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Abstract: This paper addresses appearance-based robot localization in 2D with a sparse, lightweight
map of the environment composed of descriptor–pose image pairs. Based on previous research in the
field, we assume that image descriptors are samples of a low-dimensional Descriptor Manifold that is
locally articulated by the camera pose. We propose a piecewise approximation of the geometry of such
Descriptor Manifold through a tessellation of so-called Patches of Smooth Appearance Change (PSACs),
which defines our appearance map. Upon this map, the presented robot localization method applies
both a Gaussian Process Particle Filter (GPPF) to perform camera tracking and a Place Recognition
(PR) technique for relocalization within the most likely PSACs according to the observed descriptor.
A specific Gaussian Process (GP) is trained for each PSAC to regress a Gaussian distribution over the
descriptor for any particle pose lying within that PSAC. The evaluation of the observed descriptor in
this distribution gives us a likelihood, which is used as the weight for the particle. Besides, we model
the impact of appearance variations on image descriptors as a white noise distribution within the GP
formulation, ensuring adequate operation under lighting and scene appearance changes with respect
to the conditions in which the map was constructed. A series of experiments with both real and
synthetic images show that our method outperforms state-of-the-art appearance-based localization
methods in terms of robustness and accuracy, with median errors below 0.3 m and 6◦.

Keywords: appearance-based localization; computer vision; Gaussian processes; manifold learning;
robot vision systems; indoor positioning; image manifold; descriptor manifold

1. Introduction

Visual-based localization involves estimating the pose of a robot from a query image,
taken with an on-board camera, within a previously mapped environment. The widely
adopted approach relies on detecting local image features (e.g., points, segments) [1,2]
that are projections of 3D physical landmarks. Though this feature-based localization has
achieved great accuracy in the last years [3–5], it presents two major drawbacks that hinder
long-term localization and mapping: (i) lack of robustness against image radiometric
alterations; (ii) inefficiency of 2D-to-3D matching against large-scale 3D models [6]. A
much less explored alternative to feature-based localization consists in localizing the robot
through the scene appearance, represented by a descriptor of the whole image. According
to this framework, localization is accomplished by comparing the appearance descriptor
against a map composed of descriptor–pose pairs, without any explicit model of the scene’s
geometric entities [7,8]. This approach turns out to be particularly robust against perceptual
changes and also appropriate for large-scale localization, as demonstrated by the fact that
it is included in the front-end of state-of-the-art Simultaneous Localization and Mapping
(SLAM) pipelines to perform relocalization and loop closure, typically in the form of Place
Recognition (PR) [3,5].

The accuracy of appearance-based localization is, however, quite limited. Good results
are reported only when the camera follows a previously mapped trajectory (i.e., in one
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dimension) [9–11] or when it is very close to any of the poses of the map [8,12]. In this
work, we investigate whether localization based only on appearance can deliver continuous
solutions that are accurate and robust enough to become a practical alternative to methods
based on 3D geometric features. We restrict this work to planar motion, that is, we aim to
estimate the camera pose given by its 2D position and orientation (3 d.o.f.).

To this end, we first assume that images acquired in a certain environment are samples
of a low-dimensional Image Manifold (IM) that can be locally parameterized (or articulated)
by the camera pose. This assumption has been justified by previous works [13,14], but only
exploited under unrealistic conditions, where the IM was sampled from a fine grid of
poses in the environment under fixed lighting conditions. This IM is embedded in an
extremely high-dimensional space: RH×W×3, where W and H stand for the width and
height of the images, respectively. Patently, working in such extremely high-dimensional
space is not only unfeasible, but also impractical since it lacks radiometric invariance. That
is, the IM of a given environment might change drastically with the scene illumination
and the automatic camera accommodation to light (e.g., gain and exposure time). Thus, it
is primarily to project the images (i.e., samples of the IM) to a lower-dimensional space
with a transformation that also provides such radiometric invariances [15]. This projection
can be carried out by encoding the image into a descriptor vector, hence obtaining a new
appearance space, the Descriptor Manifold (DM), which is still articulated by the camera
pose. In this paper, we leverage Deep Learning (DL)-based holistic descriptors [8,16]
to project the IM into a locally smooth DM. We are aware that such smoothness is not
guaranteed for the descriptors employed here, since this feature has not been explicitly
taken into account in their design. This issue will be addressed in future work, but in the
context of our proposal, the selected DL-based descriptors perform reasonably well under
this assumption.

Another capital aspect in appearance-based localization is that it requires an appro-
priate map, which, in our case, is built from samples of the DM that are annotated with
their poses. In this paper, we assume that such samples, in the form of descriptor–pose
image pairs, are given in advance and are representative of the visual appearance of the
environment. Upon this set of pairs, we propose creating Patches of Smooth Appearance
Change (PSACs), that is, regions that locally approximate the geometry of the DM using
neighbor samples (see Figure 1). A tessellation of such PSACs results in a piecewise
approximation of the DM that constitutes our appearance map, where pose data is only
available at the vertices of the PSACs. The appearance smoothness within each PSAC
allows us to accurately regress a descriptor for any pose within the pose space covered
by the PSAC. This is accomplished through a Gaussian Process (GP), which delivers the
Gaussian distribution of the regressed descriptor (refer to Figure 1).

Our proposal solves continuous sequential localization indoors by tracking the robot
pose using a Gaussian Process Particle Filter (GPPF) [17,18] within the described appearance
map. The particles are propagated with the robot odometry and weighted through the
abovementioned Gaussian Process, which is implemented as the GPPF observation model
for the image descriptor.

Pursuing to improve the robustness of our method against appearance changes, we
model the descriptor variations in such situations as a white noise distribution that is
introduced into the estimation of the observation likelihood. Finally, it is worth mentioning
that our proposal can easily recover from the habitual PF particle degeneracy problem
by launching a fast and multihypothesis camera relocalization procedure through global
Place Recognition.

Our localization system has been validated with different indoor datasets affected by
significant appearance changes, yielding notable results that outperform current state-of-
the-art techniques, hence demonstrating its capability to reduce the gap between feature-
based and appearance-based localization in terms of accuracy, while still leveraging the
invariant nature of holistic descriptors.



Sensors 2021, 21, 2483 3 of 17

Descriptor
Manifold

Pose
Space

PSA
Cm

GP

x

p(dq|x, PSACm)dq

KPm,1

KPm,3

KPm,2

KPm,4

Figure 1. The Gaussian Process (GP) associated to a Patch of Smooth Appearance Change (PSACs)
approximates the geometry of a neighborhood of the Descriptor Manifold (assumed to be locally
smooth) with respect to the pose space, predicting the local likelihood p(dq|x, PSACm) of the ob-
servation dq in a given pose x. In this example, the descriptor–pose pairs are extracted from two
previous trajectories of the robot (in red and blue).

2. Related Work

This section reviews two concepts that are essential for the scope of this work: Global
image descriptors and Appearance-based localization.

2.1. Global Image Descriptors

A well-founded way of getting a consistent dimensionality reduction from the Image
Manifold to the Descriptor Manifold is through Manifold Learning tools, like LLE [19] or
Isomap [20]. Their performance, however, is limited to relatively simple IMs that result
from sequences of quasi-planar motions or deformations, like face poses, person gait, or
hand-written characters [21]. Unfortunately, images taken in a real 3D scene give rise
to complex, highly twisted IMs, which also present discontinuities due to occlusion bor-
ders [22]. Moreover, typical Manifold Learning tools are hardly able to generalize their
learned representations to images captured under different appearance settings [15]. This
prevents their application to generating low-dimensional embeddings adequate for cam-
era localization.

Nevertheless, Deep Learning (DL)-based holistic descriptors have recently proven
their suitability to enclose information from complete images, effectively reducing their
dimensionality, while adding invariance to extreme radiometric changes [8,12,23,24]. This
feature has made DL-based descriptors highly suitable for diverse long-term robot applica-
tions [9,25], e.g., Place Recognition (PR), where the goal is to determine if a certain place
has been already seen by comparing a query image against a lightweight set of images [26].
In addition, these descriptors have proven to more sensitively reflect pose fluctuations than
local features [26], which is described, for example, by the equivariance property [27,28].
Since we are targeting robust robot operation under different appearance conditions, global
descriptors arise as the natural choice to address appearance-based localization.

2.2. Appearance-Based Localization

Appearance-based localization is typically formulated as a two-step estimation prob-
lem: first, PR is performed to find the most similar images within the map and, subse-
quently, the pose of the query image is approximated from the location of the retrieved
ones [29,30]. In this scenario, DL-based works have proposed to improve the second
stage through Convolutional Neural Network architectures that estimate relative pose
transformations between covisible images [31–33].

The addition of temporal and spatial sequential information to appearance-based
localization methods based on single instances provides more consistency to the estimation
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of the pose, as it reduces the possibility of losing camera tracking due to, for instance,
perceptual aliasing [26]. Following this idea, SeqSLAM [10,34] proposes a sequence-to-
sequence matching framework that reformulates PR with the aim to incorporate sequen-
tiality, leading to substantial improvements under extreme appearance changes. Building
upon SeqSLAM, SMART [11] integrates odometry readings to provide more consistent
results. More recently, Network-Flow-based formulations have also been proposed to solve
appearance-based sequence matching under challenging conditions, addressing camera
localization [35,36] or position-based navigation and mapping [37]. Despite their relevant
results, the nature of all these works is discrete, unlike our proposal, restricting all possible
estimation to the locations present on the map.

Conversely, CAT-SLAM [38] employs image sequentiality as a source of topometric
information to improve the discrete maps used by FAB-MAP [9], allowing interpolation
within the sequence map through the association of continuous increments on appearance
and pose. Although the estimates produced by this approach are continuous, they are
restricted to the mapped trajectory. Our work overcomes this constraint by requiring
multiple sequences or pose grids as a source for constructing the map PSACs. This way,
we can perform localization even at unvisited map locations near the PSACs, achieving,
consequently, more accuracy and reliability.

An interesting alternative to pose interpolation is the use of Gaussian Processes (GPs)
regression [39], nonparametric, general-purpose tools that allow generalizing discrete
representations to a continuous model, and, hence, can be adapted to perform continuous
localization within discrete maps. For instance, [40,41] employed GPs to generate posi-
tion estimates for omnidirectional images in indoor maps, achieving good performance
although lacking applicability to robot rotations. Our approach is instead designed to work
with both 2D positions and rotations for conventional cameras.

In turn, the authors of [18] proposed Gaussian Process Particle Filters (GPPFs) to
solve appearance-based localization in maps of descriptor–pose pairs. The GP works
as the observation model of the PF, estimating the likelihood of the observed holistic
descriptor at each of the particle positions. This localization pipeline was later improved
in [42] by using only the nearest map neighbors in the GP regression, allowing efficient
localization within large environments. Despite being promising, both works have three
major drawbacks: (i) they define a unique Gaussian Process between poses and descriptors
for the whole environment, assuming that the manifold geometry has a similar shape for
the entire environment, thus leading to inaccurate estimations, (ii) they do not propose a
relocalization process in case of losing tracking, and (iii) they only consider localization
under the same appearance than the map, lacking robustness to radiometric alterations.

Inspired by these works, we employ a GPPF to solve appearance-based localization in
a continuous and sequential fashion within challenging indoor environments. We solve
their first problem by locally modeling the mapping between poses and descriptors via
specific GPs for each PSAC, providing refined estimates for each neighborhood. Our
proposal solves the second issue through a fast and multihypothesis relocalization process
based on global PR within the map. Finally, the last issue is addressed by incorporating a
model of the appearance variation between the mapped and query images to the map.

3. System Description

This section describes our proposal for the process of appearance-based camera lo-
calization. First, we define the elements that form the appearance map, which are key
contributions in this work, and then we address PR-based localization and camera tracking
using a probabilistic formulation based on a GPPF.

3.1. Patches of Smooth Appearance Change

The Patches of Smooth Appearance Change (PSACs) are regions that locally model the
interrelation between camera poses and image descriptors, and represent areas where the
change in appearance is small.
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3.1.1. Definition

The basic building unit of a PSAC is the pair pi = (di, xi), composed by the global
descriptor di ∈ Rd of an image and the pose xi ∈ SE(2) where it was captured.

We assume that these pairs are extracted from any of these two environmental rep-
resentations (Figure 2): either from several robot navigation sequences (at least two) or
from pose grids where the cameras have densely sampled the environment given fixed
position and rotation increments (i.e., a regular grid). Optimally, a subset of these pairs
should be selected so that they constitute the smallest number of samples from which the
Descriptor Manifold (DM) can be approximated with sufficiently good accuracy. These
key samples can be viewed as the equivalent to the key-frames in traditional, feature-based
visual localization, and hence, we denote them key-pairs (KPs). Since determining such
an optimal subset is a challenging issue itself, out of the scope of this work, the KPs are
constantly sampled from the total collection of pairs.

Figure 2. Each PSAC is constructed from descriptor–pose pairs that can be obtained from two
different robot trajectories (left, blue and red) or a grid of poses (right, green). This is better seen
in color.

Each PSAC is built from a group of adjacent KPs and approximates the DM in the
region that they delimit. As explained later, the robot localization takes place within these
PSACs by defining a suitable observation model for the GPPF (refer to Figure 1). Formally,
let the m-th PSAC be

PSACm =

({
KPm,i| i = 1, . . . , Q

}
, GPm

)
, (1)

where Q ≥ 3 is the number of KPs forming the PSAC. In turn, GPm is a Gaussian Process
specifically optimized for that particular PSAC that delivers a Gaussian distribution over
the image descriptor for any pose nearby the PSAC (further explained in Section 3.1.2).

Thus, in order to determine the closeness between a query pair pq = (dq, xq) and a
particular PSAC, we define two distance metrics as follows:

• The appearance distance Da
m,q from the query descriptor dq to the m-th PSAC is defined

as the average of the descriptor distances to each of its constituent key-pairs:

Da
m,q = Da(PSACm, dq) =

1
Q

Q

∑
i
||dq − dm,i||2. (2)

• Similarly, but in the pose space, we define the translational distance Dt
m,q from xq to the

m-th PSAC as

Dt
m,q = Dt(PSACm, xq) =

1
Q

Q

∑
i
||tq − tm,i||2, (3)

with tq being the translational component of the pose xq = (tq, θq).
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Finally, the set of all PSACs covering the environment that has been sampled forms
the appearance mapM:

M = {PSACm|m = 1, . . . , M}, (4)

with M being the number of PSACs. This way, we achieve a much more accurate approxi-
mation of the relation between the pose space and the DM within each PSAC, ultimately
modeling inM, patchwise, the complete shape of the DM.

3.1.2. GP Regression

GPs are powerful regression tools [39] that have previously demonstrated their validity
as observation models in Particle Filters [17,18,42].

In this work, we learn a specific GP for each PSAC from its vertices KPs and also
using all the nearest pairs, in terms of translational distance. Then, for a certain query pose
xq, the GPm delivers an isotropic Gaussian distribution N (µµµm,q, σ2

m,qId), where µµµm,q ∈ Rd

and σ2
m,q ∈ R stand for its mean and uncertainty, respectively. This distribution is finally

employed to estimate the likelihood p(dq|xq, PSACm) of an observed image descriptor dq,
given the query pose xq within the PSACm.

For this, the GP regression employs a kernel k, which measures the similarity between
two input 2-D poses (xi, xj), with this structure:

k(xi, xj) = kRBF(ti, tj) · kRBF(θi, θj) + kW(xi, xj). (5)

This kernel k first multiplies two Radial Basis Function (RBF) kernels kRBF(ai, aj) =

βa exp(−αa||ai − aj||22) (αa and βa are optimizable parameters) for the separated transla-
tional and rotational components of the evaluated poses x = (t, θ). Then, a White Noise
kernel kW(ai, aj) = σ2

Wδ(ai − aj) is added, which models the variation suffered by the image
descriptors taken at the same pose but under different appearances (refer to Figure 3).
This is justified because, although global PR descriptors have demonstrated outstanding
results in terms of invariance, such invariance is not ideal and small differences might
appear. Thereby, since the construction of the mapM is typically carried out considering
just one particular appearance, and we aim for the robot localization to be operational
under diverse radiometric settings, we propose the inclusion of a white noise distribution
accounting for this circumstance in the regression. We model such descriptor variation with
the variance σ2

W , computed as the average discrepancy between the descriptor variances of
pose adjacent pairs pi, under the same σ2

i,same and different σ2
i,diff illumination settings:

σ2
W =

1
N

N

∑
i

(
σ2

i,diff − σ2
i,same

)
. (6)

Artificial
Illumination

Cloudy

Sunny
σ2
   m,qd

x
σ2^m,q

Figure 3. These three images have been captured at the same pose but with different appearances.
Ideally, their descriptors (blue, red, and purple dots) should be identical but, in practice, certain
inaccuracies appear. As the GP learns the descriptor distribution uniquely from the appearance of
the map, this variation is not considered, leading to an underestimated GP uncertainty (red area,
σ̂2

m,q). The inclusion of white noise expands such uncertainty (green area, σ2
m,q), solving this issue.
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3.2. Robot Localization

Once we have defined all the elements involved in the representation of the envi-
ronment, we address here the process of localization within the appearance mapM. We
aim to estimate the robot pose through appearance-based continuous tracking using a
Gaussian Process Particle Filter (GPPF), namely, a PF that employs the GPs described above
as observation models. Being well-known robot localization tools, we do not provide
a deep description of Particle Filters here but instead refer to the reader to the seminar
work [43] for further information.

At time-step t, each of the P particles in the filter represent a robot pose estimation
x(t)p with an associated weight w(t)

p , proportional to its likelihood. Besides, each particle is

assigned to a certain region PSAC(t)
m,p, as explained next.

3.2.1. System Initialization

When the PF starts, we perform global localization based on Place Recognition to
select the most similar PSAC inM to the query descriptor according to its appearance:

PSACm̂ = min
PSACm∈M

Da
m,q. (7)

To account for multihypothesis initialization, we also consider as candidates those
PSACs whose appearance distance is under a certain threshold proportional to Da

m̂,q. Subse-
quently, the particles are uniformly assigned and distributed among all candidate PSACs,
setting their initial weights to w(t0)

p = 1
P .

Note that, if the robot tracking is lost during navigation, this procedure is launched
again to reinitialize the system and perform relocalization.

3.2.2. Robot Tracking

Once each particle is assigned to a candidate PSAC, the robot pose estimation is
carried out following the traditional propagation-weighting sequence:

Propagation. First, the particles are propagated according to the robot odometry:

x(t)p = x(t−1)
p ⊕ υ(t), (8)

with υ(t) ∼ N (υ(t), Συ) representing noisy odometry readings, and ⊕ being the pose
composition operator in SE(2) [44].

Weighting. After the propagation, the translational distance between each particle’s
pose and all the PSACs is computed, so that the particle is assigned to the nearest PSAC
(PSAC(t)

m,p). Then, we use the GP regressed in the PSAC to locally evaluate the likelihood of

the observed descriptor dq at the particle pose x(t)p as follows:

w(t)
p = p

(
dq|x(t)p , PSAC(t)

m,p
)
∼ exp

(
− d

2
ln(σ2(t)

m,p)−
||dq −µµµ

(t)
m,p||22

2(σ2(t)
m,p)

)
, (9)

with d being the dimension of the descriptor.
Finally, apart from propagation and weighting, two more operations can be occasionally

applied to the particles.
Resampling: In order to prevent particle degeneracy, the GPPF resamples when the

number of effective particles is too low, promoting particles with higher weights.
Reinitializing: During normal operation, the GPPF may lose the tracking of the

camera, mainly due to extremely challenging conditions in the images (e.g., very strong
change appearances, presence of several dynamic objects). We identify this situation by
inspecting the translational distance between each particle and the centroid of its assigned
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PSAC, defined as the average pose of all the key-pairs forming the PSAC. If all particles
are at least twice farther from the centroid of their assigned PSAC than its constituent
key-pairs, the tracking is considered lost. Consequently, the PF relocalizes by following the
aforementioned initialization procedure.

4. Experimental Results

In this section, we present three experiments to evaluate the performance of our
appearance-based localization system.

First, we carry out a verification of the regression outcome in Section 4.1, with the
aim to experimentally validate the hypothesis of a smooth Descriptor Manifold within
the regions covered by each PSAC. In Sections 4.2 and 4.3, we test our proposal with four
different state-of-the-art global descriptors in two different datasets, with a combination of
setups for the map sampling. This has provided us with an insight about the error incurred
by our proposal and has allowed us to determine the best configuration for localization.
The second experiment, in Section 4.4, compares the resulting setup with three appearance-
based localization alternatives in terms of accuracy and robustness, revealing that our
system equals or improves their performance in every scenario.

It is important to highlight that this evaluation does not include comparisons with
feature-based localization methods, since they are not compatible with appearance changes
in the images used for both mapping and localization, which is one of the main benefits of
our proposal.

We employed two different indoor datasets for the experiments:

• The COLD-Freiburg database [45], which includes real images from an office gath-
ered with a mobile robot under different appearance conditions. We have used only a
representative subset of the sequences in part A of the dataset (Figure 4a).

• The synthetic SUNCG Dataset [46] rendered through the virtual HOUSE3D environ-
ment [47] allows us to test the localization on a grid map (see Figure 4b).

In turn, regarding the global image representation, we have tested the following
state-of-the-art appearance descriptors:

• NetVLAD: VGG16 [48] based on off-the-shelf, 4096-sized NetVLAD features with
Principal Component Analysis (PCA) whitening [8].

• ResNet-101 GeM: ResNet-101-based [49] fine-tuned generalized-mean features with
learned whitening [12].

• 1M COLD Quadruplet and 1M RobotCar Volume: end-to-end learned condition
invariant features with VGG16 NetVLAD [24] with quadruplet and volume loss
functions in two different datasets.

Although none of these descriptors has been specifically designed to fulfill suitable
properties for our pose regression approach, they have achieved promising results in
terms of localization accuracy, as shown next. We used the GPy tool [50] to implement the
proposed Gaussian Processes and empirically determined σ2

W from Equation (6), for each
descriptor, by randomly sampling N = 2000 adjacent pairs with diverse illumination
settings from the COLD-Freiburg database.

In this evaluation, we employ as metrics the median errors in translation and rotation
(to inspect our method’s accuracy), as well as the percentage of correctly localized frames
(which illustrates the tracking and relocalization capabilities of our method). It is worth
mentioning that traditional trajectory-based evaluation metrics as Absolute Trajectory Error
(ATE) or Relative Pose Errors (RPE) are not applicable to this approach since our proposal,
and appearance-based localization methods in general, yields global pose estimations
that are not guaranteed to belong to a trajectory, due to possible tracking losses and
relocalization situations.
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(b)
Figure 4. Environments and sequences employed for evaluation. (a) Map of the COLD-Freiburg Part A environment.
Samples of the standard and extended routes are depicted in blue and red, respectively (image from [45]). (b) Map of the
house rendered by the SUNCG environment (the house employed was 034e4c22e506f89d668771831080b291). The dense grid
poses are shown in red and the test sequences in different shades of green. Black regions depict objects, where the robot is
not able to navigate.

4.1. Corridor: Sanity Check

The main assumption of our proposal is the hypothesis of a locally smooth Descriptor
Manifold with respect to the pose, on which PSACs are based. Since this assumption is
not justified by previous work, we have conducted a basic test to evaluate the regression
outcome of the PSACs in a simple scenario.

The proposed experiment studies the evolution of the image descriptor along a simple,
linear trajectory, by comparing the observed descriptor and the mean of the descriptor
distribution resulting from the regression within the PSAC. In this manner, the behavior of
the descriptor can be examined along the corridor axis in order to prove its continuity and
the validity of the PSAC approximation. For this, we have selected a portion of an artificially
illuminated (night) sequence where the robot traveled along a ∼8 m-long corridor, as well
as the NetVLAD image descriptor. For the PSACs, we used a map constructed with images
with the same appearance selected every 20 frames.

In order to represent the evolution of the descriptors, we have applied Principal
Component Analysis (PCA) to them and represented the first PCA element (that with
larger variation). Thus, Figure 5 depicts the trajectory of the robot through the corridor
along with the value of said first PCA element for both the observed descriptor and the
mean of the descriptor distribution regressed by the GPs at each PSAC. The displayed
results demonstrate that the descriptor has a continuous evolution along the corridor,
almost lineal in the central part. Besides, the PSACs are proved to also have a continuous
outcome and to approximate very accurately the values of the observed descriptor along
the sampled trajectory.
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Figure 5. Experimental study of the global image descriptor behavior along a corridor of the COLD-Freiburg database (left
image). The central figure depicts the robot pose trajectory and the PSACs (shadowed areas) through which it navigates.
The rightmost figure compares, along the corridor, the behavior of the first Principle Component Analysis (PCA) component
of the observed descriptor (coral) and the PSAC regression output (blue and green). This is better seen in color.

4.2. COLD: Sequential Map Testing

The COLD-Freiburg database (part A) provides odometry readings and real images
for two different itineraries, namely, (i) extended (∼100 m-long), which covers the whole
environment; (ii) standard (∼70 m), covering a subset of the environment, both depicted
in Figure 4a. The dataset also provides images gathered under three different lighting
conditions: at night (with artificial illumination), and on cloudy and sunny days.

In order to create the appearance maps for the experiments, we employed the first and
second night sequences of the extended itinerary, since images captured under artificial
illumination do not suffer from severe exposure changes or saturation like under the
remaining conditions. From here on, we will refer to these as map sequences. Specifically,
key-pairs from both map sequences have been obtained through Constant Sampling (CS)
every 10, 20, and 30 pairs, resulting in three different maps with diverse density (described
in more detail in Table 1), using Q = 4 KPs to construct every PSAC.

Table 1. Compared statistics of the created appearance maps. The dimension is calculated for a
2048-sized global descriptor.

Dataset Area Map Key-Pairs PSACs Size Construction
(KPs) (Mb) Time (s)

COLD Database ∼900 m2
Samp. 10 559 321 2.18 56.68
Samp. 20 280 159 1.09 32.27
Samp. 30 187 103 0.73 25.92

SUNCG ∼45 m2

Dense 1203 679 4.69 140.94
Sparse pos 451 227 1.76 129.36
Sparse rot 723 432 2.82 136.95

Sparse pos-rot 271 149 1.05 107.93

Finally, we have setup an extensive evaluation with six other sequences including
different routes and illumination conditions: the first night; cloudy and sunny sequences of
the standard part; the first cloudy and sunny sequences; and the third night sequence of the
extended part.

Figure 6 shows a comprehensive test study depicting the localization performance
of our proposal after twenty runs for all test sequences at each map, using the median
translational (top) and rotational (down) errors as metrics. Note that the number of
particles for the PF has been set to P = 103, as we have empirically found that increasing
that number does not improve the accuracy results. The overall performance shows a
median error predominantly below 0.3 m and 6°, which denotes promising results given
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the pure appearance nature of our approach, i.e., with no geometrical feature employed
for localization.
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Figure 6. Comparison of the median translational and rotational errors of our proposal in the COLD-Freiburg dataset,
tested at every sequence and with different Constant Sampling (CS) rates, using each holistic descriptors with 103 particles.
Note that the maps were constructed employing sequences under similar conditions to the night sequences. This is better
seen in color.

The results in Figure 6 show that scene appearance seems to be a key issue regarding
the system’s accuracy, as our proposal achieves better results in less-demanding lighting
conditions like artificial illumination (night) or cloudy. Nevertheless, our system still
demonstrates notable performance under challenging radiometric conditions, such as in
sunny sequences (e.g., presence of lens flares and image saturation), hence proving its
suitability for robust appearance-based localization.

On the other hand, the number of KPs that form the map is another factor influencing
the performance, since the PSACs approximate the pose–descriptor interrelation the closer
their KPs are. Although not particularly significant under advantageous conditions, this
factor severely affects performance under challenging situations, as in sunny sequences,
where localization is hindered as the sampling frequency decreases. Note that a more
elaborate mapping technique than CS would improve these results, since an optimal
selection of KPs would conform PSACs that achieve a more precise description of the DM
geometry. Nevertheless, this will be explored in future work while, in this paper, we rely
on CS to get still nonoptimal but notable results.

Finally, regarding the tested PR descriptors, the results show that in most cases,
all perform similarly, with NetVLAD mostly achieving slightly better results. In turn,
1M COLD Quadruplet seems to struggle under complex illumination conditions, which
might indicate that its empirically estimated white noise variance is unlikely to account
adequately for these cases. The similar performance shown by all descriptors agrees with
the fact that none of them has been specifically trained for appearance-based localization.

4.3. SUNCG: Grid Map Testing

The SUNCG Dataset provides a set of synthetic houses where a virtual camera can
be placed at any pose. This feature allowed us to create a regular grid map in the space of
planar poses with the camera and then to evaluate the impact of the map density in our
proposal. Note that this dataset does not present appearance changes, and hence, the effect
of such a characteristic cannot be evaluated in this experiment.

First, our dense grid map was created by selecting KPs with constant increments of
0.5 m in translation and 36° in rotation (refer to the red dots in Figure 4b). Then, we
used subsampling to generate more grid maps for the evaluation, as described in Table 1,
namely, the sparse-position map (subsampling half of the positions); the sparse-rotation map
(subsampling half of the orientations); and the sparse-position-rotation map (subsampling
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both at the same time). In this case, we created PSACs with Q = 8 KPs for all maps.
Additionally, we have recorded three ∼30 m-long test sequences following the trajectories
shown in shades of green in Figure 4b, generating a synthetic odometry corrupted by zero-
mean Gaussian noise with σu = (0.06 m, 1°).

The results of this experiment are shown in Figure 7, comparing the median errors
in translation (left) and rotation (right) for all the descriptors employed in the previous
experiment and for the described versions of the grid map. Again, we have set P = 103

particles for the PF. As can be seen, our proposal yields median errors under 0.2 m and 6°
in the dense map, while using subsampled maps hinders the process of localization. It can
be noted that subsampling exclusively on rotations does not worsen the accuracy, while
subsampling positions has a noticeable impact on the overall performance. Consequently,
PSACs prove to handle information sparseness more efficiently in orientation than in
position. Not surprisingly, subsampling in both position and orientation clearly achieves
the worst localization performance due to the combined loss of information.

Dense Sparse
position

Sparse
angle

Sparse
0.00

0.25

0.50

0.75

1.00

1.25 Median Trans. Error (m)

Dense Sparse
position

Sparse
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0

10

20

30
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NetVLAD ResNet-101 GeM 1M COLD Quadruplet 1M RobotCar Volume

Figure 7. Median tracking errors of our proposal for the test sequences on the SUNCG generated
maps, with 103 particles.

Regarding the holistic descriptors, all of them again demonstrate a similar behavior
for each subsampling case, with 1M RobotCar Volume performing worst. ResNet-101 GeM
and NetVLAD, in turn, achieve the best performance.

These results demonstrate that uniform grid sampling is a rough strategy for mapping
environments, achieving results highly dependent on the sampling density. Besides,
the construction of such maps with real robots becomes largely time-consuming, mostly
being realizable when using virtual environments. Future work should investigate more
elaborated strategies, designed to fulfill more adequate criteria concerning the map creation,
ultimately pursuing an optimal approximation of the DM geometry.

4.4. Comparative Study

Finally, we compare the localization performance between our proposal and state-of-
the-art appearance-based methods of diverse nature in both datasets. For the setup of our
method, we selected the NetVLAD descriptor due to its performance against appearance
changes, and added the KPs every 20 pairs for the COLD dataset, as it represents a fair
trade-off between accuracy and the number of KPs employed.

These are the appearance-based localization methods involved in the comparison:

• Gaussian Process Particle Filter (GPPF) [42], configured with P = 103 particles.
• The Pairwise Relative Pose estimator (PRP) presented in [31]: a CNN-based regressor

that estimates the pose transform between the query and the 5 most similar map
images obtained through PR.

• The Network flow solution proposed in [37]: a sequential sparse localization method
that includes uniform and flow-based mapping, both considered in this study. In order
to make the results comparable, we modified its outcome, which is sparse, to pro-
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duce continuous estimations. For that, we used the following weighting after the
bipartite matching:

xi =
∑Nk

j
yi
yij

xi

∑Nk
j

yi
yij

(10)

where xj is the pose of the each of the Nk = 5 most contributing KPs, yij is the flow

connecting the i-th query and the j-th KP, and yi = ∑Nk
j yij represents the query flow

from the nearer KPs (refer to [37] for further info).
• Our approach, configured with P = 103 particles.

Table 2 shows the compared performance between all the described algorithms after
twenty runs for each scenario. Note that, apart from the median errors, we included
the percentage of correctly localized frames along the trajectory, showing the tracking
robustness and relocalization potential. Concretely, a frame is considered to be correctly
localized when the distance between the estimate and its true pose is below (0.5 m, 10°).

Table 2. Comparative median position and rotation errors, and % of correctly localized frames (m, ◦, (%)) of different state-
of-the-art appearance-based localization methods. A frame is correctly localized when the distance between the estimate
and its true pose is below (0.5 m, 10°) (L: sequences where the tracking got lost. N/A: not applicable). PRP—Pairwise
Relative Pose estimator; PR—Place Recognition. In bold, best result for each sequence.

Dataset Map Sequence GPPF [18,42] + PRP CNN [31] + Network Flow [37] + Network Flow [37] + Our Method
Unif. Sampl NetVLAD PR Unif. Sampl. Flow Sampl C.S.

COLD Database

Night std L 1.17, 10.94 (8%) 0.19, 4.33 (66%) 0.26, 4.66 (60%) 0.2, 3.08 (85%)
Cloudy std L 1.93, 14.59 (4%) 0.31, 4.76 (57%) 0.36, 5.29 (46%) 0.3, 5.82 (56%)

Samp. 20 Sunny std L 2.2, 14.75 (3%) 0.36, 6.91 (40%) 0.42, 7.7 (33%) 0.23, 5.08 (66%)
Night ext L 1.27, 11.07 (8%) 0.22, 3.88 (69%) 0.26, 4.36 (61%) 0.17, 3.38 (82%)

Cloudy ext L 1.46, 12.17 (6%) 0.22, 4.13 (60%) 0.31, 5.12 (52%) 0.2, 3.48 (82%)
Sunny ext L 2.11, 16.59 (2%) 0.3, 6.95 (50%) 0.35, 8.14 (39%) 0.28, 6.67 (54%)

SUNCG

Dense

Test sequence

1.07, 6.07 (17%) 0.75, 12.14 (13%) N/A N/A 0.15, 5.69 (60%)
Sparse pos 1.21, 9.16 (7%) 1.14, 19.76 (2%) N/A N/A 0.46, 4.30 (51%)
Sparse rot 1.24, 12.36 (2%) 0.89, 19.76 (6%) N/A N/A 0.20, 5.15 (57%)

Sparse pos-rot 1.62, 20.16 (0%) 1.51, 24.51 (1%) N/A N/A 0.72, 18.58 (19%)

As can be seen, the challenging radiometric conditions in the COLD-Freiburg database
caused the GPPF method to lose tracking, while the PRP estimator achieved low accuracy
as a result of not exploiting the trajectory sequentiality, performing PR at every time-step
instead. In turn, the solutions based on Network flow provide very accurate estimations
in general, with the best results achieved by the uniformly sampled map under favorable
conditions (i.e., night and cloudy sequences) and slightly worse in the case of severe appear-
ance changes (i.e., sunny sequences). Our proposal, in contrast, demonstrates providing
consistent results regardless of the appearance settings, achieving similar results to the
Network flow solution in favorable conditions and outperforming all other methods under
challenging radiometric settings.

In the case of the SUNCG dataset, the formulation proposed by the Network flow is
incompatible with grid maps covering multiple rotations at the same location, as they are
conceived to work only with positions. In turn, PRP and GPPF obtain low performance,
even worsened in subsampled maps, while our proposal achieves the best results.

Despite its similarity with our approach, GPPF has shown to be unable to achieve
robust localization due to the abovementioned issues: (i) deficiencies from considering a sin-
gle pose–descriptor mapping for the whole environment, (ii) the absence of a relocalization
process, and (iii) its limitation to environments without radiometric changes.

In conclusion, the presented comparison proves that these state-of-the-art localization
methods based on appearance cannot provide both consistent and accurate localization
estimations while operating within maps of diverse nature and captured under differ-
ent appearance conditions. Our method, in turn, achieves higher performance in these
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conditions in terms of precision and robustness, showing notable results given its pure
appearance nature.

5. Conclusions

We have presented a system for appearance-based robot localization that provides
accurate, continuous pose estimations for camera navigation within a 2D environment
under diverse radiometric conditions. Our proposal relies on the assumption that image
global descriptors form a manifold articulated by the camera pose that adequately approxi-
mates the Image Manifold. This way, we gather pose–descriptor pairs from a lightweight
map in order to create locally smooth regions called Patches of Smooth Appearance Change
(PSACs) that shape, piecewise, the Descriptor Manifold geometry. Additionally, we ro-
bustly deal with appearance changes by modeling the descriptor variations under a white
noise distribution.

We implemented a sequential camera tracking system built upon a Gaussian Pro-
cess Particle Filter, which allows for multihypothesis pose estimation. Thus, our system
optimizes a specific GP for each PSAC, subsequently being employed to define a local ob-
servation model of the descriptor for the Particle Filter. Furthermore, our method includes
a relocalization process based on PR in case of tracking loss.

A first set of experiments has shown our proposal’s error baseline in different environ-
ments and for a selection of holistic descriptors, revealing the most suitable configuration
for our system. Finally, we have presented a comprehensive evaluation of the localization
performance, showing that our approach outperforms state-of-the-art appearance-based
localization methods in both tracking accuracy and robustness, even using images with
challenging illuminations, yielding median errors below 0.3 m and 6°. Consequently, we
have proven that pure appearance-based systems can produce continuous estimations
with promising results in terms of accuracy, while working with lightweight maps and
achieving robustness under strong appearance changes.

Future work includes research about (i) building the appearance map in an optimal
way and wisely selecting where to sample the Descriptor Manifold; (ii) the design of a
novel holistic descriptor that is more adequate to perform pose regression while keeping
high invariance to radiometric changes.
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Abbreviations
The following abbreviations are used in this manuscript:

PSAC Patch of Smooth Appearance Change
PR Place Recognition
GP Gaussian Process
GPPF Gaussian Process Particle Filter
PF Particle Filter
SLAM Simultaneous Localization and Mapping
IM Image Manifold
DM Descriptor Manifold
DL Deep Learning
KP Key-pair
CS Constant Sampling
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