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Background: To test the ability of a multiclassifier model based on radiomics features to predict benign 
and malignant primary pulmonary solid nodules. 
Methods: Computed tomography (CT) images of 342 patients with primary pulmonary solid nodules 
confirmed by histopathology or follow-up were retrospectively analyzed. The region of interest (ROI) of 
the images was delineated, and the radiomics features of the lesions were extracted. The feature weight was 
calculated using the relief feature selection algorithm. Based on the selected features, five classifier models 
were constructed: support vector machine (SVM), random forest (RF), logistic regression (LR), extreme 
learning machine (ELM), and K-nearest neighbor (KNN). The precision, recall rate, and area under the 
receiver operating characteristic curve (AUC) were used to evaluate the prediction performance of each 
classifier. The prediction result of each classifier was first weighted, and then all the prediction results were 
fused to predict the nodule type of unknown images. The prediction precision, recall rate, and AUC of the 
fusion classifier and single classifier were compared. Cross-validation was used to evaluate the generalization 
of the fusion classifier, and t- and F-tests were performed on the five classifiers and fusion classifier. 
Results: For each ROI, 450 features in four major categories were extracted and were analyzed using the 
relief feature selection algorithm. According to the weights, 25 highly repetitive and nonredundant stable 
features that played a major role in pulmonary nodule classification were selected. The fusion classifier’s 
prediction performance (prediction precision =92.0%, AUC =0.915) was superior to those of SVM (prediction 
precision =75.3%, AUC =0.740), RF (prediction precision =89.1%, AUC =0.855), LR (prediction precision 
=68.4%, AUC =0.681), ELM (prediction precision =87.0%, AUC =0.830), and KNN (prediction precision 
=77.1%, AUC =0.702). The fusion classifier showed the best null hypothesis performance in the t-test 
(P=0.035) and F-test (P=0.036). 
Conclusions: The multiclassifier fusion model based on radiomics features had high prediction value for 
benign and malignant primary pulmonary solid nodules. 
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Introduction

Pulmonary nodules usually refer to round or irregular 
lesions in the lung that are no more than 3 cm in diameter. 
With the advancement of spiral computed tomography (CT) 
scanning, reconstruction technology, and low-dose chest 
CT screening, the detection rate of pulmonary nodules is 
increasing. However, since the same kind of shadow can 
be cast by different diseases and different shadows can be 
cast by the same disease, benign and malignant nodules 
can be confused. In 2012, Dutch scholar Lambin et al. (1) 
first proposed the concept of radiomics. Kumar et al. (2) 
defined it as “high-throughput extraction and analysis of 
a large number of advanced quantitative imaging features 
from CT, magnetic resonance imaging (MRI), and positron 
emission tomography (PET)”. In recent years, radiomics 
has played an important role in the identification of benign 
and malignant lesions, judgment of the malignancy of 
tumors, selection of treatment methods, and monitoring 
of therapeutic effect, and it has guiding significance for the 
development of personalized treatment plans (3-6). In this 
study, based on traditional imaging differential diagnosis, a 
prediction model of benign and malignant pulmonary solid 
nodules based on radiomics was constructed using a feature 
selection algorithm combined with multiple classifiers, 
and the prediction performance of the classifiers was 
quantitatively evaluated. 

Methods

Clinical information

The clinical, pathological and imaging information of 
342 patients with pulmonary solid nodules confirmed by 
histopathology or follow-up in the Sir Run Run Shaw 
Hospital affiliated with the School of Medicine of Zhejiang 
University and Yinzhou Hospital affiliated with the School 
of Medicine of Ningbo University from January 2015 
to December 2018 were retrospectively analyzed. The 
inclusion criteria were (I) isolated solid nodules in the 
lung were identified on chest CT examination, and each 
nodule had a clear and complete thin layer to reconstruct 
the data in Digital Imaging and Communications in 
Medicine (DICOM) format; (II) diagnosis was confirmed 
by histopathology or follow-up after clinical treatment; 
(III) the reconstructed thin-layer image had no obvious 
calcification and/or fat content; (IV) there was no history of 
extrapulmonary malignancies; (V) it was untreated before 
CT examination. 

CT examination

The CT scan was performed using Siemens Definition 
AS 64 and Philips Brilliance 64-row multilayer spiral 
CT scanner. The scanning range was from the thorax 
entrance to the adrenal level. The scanning parameters 
were as follows: tube voltage of 120 kVp, tube current 
automatic adjustment technique, pitch of 1.2, collimation of  
64×0.625 mm, reconstruction layer thickness/layer spacing 
of 1.25 mm/0.625 mm, matrix of 512×512, reconstruction 
convolution function of B70f, window width of 1,200 HU, 
window level of −600 HU, and all images exported in 
DICOM format. 

Image analysis

Segmentation of region of interest (ROI) of nodules
Using ITK-SNAP software (Version 3.4.0, http://www.
itksnap.org/), two radiologists with 5 years of experience 
manually and semiautomatically delineated the maximum 
boundary of the nodules layer by layer. Blood vessels 
and bronchus were avoided. The longest diameter of the 
nodule and the presence of the spicule sign, lobulation sign, 
vacuole sign, and vessel convergence sign were extracted 
and recorded (Figure 1A,B). The ROI segmentation was 
checked by one senior radiologist.

Image and data preprocessing
The images and data were preprocessed using image 
binarization and data normalization. Image binarization 
(Figure 1C) was done to set the gray value of each pixel on 
the images to 0 or 1. Binary images are conducive to further 
processing of the images so that image information other 
than the ROI can be eliminated to avoid the introduction 
of noise. In addition, in order to eliminate the influence 
of feature vectors of different dimensions on the analysis 
results, the extracted original radiomics feature data were 
standardized. All the feature vectors after processing were 
on the same order of magnitude and conformed to the 
standard normal distribution, that is, the mean was 0 and 
the standard deviation was 1. The conversion function was 
x* = (x−μ)/σ, where x, μ, and σ are the actual value, statistical 
average, and standard deviation of all feature vectors, 
respectively. 

Radiomics feature extraction
The radiomics features of all segmented nodules were 
extracted using the Matlab2018b software (http://www.
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mathworks.com/) (MathWorks Co., USA). A total of 450 
features in four major categories were extracted from all 
nodules, including geometric features, texture features, gray-
level features, and wavelet features. Texture features included 
the common gray-level cooccurrence matrix (GLCM), gray-
level run-length matrix (GLRLM), gray-level size zone 
matrix (GLSZM), neighborhood gray tone difference matrix 
(NGTDM), and neighborhood gray-level difference matrix 
(NGLDM). The local binary pattern (LBP) was also used to 
describe local texture features of the images. 

Feature selection and model construction
A total of 342 samples were divided into training set, test 
set and verification set at a ratio of 7:2:1 using the random 
index method. The relief feature selection algorithm was 
used to screen the 450 radiomics features. After repetitive 
operations (an average of 10 repeats was used as the feature 
weight), 25 robust features with a major role in classification 
in the training set were screened. The classifiers were 
tested and verified based on the selected feature set, and a 
prediction model for distinguishing benign and malignant 
primary pulmonary solid nodules was constructed. The 
five classifiers were a support vector machine (SVM), 
random forest (RF), logistic regression (LR), extreme 
learning machine (ELM), and K-nearest neighbor (KNN). 
Finally, the weighted voting method (an algorithm that 
fuses classifiers (7) was used to fuse the prediction results 
of the above five classifiers, and each weight wi of the 
weighted fusion was calculated using the Lagrangian and 
QR decomposition method. The Lagrangian was used to 
construct the objective function, and QR decomposition 

was used to obtain the analytical solution. The classifier 
fusion method was as follows: 
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Cross-validation of classifiers

The method of simple cross-validation (8) was used to 
verify the robustness of the classifiers. The process was as 
follows: (I) random integers 1 to 342 (the sample size was 
342) were randomly generated. (II) The data set was divided 
into a training set, a test set, and a verification set at a ratio 
of 7:2:1 using the random number index method. (III) The 
five classifiers were trained, tested, and verified separately, 
and the training, testing, and verification results of the 
fusion classifier were obtained based on the results of the 
five classifiers. (IV) The process of (I) to (III) was repeated 
10 times.

B CA

Figure 1 Pulmonary CT images with pulmonary nodules (red represents the boundary of the nodule). (A) Original CT image; (B) ROI of 
the nodule; (C) binarized image of the nodule. CT, computed tomography; ROI, region of interest.
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Statistics

SPSS 20.0 and Matlab2018b software were used for 
statistical analysis of the data in this study. Measurement 
data are expressed as mean ± standard deviation. Count data 
are expressed as a ratio or percentage. Differences in sex 
and imaging signs between the two groups were compared 
by the chi-squared test. The differences in age and the 
longest diameter of the lesions were compared using the 
two-independent-sample T test. P<0.05 was considered 
statistically significant. The diagnostic performance of the 
classifiers was described using precision, recall rate, and area 
under the receiver operating characteristic (ROC) curve 
(AUC). 

 Precision = TP/TP + FP Recall = TP/TP + FN 	 [6]

Results

General information

This study enrolled 342 patients with solid pulmonary 
nodules. Among them, 171 patients (91 males and  
80 females) had benign nodules, with an average age of 
56.63±13.26 years, and the longest diameter of nodules 
was 1.61±0.60 cm. Of them, 120 cases were confirmed by 
histology, including 34 cases of inflammatory pseudotumor 
(inflammatory granuloma), 31 cases of tuberculosis, 25 cases 
of fungus infection, 17 cases of hamartoma, and 13 cases 
of sclerosing hemangioma. The remaining 51 cases were 
confirmed by follow-up after treatment to have nodules that 
shrank or disappeared. There were 171 patients (87 males 
and 84 females) with malignant nodules, with an average 
age of 60.92±10.28 years and a longest nodule diameter of 
1.71±0.54 cm, all of which were confirmed by histology, 
including 51 cases of squamous cell carcinoma, 75 cases of 
adenocarcinoma, 9 cases of large cell carcinoma, 24 cases of 
small cell carcinoma, 9 cases of adenosquamous carcinoma, 
and 3 cases of sarcomatoid carcinoma. The general 
information of the patients is shown in Table 1. 

Weight distribution of radiomics features 

The entire experimental process is shown in Figure 2. The 
distribution of all 450 radiomics features between the two 
groups is shown in Figure 3. The features of benign vs. 
malignant nodules were significantly different, indicating 
that the extracted features objectively reflected the essential 
attributes of pulmonary nodules. The distribution of 
the top 25 features according to the weight after feature 

selection is shown in Table 2 and Figure 4. The features with 
the greatest weights were mainly concentrated in texture 
features, wavelet features, and gray-level features. 

The prediction performance of classifiers

This study employed a simple 10-fold cross-validation 
method to analyze the performance indicators of the 
classifiers, and we obtained the ROC curves (Figures 5,6),  
prediction precision, and recall curves (Figures 7,8) 
of each classifier. The fusion classifier demonstrated 
superior prediction performance in the test set (precision 
=92.0%±1.16%, recall rate =92.2%±1.22%, and AUC 
=0.915±0.019) and the verif ication set  (precision 
=92.1%±1.25%, recall rate =92.3%±1.55%, and AUC 
=0.921±0.015) over any single classifier. After cross-
validation, the performance indicators (precision, recall 
rate, and AUC) all fluctuated within a small range (Table 3), 
indicating that the fusion algorithm had strong robustness. 
The t-test and F-test were used to statistically analyze the 
mean and variance of the prediction performance indicators 
of the samples, and the results are expressed as P values. 
The smaller the P value, the greater the probability that 
the performance indicator of the samples can represent the 
entire population. The t-test (P=0.035) and F-test (P=0.036) 
of the fusion classifier showed the optimal null hypothesis 
performance (Table 4). 

Discussion

At present, the clinical analysis of pulmonary nodule 
images is limited to qualitative and preliminary quantitative 
analysis of the lesions, including observation of the overall 
and marginal shape of the lesion, the uniformity of internal 
density, the relationship with the surrounding structure, 
and a rough measurement of the nodule’s long and short 
diameters, while no in-depth or detailed analysis of the 
images is performed. In this study, the benign and malignant 
nodules overlapped on multiple imaging signs, that is, 
the so-called same shadow of different diseases. When 
the volume of the nodule is small, the images would not 
manifest malignant signs, so it is difficult to characterize the 
pulmonary nodules simply based on image signs. Radiomics 
is the application of digital image processing and machine 
learning techniques to medical image analysis (9). It entails 
extracting hundreds of quantitative image features from the 
ROI in the images, followed by screening and analyzing 
these features to describe the biological characteristics and 
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Table 1 Baseline data and imaging signs of 342 patients with solid pulmonary nodules

Baseline variables Benign (N=171) Malignant (N=171) Total (N=342) χ2/t P

Sex 0.187 0.665

Male 91 (53.2%) 87 (50.9%) 178 (52.0%)

Female 80 (46.8%) 84 (49.1%) 164 (48.0%)

Age 56.63±13.26 60.92±10.28 58.77±12.04 3.342 0.001*

Longest diameter (cm) 1.61±0.60 1.71±0.54 1.66±0.57 1.705 0.089

Shape 3.092 0.079

Irregular 45 (26.3%) 60 (35.1%) 105 (30.7%)

Round or semiround 126 (73.7%) 111 (64.9%) 237 (69.3%)

Vacuole sign 13.049 <0.001*

No 159 (93.0%) 136 (79.5%) 295 (86.3%)

Yes 12 (7.0%) 35 (20.5%) 47 (13.7%)

Bronchial inflation sign 2.974 0.085

No 122 (71.3%) 107 (62.6%) 229 (67.0%)

Yes 49 (28.7%) 64 (37.4%) 113 (33.0%)

Lobulation sign 2.784 0.095

No 73 (42.7%) 58 (33.9%) 131 (38.3%)

Yes 98 (57.3%) 113 (66.1%) 211 (61.7%)

Spicule sign 11.987 0.001*

No 99 (57.9%) 67 (39.2%) 166 (48.5%)

Yes 72 (42.1%) 104 (60.8%) 176 (51.5%)

Clear boundary 2.886 0.089

No 44 (25.7%) 31 (18.1%) 62 (18.1%)

Yes 127 (74.3%) 140 (81.9%) 280 (81.9%)

Pleural indentation sign 3.805 0.051

No 100 (58.5%) 82 (47.4%) 182 (53.2%)

Yes 71 (41.5%) 99 (52.6%) 160 (46.8%)

Vessel convergence sign 29.321 <0.001*

No 115 (67.3%) 65 (38.0%) 180 (52.6%)

Yes 56 (32.7%) 106 (62.0%) 162 (47.4%)

*, P<0.05.

heterogeneity of the lesions. Therefore, radiomics can 
identify information that is not visible to the naked eye in 
conventional imaging images, and it is not limited by lesion 
size or morphology (10,11). 

This study extracted 450 radiomics features from 342 
cases of primary pulmonary solid nodules and proposed a 

multiclassifier fusion method based on radiomics to predict 
benign and malignant nodules. The main findings include 
the following. The top 25 features according to weight 
after feature screening played a major role in the correct 
classification of the two groups of patients, which included 
texture features (NGLDM, GLRLM, GLCM, NGTDM, 
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and LBP), wavelet features, and gray-level features. 
Moreover, the prediction performance of the fusion 
classifier was better than that of any single classifier. 

Gray-level features can quantitatively reflect the 
amplitude and frequency of pixel-value distribution in the 
ROI. Kamiya et al. (12) found that compared with benign 
nodules, malignant nodules showed higher skewness and 
lower kurtosis in gray-level features. Petkovska et al. (13) 
reported that comprehensive use of shape, size, and gray-
level features could improve the AUC from 0.79 to 0.84 for 
distinguishing benign from malignant nodules. Chi et al. (14)  
also found that the skewness and kurtosis demonstrated 
statistical significance in the identification of benign and 
malignant nodules in their study of 110 cases of pulmonary 
solid nodules. Texture features can quantify the subtle 
differences in image pixel values and their arrangement. 
Compared with gray-level features, texture features have 
the advantage of retaining the spatial features of the lesions 
(15,16). In a study on mediastinal lymph nodes in patients 
with lung cancer, Bayanati et al. (17) found that entropy, 
gray-level nonuniformity (GLNU), and running length 
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Figure 3 Distribution of radiomics features between the two 
groups of patients. The x-axis shows the feature index, and the 
y-axis shows the sample (pulmonary nodule) index. Sample indices 
1–171 are benign nodules, and 172–342 are malignant nodules. 
Different colors represent different categories of features. The 
feature distribution chart indicates that the extracted features are 
conducive to distinguishing benign and malignant lesions.
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Table 2 Distribution of the top 25 radiomics features according to weight after relief feature screening

Weight rank Feature category Feature name Feature weight

1 NGLDM Contrast 0.0317

2 NGLDM Correlation 0.0310

3 NGLDM Cluster Shade 0.0290

4 Wavelet feature Ed (Energy Diagonal) 0.0290

5 Wavelet feature Ev (Energy Vertical) 0.0257

6 GLRLM SRLGLE (Short Run Low Gray-Level Emphasis) 0.0248

7 GLRLM GLNU (Gray-Level Nonuniformity) 0.0248

8 GLRLM HGLRE (High Gray-Level Run Emphasis) 0.0246

9 GLRLM SRHGLE (Short Run High Gray-Level Emphasis) 0.0233

10 GLRLM RP (Run Percentage) 0.0230

11 GLRLM LRLGLE (Long Run Low Gray-Level Emphasis) 0.0223

12 GLRLM LRHGLE (Long Run High Gray-Level Emphasis) 0.0223

13 GLRLM LGLRE (Low Gray-Level Run Emphasis) 0.0223

14 GLCM Correlation 0.0222

15 Gray-level feature Entropy 0.0220

16 Gray-level feature Skewness 0.0218

17 Gray-level feature Kurtosis 0.0208

18 Gray-level feature Variance 0.0207

19 GLCM Homogeneity 0.0207

20 GLCM Cluster shade 0.0207

21 Gray-level feature Mean 0.0202

22 GLCM Inverse difference 0.0197

23 NGLDM Dissimilarity 0.0194

24 GLRLM RLNU (Run Length Nonuniformity) 0.0192

25 GLRLM SRE (Short Run Emphasis) 0.0192

NGLDM, neighborhood gray-level difference matrix; GLRLM, gray-level run-length matrix; GLCM, gray-level cooccurrence matrix; GLRLM, 
gray-level run-length matrix.

nonuniformity (RLNU) of the texture features could 
correctly distinguish the benign and malignant mediastinal 
lymph nodes in patients with primary lung cancer. In 
another study on texture features, Chi et al. (18) reported 
that the contrast, correlation, entropy, and homogeneity 
had value in the qualitative diagnosis of pulmonary nodules. 

Our research not only confirmed that the gray-
level features and texture features were important in the 
classification of pulmonary nodules, it also employed the 
relief feature selection algorithm to rank the weight of 

the four categories of features and selected the top 25 
features as the input features of the classifiers. The results 
showed that the gray-level features and texture features 
had the greatest weights, especially the texture features, 
which made up the majority of the high-weight features. 
In contrast to principal component analysis (PCA), the 
relief algorithm uses the characteristics of pulmonary 
nodules as the evaluation indices and uses the clustering 
method for internal calculations. Therefore, this algorithm 
contains both the external and internal characteristics of 
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Figure 5 ROC curves of single classifiers and the fusion classifier 
in the test set. The fusion classifier shows the largest AUC. ROC, 
receiver operating characteristic; AUC, area under curve.

Figure 6 ROC curves of single classifiers and the fusion classifier 
in the verification set. The fusion classifier shows the largest AUC. 
ROC, receiver operating characteristic; AUC, area under the ROC 
curve.

Figure 7 Recall-precision curves of single classifiers and the 
fusion classifier in the test set. The fusion classifier shows a higher 
classification precision than any single classifier.

Figure 4 Distribution of the top 25 radiomics features according 
to weight after relief feature screening. Distribution of top 
25 radiomics features according to weight after relief feature 
screening. Features with high weights are mainly clustered in 
texture features, wavelet features, and gray-level features.
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pulmonary nodules, while the PCA method only analyzes 
the internal characteristics of the pulmonary nodule and 
thus is not representative or conducive to feature selection. 
Heterogeneity is a recognized feature of malignant 
tumors, reflecting changes in cell permeability, abnormal 
angiogenesis, and changes in tissue structure caused by 
mucus-like changes, necrosis, and fibrosis (19). Therefore, 
the images of malignant nodules demonstrate an uneven 
distribution of gray-level, complex texture, and disarranged 
local texture. To handle this heterogeneity, we introduced 
the LBP to analyze the local texture features of the 
images. The LBP features have the advantages of rotation 

invariance, gray-level invariance, and strong resistance to 
image noise (20). Feature selection results (LBP feature 
weights ranked between 25 and 50) showed that LBP was 
valuable for the qualitative diagnosis of pulmonary nodules. 
The wavelet features are multiscale features obtained after 
wavelet transformation of the images, which integrates 
features at the boundary and vicinity of the lesions and 
reflects the change rate of the pixel value in the frequency 
domain (21,22). These features had high weights in our 
study, indicating that the local texture of malignant nodules 
was complex, the texture changed quickly, and the lesion 
boundary was irregular. 

In terms of classifier selection, this study proposed a 
prediction method using multiclassifier fusion (23,24). 
This method weighted and fused the results of five classic 
classification methods to obtain the optimal prediction. The 
method of fusing classifiers first calculates the output weight 
of each single-classifier prediction to construct an objective 
function, then calculates the weight corresponding to the 
single classifier using a Lagrangian and QR decomposition 
method. Due to the different algorithms and working 
principles of each single classifier, the sensitivity of different 
classifiers to different data sets is different, which leads to 
differences in their predictive performance. The fusion 
classifier combines the excellent performance of each 
classifier and has a higher adaptation to the data and better 
generalization performance. This study used a simple 10-
fold cross-validation method to statistically analyze the 
prediction performance of the fusion classifier and five 
single classifiers, and the fusion classifier demonstrated the 
best prediction performance, and the prediction precision, 
recall rate, and AOC fluctuated within a small range, 
indicating that the fusion algorithm had high robustness. 

Figure 8 Recall-precision curves of single classifiers and the fusion 
classifier in the verification set. The fusion classifier shows a higher 
classification precision than any single classifier.

Table 3 Prediction performance of each classifier in the test set and verification set

Classifier
Test set Verification set

Precision Recall AUC Precision Recall AUC

KNN 77.1%±1.71% 76.8%±1.12% 0.702±0.017 76.5%±1.81% 76.6%±1.62% 0.695±0.019

SVM 75.3%±1.75% 75.9%±1.5% 0.740±0.012 75.2%±1.24% 75.7%±1.47% 0.738±0.012

ELM 87.0%±1.28% 88.7%±1.96% 0.830±0.015 87.2%±1.93% 87.4%±1.35% 0.823±0.017

RF 89.1%±1.68% 89.9%±1.34% 0.855±0.017 88.8%±1.35% 88.1%±1.83% 0.850±0.017

LR 68.4%±1.66% 70.3%±1.59% 0.681±0.018 69.2%±1.20% 69.6%±1.89% 0.685±0.013

Fusion classifier 92.0%±1.16% 92.2%±1.22% 0.915±0.019 92.1%±1.25% 92.3%±1.55% 0.921±0.015

The fusion classifier shows the best prediction performance in both the test set and the verification set. AUC, area under the ROC curve. 
KNN, K-nearest neighbor; SVM, support vector machine; ELM, extreme learning machine; RF, random forest; LR, logistic regression.
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To determine whether the prediction performance of the 
classifier on the experimental samples could be generalized 
to the whole population, this study used the t-test and 
F-test to statistically analyze the mean and variance of the 
prediction performance indicators. The results showed that 
the performance of this fusion classifier had a probability of 
0.965 to represent the mean of the entire population and a 
probability of 0.964 to represent the variance of the entire 
population, indicating that this fusion algorithm had strong 
generalization. Moreover, this fusion classifier integrated 
the excellent performance of individual classifiers. When 
the optimal hyperparameters of the classifier and the data 
set distribution are unknown, a fusion classifier can further 
simplify the parameter adjustment process. 

This study had certain l imitations:  (I)  i t  was a 
retrospective study and thus had certain biases. (II) All 
radiomics features were extracted from manually segmented 
images. It was difficult to exclude small blood vessels and 
small bronchi in or around the nodules, which might have 
affected the precision of the features. (III) The prediction 
precision of radiomics is affected by the choice of the 
classifiers, and most of the parameter optimization of the 
classifiers was done based on experience or experimental 
adjustment, without the theoretical support of parameter 
adjustment optimization, which may not guarantee that the 
parameters reach or approach the optimal performance. 

In conclusion, the fusion classifier based on radiomics 
features can provide a noninvasive, fast, low-cost, and 
repeatable method to predict benign and malignant 

pulmonary solid nodules, which will be conducive to clinical 
treatment. 
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