42 �� 0.43

D
m
DAþFA 0.47 3.65 � 3.32 � 0.19 3.07 � 1.72

D
m
DDþDAþFAþFF 0.44 6.68 �� 6.81 �� 0.36 2.53 . 0.66

D
m
DD� FF 3.90 � 0.47 3.47 � 6.59 �� 0.59 2.56 .

D
m
DD� DA

b 0.33 0.19 2.28 . 0.67 0.43 5.43 ��

D
m
FF� FA

b 0.02 0.52 0.77 0.60 3.98 � 1.51

D
m
DA� FA 4.13 � 0.71 0.06 1.94 5.44 �� 2.41 .

D
m
ðDDþDAÞ� ðFAþFFÞ 5.96 �� 0.77 1.29 5.38 �� 3.64 � 0.03

D
m
ðDDþFFÞ� ðDAþFAÞ

b 0.19 0.49 0.68 0.10 1.08 1.83

D
m
ðDD� DAÞ� ðFF� FAÞ

b 0.23 0.11 2.56 . 1.03 2.78 . 6.20 ��

���: -log10(pval) > 7;

��: 7 > -log10(pval) > 5;

�: 5 > -log10(pval) > 3;

.: 3 > -log10(pval) > 2
b hypothesis testing an interaction between the QTL and the genetic background

https://doi.org/10.1371/journal.pgen.1008241.t005
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D
m
DAþFA (3.65) and D

m
DDþDAþFAþFF (6.68), and a low -log10(pval) for tests related to divergent SNP

effects (all below 1).

The SNP matching Vgt3 region on chromosome 3 was detected as associated with MF (5%

FDR) using D
m
DD (-log10(pval) = 8.69) in M3. This QTL showed a large effect in the dent genetic

Fig 5. Boxplots of phenotypes adjusted for polygenic background variation using relatedness (MF K corrected) for the different alleles of the six

highlighted QTLs: (a) Vgt1, (b) Vgt2, (c) Vgt3, (d) QTL4.1, (e) QTL2.1 and (f) QTL7.2 using M3. The denomination of the allelic states on the x-axis

includes the SNP allele (0/1), its ancestry (D/F) and the genetic background in which it was observed (D/A/F), as presented in Table 2.

https://doi.org/10.1371/journal.pgen.1008241.g005
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background, a medium effect in the admixed genetic background regardless of the allele ances-

try and a small effect in the flint genetic background (Fig 5c). This observation was supported

by a high -log10(pval) for the tests related to the dent SNP effect in the dent genetic back-

ground: Δm (M1 (Dent), 10.99), D
m
D (9.42) and D

m
DD (8.69), and a low -log10(pval) for the tests

related to the flint SNP effect in a flint genetic background. Like for Vgt2, a high -log10(pval)

was also detected for tests related to a general SNP effect: D
m
DþF (7.81), D

m
DDþFF (7.11), D

m
DDþDA

(6.09) and D
m
DDþDAþFAþFF (6.81), but a high -log10(pval) was detected for the test related to a

divergent SNP effect between the dent and the flint genetic backgrounds: D
m
DD� FF (3.47). There

was also a high -log10(pval) for a divergent dent SNP effect between different genetic back-

grounds: D
m
DD� DA (2.28). All these results support the existence of a QTL effect that tends to be

higher when the dent genome proportion increases within individuals. It suggests that Vgt3
interacts with the genetic background for MF.

The SNP matching a region further referred to as QTL4.1 on chromosome 4 was detected

as associated with MF (20% FDR) using D
m
DD� FF (-log10(pval) = 6.59) in M3. This QTL is very

similar to Vgt1 as it showed a contrasted effect between alleles of different ancestries with an

apparent inversion of effects (Fig 5d). This observation was supported by a high -log10(pval)

for the tests related to a divergent SNP effect between ancestries: D
m
D� F (5.54), D

m
DD� FF (6.59) and

D
m
ðDDþDAÞ� ðFFþFAÞ (5.38). These results support the existence of a local genomic difference at

QTL4.1 between the dent and the flint genetic groups for MF, but no interaction with the

genetic background.

The SNP matching a region further referred to as QTL2.1 on chromosome 2 was detected

as associated with MF (5% FDR) using D
m
FA (-log10(pval) = 8.99) in M3. This QTL showed a

flint effect in the admixed genetic background (Fig 5e), which was supported by a high

-log10(pval) for the test D
m
FA (8.99). Although there was a high -log10(pval) for a general flint

SNP effect across genetic backgrounds: D
m
FFþFA (6.42), a high -log10(pval) was observed for a

divergent SNP effect between those same alleles: D
m
FF� FA (3.98). A high -log10(pval) was also

observed for a divergent SNP effect between different ancestries in the admixed genetic back-

ground: D
m
DA� FA (5.44). All these results support the existence of a QTL effect existing only for

alleles of flint ancestry in the admixed genetic background. It suggests that QTL2.1 is specific

of flint ancestry and interacts with the genetic background for MF.

The SNP matching a region further referred to as QTL7.2 on chromsome 7 was detected as

associated with MF (20% FDR) using D
m
ðDD� DAÞ� ðFF� FAÞ (-log10(pval) = 6.20) in M3. This QTL

showed contrasted dent effects between the dent and the admixed genetic backgrounds (Fig

5f). This observation was supported by a high -log10(pval) for the test related to a divergent

dent SNP effect between genetic backgrounds: D
m
DD� DA (5.43). A high -log10(pval) was also

observed for the hypothesis testing the equality between the divergent dent SNP effect and the

divergent flint SNP effect: D
m
ðDD� DAÞ� ðFF� FAÞ (6.20). All these results support the existence of a

QTL with opposite effects between the dent and the admixed genetic backgrounds. It suggests

that QTL7.2 interacts with the genetic background for MF.

Discussion

Accounting for genetic groups in GWAS

The stratification of the population sample into distinct genetic groups is a common feature

in GWAS studies that challenges the methods to detect QTLs. A simple way to deal with

genetic groups is to analyze them separately. In our study, a standard GWAS model M1 was

applied separately to the dent and the flint datasets. Among the QTLs detected for MF, only

one was detected in both dent and flint datasets, and not at the same SNPs, while none were
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detected in common for FF. One may question whether observing such differences between

datasets indicated group specific allele effects, or simply group differences in terms of statisti-

cal power due to a difference in allele frequency. This question often arises when GWAS is

applied separately to genetic groups, as in maize [16, 56] or dairy cattle [57, 58], and is very

difficult to answer except for obvious configurations such as associations at SNPs segregating

only in one group.

Another way to handle genetic groups is to analyze them jointly. One possibility is to apply

model M1 while specifying genetic structure as a global fixed effect, in order to prevent the

detection of spurious associations. In dairy cattle, this strategy generally improved the preci-

sion concerning QTL locations by taking advantage of the low LD extent observed in multi-

group datasets. However, while [34] and [33] observed a gain in statistical power due to a

larger population size, [32] detected less QTLs by combining breeds compared to separate

analyses. They attributed this finding to the limited amount of QTLs segregating within both

Holstein and Jersey breeds, but also reported that QTLs detected in both breeds showed only

small to medium correlations between within-breed estimates of SNP effects (e.g. 0.082 for

milk yield). Obviously, applying M1 jointly to genetic groups does not address directly the

problem of whether QTL effects are conserved or not between genetic groups.

A model specifying group specific allele effects was referred to as M2 in this study. As with

M1, the existence of a SNP effect can be tested for each group, but M2 also allows one to test

the existence of a general and a divergent SNP effects between groups. In our study, this model

allowed to test for a dent (D
m
D) and a flint (D

m
F ) SNP effect, along with a general (D

m
DþF) and a

divergent (D
m
D� F) SNP effects between flint and dent ancestries. Note that testing D

m
DþF is simi-

lar, although not strictly equivalent, to testing a SNP effect by applying M1 to a multi-group

dataset. Using D
m
DþF ¼ b

m
1D � b

m
0D þ b

m
1F � b

m
0F in M2, the same weights are given to allelic con-

trasts in the two groups. Applying M1 to a multi-group dataset would only be equivalent to

applying M2 when considering markers with identical allele frequencies in the two groups.

Using the hypotheses specifically tested in M2 (D
m
DþF and D

m
D� F), it was possible to detect new

QTLs that were not detected with M1. In particular, a QTL detected on chromosome 1 for FF

had a divergent SNP effect between the dent and flint genetic groups, suggesting the existence

of group-specific QTL effects in this dataset. Some QTLs were detected in common with M1

but each strategy allowed the detection of specific QTLs, demonstrating the complementarity

between the models. In conclusion, M2 was efficient to identify QTLs with either conserved or

specific allele effects between ancestries, but observing group-specific allele effects provided lit-

tle insight regarding the cause of this specificity. Admixed individuals helped to tackle this

issue.

Benefits from admixed individuals

Admixed individuals were generated for this study by mating pure individuals of each group

according to a sparse factorial design. Integrating these admixed individuals in GWAS can be

done by simply analyzing the joint multi-group dataset using M1 or M2, which may lead to a

gain in statistical power, due to an increase in population size. More interestingly, admixed

individuals can be used to disentangle the factors causing the heterogeneity of allele effects

across groups.

We developed model M3 to distinguish the allele ancestry (dent/flint) and the genetic back-

ground (dent/flint/admixed). As shown using simulations (S2 Appendix), applying M3 should

result in a gain in statistical power by (i) testing an overall SNP effect for SNP with conserved

effects accross ancestries and/or genetic backgrounds, and (ii) testing hypotheses for complex

configurations between allele effects. When applied to MF, 17 QTLs were detected (20% FDR).
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While many of these QTLs were previously detected using M1 and M2, the new hypotheses

tested allowed us to discover new interesting regions.

For equivalent tests in M1, M2 and M3 (e.g. Δm (Dent) in M1, D
m
D in M2 and D

m
DD in M3), the

lower number of associations detected with M2 and M3 compared to M1 for real traits can be

attributed to a different filtering on allele frequencies, the use of an approximate model for M2

and M3, and to the randomness associated with a particular experiment. Regarding false posi-

tive control, the observation of the QQ-plots of the test p-values of M1, M2 and M3 did not

show particular problems, as presented for MF in S8, S9, and S10 Figs and for FF in S11, S12

and S13 Figs.

The idea of exploiting admixed individuals has been proposed in the creation of NAM [40]

and MAGIC [41] populations. Compared to our approach, such experimental populations

include a limited number of founders, generally selected in different genetic groups. This is

beneficial to increase power of detection for alleles which were rare in parental groups. How-

ever these populations cannot address the question of the epistatic interaction with the genetic

background of the original groups. Both our approach and NAM and MAGIC designs are

therefore expected to have complementary properties.

Heterogeneity of maize flowering QTL allele effects

From a global perspective, a high number of QTLs have been detected in previous maize stud-

ies [16, 22, 37, 59, 60]. When evaluating the American and European NAMs, [22] and [61]

showed that flowering time is a trait controlled by a large number of QTLs, many of which dis-

play variable effects across individual recombinant populations. Our study highlights consis-

tently a high number of QTLs and confirms a large variation in allele effects. It provides

further elements on the origin of this variation, by identifying QTLs affected by local genomic

differences, epistasis with the genetic background, or both.

When doing GWAS in a multi-group population, geneticists generally assume that QTL

effects are conserved between groups. Such QTLs were detected in our study with the example

of the SNP associated with MF in the vicinity of Vgt2 [15] and its candidate gene: the flowering

activator ZCN8 [62–64] on chromosome 8. At this SNP, all hypotheses that tested a general

SNP effect had a high -log10(pval), and conversely for hypotheses testing a divergent SNP

effect. When simultaneously interpreting all tests, Vgt2 appeared to have an effect that is con-

served between genetic groups. Such a QTL can easily be detected in a multi-group population

sample using a standard GWAS model [1]. However many QTLs showed more complex

patterns.

When group-specific allele effects are only due to group differences in LD or group-specific

mutations at the QTL, the difference in allele effects should be conserved between the pure

and the admixed genetic backgrounds. A first QTL matching this situation is Vgt1 [22, 47, 48]

(candidate gene: ZmRap2.7) that was detected by a SNP located on chromosome 8. High

-log10(pval) were observed when testing for a divergent SNP effect between ancestries

(D
m
ðDDþDAÞ� ðFAþFFÞ), suggesting a local genomic difference. It remains difficult to disentangle the

effect of LD from that of a genetic mutation without complementary analysis. LD was shown

to be different between groups, with a higher LD extent in the dent group (S5 Fig), while LD

phases appeared well-conserved at short distances (S6 Fig). However, a strong overall conser-

vation of LD phases at short distances does not exclude a specific configuration for a given

SNP-QTL pair. Note that Vgt1 was surprisingly not detected using the MITE located 548 Kbp

before the detected SNP. [48] already showed the existence of other genetic variants being

more associated with maize flowering than the MITE in the vicinity of Vgt1, such as CGin-

del587. Another QTL (QTL4.1) was detected by a SNP located on chromosome 4 and had a
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very similar profile to that of Vgt1. Its position is close (< 700 Kbp) to GRMZM2G126253, a

candidate gene for maize flowering time proposed by [60]. To validate the hypothesis of a local

genomic difference at these QTLs, one could produce near isogenic lines with the two alleles

from both ancestries introgressed in a dent and a flint genetic backgrounds. A phenotypic eval-

uation of these individuals would give a definitive proof of a local genomic difference.

Group-specific allele effects may also be due to an interaction with the genetic background.

A first QTL matching this profile was detected by a SNP in the vicinity of Vgt3 on chromo-

some 3 [54, 55] and its candidate gene ZmMADS69 [65]. This QTL showed an effect varying

according to the genetic background: large in the dent, intermediate in the admixed and small

in the flint. A high -log10(pval) was observed for tests that supported this hypothesis: a dent

SNP effect in the dent genetic background (D
m
DD) and a divergent dent SNP effect between

genetic backgrounds (D
m
DD� DA). If this interaction with the background involves numerous loci,

introgressing alleles from a dent into a flint genetic background may lead to disappointing

results, as the effect would probably vanish with repeated back-cross generations. If interac-

tions mostly involve a single locus, the effect at Vgt3 effect is conditioned by the allele at the

other locus, so that a simultaneous introgression may be necessary to reach the desired effect.

Using near isogenic lines that cumulated an early mutation at Vgt1 [66] and the early allele at

Vgt3, the effect of Vgt3 was shown to vanish in presence of the early allele of Vgt1 (A. Charcos-

set pers. comm.), which supports the hypothesis of Vgt3 interacting with the genetic back-

ground. Recently, [65] demonstrated the action of ZmMADS69, the candidate gene of Vgt3, as

being an activator of the regulatory module ZmRap2.7—ZCN8, which are the candidate genes

of Vgt1 and Vgt2, respectively. The existence of such interactions is consistent with flowering

time being controlled by a network of interacting loci, as now well established in model species

arabidopis [67].

Other examples of QTLs interacting with the genetic background were identified. Two of

them featured a similar profile in the sense that they mainly exhibited a QTL effect in the

admixed genetic background. One was located on chromosome 2 (QTL2.1) and showed a flint

effect in the admixed genetic background, while the other QTL was located on chromosome 7

(QTL7.2) and showed an opposite dent effect between the dent and the admixed genetic back-

grounds. Such QTLs are interesting as they are mainly revealed when creating admixed genetic

material. They also suggest complex epistatic interactions between QTLs for these traits. The

position of QTL2.1 is close (< 1.4 Mbp) to ereb197 and the position of QTL7.2 is close (< 100

Kbp) to dof47. Both are candidate genes for maize flowering time proposed by [60].

The existence of epistatic interactions was also evaluated globally by decomposing the

genetic variance into an additive and an epistatic component, as suggested by [68]. This con-

firmed the existence of epistatic interactions between pairs of loci for FF and MF (S5 Table)

and supported the possibility of QTLs interacting with the genetic background, resulting from

epistatic interactions with loci that have differentiated allele frequencies between groups. It

would be interesting to test the existence of epistatic interactions between each pair of loci.

However, a filtering on crossed allele frequencies between pairs of loci would lead to discard

most SNPs from the analysis. Other possibilities would be to test the epistatic variance of each

SNP against the polygenic background, as proposed by [69–71].

Conclusion

In this study, we proposed an innovative multi-group GWAS method which accounts and

tests for the heterogeneity of QTL allele effects between groups. The addition of admixed indi-

viduals to the dataset was useful to disentangle the factors causing the heterogeneity of allele

effects, being either local genomic differences or epistatic interactions with the genetic
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background. Only homozygous inbred lines were considered in this study, but the method

may be generalized to heterozygous individuals. Recently many studies focused on the prob-

lem of genomic prediction across genetic groups [42, 72–75]. In such scenarios, the stability of

QTL effects across genetic backgrounds is an important factor impacting the prediction accu-

racy. It is also an important factor of the relevancy of any marker based diagnostic in complex/

structured populations. Our approach opens new perspectives to investigate this stability in a

wide range of species.

Supporting information

S1 Fig. Imputation diagram of admixed lines. Diagram illustrating the procedure applied to

impute admixed DH lines from 15K to 600K SNPs using the parental origin of alleles.

(TIF)

S2 Fig. Histogram of dent genome proportion among admixed lines.

(TIF)

S3 Fig. Genome-wide selection biases among admixed lines. Absolute difference between

observed allele frequency of the reference allele fo estimated on the admixed lines and their

expected value fe along each chromosome (|fo − fe|). The expected allele frequencies were com-

puted as the mean of flint and dent allele frequencies estimated on the parental lines by taking

into account the contribution of each parent. A cubic smoothing spline was adjusted using the

R function “smooth.spline”, and plotted in red.

(TIF)

S4 Fig. PCoA on genetic distances using the set of 9,015 shared SNPs between the 600K

and 15K datasets. Individuals were colored depending on their genetic background: dent,

flint or admixed.

(TIF)

S5 Fig. LD extent. LD extent estimated separately in dent and flint genetic groups using the

standard r2. LD was calculated and averaged for loci pairs characterized by a similar physical

distance ranging from 0 to 2 Mbp, considering a sliding window of 1Kbp. A cubic smooth

spline was adjusted for each group, using the R function “smooth.spline”.

(TIF)

S6 Fig. Conservation of LD phases. Conservation of LD phases estimated using the correla-

tion (a) between the r of dent and flint groups, and (b) between the signs of r in the dent and

flint groups. LD was calculated and averaged for loci pairs characterized by a similar physical

distance ranging from 0 to 2 Mbp, considering a sliding window of 1Kbp. A cubic smooth

spline was adjusted for each method, using the R function “smooth.spline”.

(TIF)

S7 Fig. Position of QTLs detected for FF. Position of QTLs detected for FF with a FDR of

20% using (a) M1, (b) M2 and (c) M3. The size of the grey dots is proportional to the -log10(p-

val) of the test at the most significant SNP of the region.

(TIF)

S8 Fig. QQ-plots of M1 for MF.

(TIF)

S9 Fig. QQ-plots of M2 for MF.

(TIF)
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S10 Fig. QQ-plots of M3 for MF.

(TIF)

S11 Fig. QQ-plots of M1 for FF.

(TIF)

S12 Fig. QQ-plots of M2 for FF.

(TIF)

S13 Fig. QQ-plots of M3 for FF.

(TIF)

S1 Table. Parameters estimated in the phenotypic analysis. The lines “Row-Column” refer

to the modeling of rows and columns as defined by the experimental design. AR1 refers to

the autoregressive model AR1, while IID refers to the modeling of rows and columns as

being independent and identically distributed among rows and among columns for a

given trial. For more information, see the ASReml-R reference manual by [49]. The mean of

each trial j (with j 2 {2015, 2016}) was computed following: mj ¼ mþ bj þ
P3

k¼1

Nk
N ak where

Nk is the number of individuals (genotypes) in genetic background k (with k 2 {D, A, F})

and N is the total number of individuals. The mean of each genetic background was com-

puted following: mk ¼ mþ ak þ
1

2

P2

j¼1
bj. The genetic variance s2

Gk
of each genetic back-

ground k and the GxE variance s2
ðG�bÞjk

of each genetic background k in each trial j were

also reported. The heritabilities of each genetic background k were computed as:

h2
k ¼ s

2
Gk
� s2

Gk
þ 1

4

P2

j¼1
s2
ðG�bÞjk

þ 1

4

P2

j¼1
1

�r j
s2
Ej

� �� 1

where �rj is the mean number of genotype

replicates in trial j.
(XLSX)

S2 Table. Parameters estimated using the general polygenic model. The parameters

included the mean μk and, the genetic variance s2
Gk

of each genetic background, the genetic

covariance sGkk0
between genetic background k and k0, and the error variance s2

E, with k 2 {D,

A, F}. The genetic correlations rkk0 between genetic backgrounds were also reported, with

rkk0 ¼
sGkk0

sGk
sGk0

.

(XLSX)

S3 Table. Information regarding significant SNPs for MF. Information regarding significant

SNPs for MF using all GWAS strategies: the name of the SNP, the chromosome on which it is

located, its position in bp along the chromosome, the frequency of the allelic state observed in

the dataset in which it was tested, the GWAS model applied, the hypothesis tested, the esti-

mated values of the contrast (Delta), the Wald statistics and the -log10(pval) of the test

(obtained from the approximate model for M2 and M3), and the FDR for which it was declared

significant.

(XLSX)

S4 Table. Information regarding significant SNPs for FF. Information regarding significant

SNPs for FF using all GWAS strategies: the name of the SNP, the chromosome on which it is

located, its position in bp along the chromosome, the frequency of the allelic state observed in

the dataset in which it was tested, the GWAS model applied, the hypothesis tested, the esti-

mated values of the contrast (Delta), the Wald statistics and the -log10(pval) of the test
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(obtained from the approximate model for M2 and M3), and the FDR for which it was

declared significant.

(XLSX)

S5 Table. Additive, epistatic and residual variance components for each trait with the p-

value (pval) of the epistatic component using a likelihood-ratio LR test. The existence of

epistasis can be investigated using a test based on variance components. The epistatic variance

component between pairs of loci was estimated on the joint dent, flint and admixed dataset

using a model neglecting genetic structure: y = 1μ + g + ge + e, where y is the vector of pheno-

types, 1 is a vector of 1, μ is the global intercept, g is the vector of additive genetic values with

g � N ð0;Ks2
GÞ, K is the kinship matrix computed following Eq (2) and assuming a common

genetic background for all individuals, i.e. using the average frequency of allele 1 at each

locus, s2
G is the global genetic variance, ge is the vector of global epistatic deviations with

ge � N ð0;K � Ks2
ðG�GÞÞ, s

2
ðG�GÞ is the epistatic genetic variance between pairs of loci, e is the

vector of errors with e � N ð0; Is2
EÞ, I is the identity matrix, s2

E is the error variance. Note that

K � K is the Hadamard product of the kinship matrix with itself. This model can be seen as a

simplified version of the one proposed by [68], as purely homozygous lines were used. The epi-

static variance component was tested using a LR test between this model and the same model

without the term ge.
(XLSX)

S1 Appendix. Interpretation of the test D
m
DD� DA. This appendix shows that D

m
DD� DA tests for an

epistatic interaction between the SNP and the genetic background.

(PDF)

S2 Appendix. False discovery rate and statistical power of GWAS models. In this appendix,

the properties of the new GWAS models were evaluated in terms of false discovery rate and

statistical power of the tests.

(PDF)
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