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Epigenetics in Eukaryotes
In eukaryotes, chromatin protein (histones) and/or DNA 
undergo reversible chemical modification in response to a 
broad range of physiological and environmental triggers. These 
modifications lead to changes in gene expression that in turn 
alter cellular and organismal phenotypes. Such changes are 
important because they influence adaptive traits such as fitness 
and reproduction. Epigenetics thus has broad relevance to eco-
logical processes. In eukaryotes, the components of chromatin 
epigenetic mechanisms include histones, histone modification 
writers, readers and erasers,1–4 and histone remodelers.5 DNA 
methylation epigenetic mechanisms include enzymes that 
deposit,6 read,7 and erase8 CpG methylation. It is known that 
these epigenetic components are ubiquitous across eukaryotes 
because of their broad genomic conservation.

Epigenetics in Bacteria
In bacteria, DNA methylation is also ubiquitous although 
chromatin protein modification does not appear. Bacterial 
DNA methylation is fundamentally unlike that observed in 
eukaryotes. These differences raise questions about the exten-
sion of epigenetics to bacteria through this mechanism. 
Bacterial DNA methylation is site specific and not patchy as 
observed in eukaryotes. It occurs at adenine or cytosine resi-
dues located within canonical usually hexameric sequences. 
Methylation is relatively complete across bacterial genomes 
where all canonical sequences gain methylation. It is also inti-
mately paired with DNA restriction where double-strand 
cleavage occurs at or near the canonical sequence. The so-called 
DNA restriction modification (methylation) systems are 
broadly distributed across the bacterial domain with innumer-
able examples of these highly conserved features. Occasionally, 

restriction or modification enzymes occur in an orphan 
genomic state without a matching paired gene and its activity. 
In the case of orphan modification, it has been suggested that 
they confer alternative functions such as stationary-phase phe-
notypes9,10 but also that the methylases may be selfish genetic 
elements.9–11 Although occasional references to these functions 
have been called epigenetic, the lack of underlying epigenetic 
mechanisms raises concerns about their relationship to true 
epigenetics. For example, variation in these orphan examples of 
DNA modification follows a stochastic pattern of heritability. 
That means that derivative (progeny) cells lose DNA methyla-
tion. A more common term encompassing this and other sto-
chastic phenomena in bacteria is phase variation. Phase 
variation means that a phenotype and its molecular basis rap-
idly change at high frequency within a clonal population. This 
pattern contradicts the definition of epigenetics. Genes affected 
by phase variation include the Escherichia coli pili gene pap12 
and outer membrane protein antigen Ag43,13 the Salmonella 
O-antigen chain length genes,14 and others.15 A second funda-
mental issue is that bacterial DNA methylation can undergo 
variation in pattern without a corresponding change in pheno-
type. This lack of connection between epigenetic state and 
phenotype implies that variation in bacterial DNA methyla-
tion has no causal role and may result from evolutionary drift.

Epigenetics in Archaea
Archaea constitute a distinct domain from bacteria and eukar-
yotes. However, they harbor many mechanisms found in 
eukaryotes that use proteins that have a common evolutionary 
origin. These range from proteins necessary for DNA replica-
tion, DNA repair, and RNA transcription to protein transla-
tion. Consequently, it has been proposed that eukaryotes arose 
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from archaea, the so-called 2-domain tree of life.16 If this is 
true, then eukaryotic-like epigenetics may be evident in 
archaea. Early studies of methanogenic archaea belonging to 
the euryarchaeota phylum led to the discovery that they and 
other members of their phylum use histones to condense and 
organize their genomic DNA.17 It was then of some disap-
pointment that post-translational modification of histones 
was shown not to occur in these organisms.18 Perhaps, then 
the evolution of histone modification occurred later with 
the appearance of eukaryotes. Recently, however, our group 
examined this question in a different archaeal phylum, the 
Crenarchaeota and the microbe called Sulfolobus. We found a 
eukaryotic-like epigenetic system that uses chromatin protein 
modification.19–21 As eukaryotic epigenetics couples modifica-
tion to phenotype and thereby affects traits such as biological 
fitness, our approach initiated with the production of evolved 
cell lines with improved fitness that were subsequently exam-
ined for epigenetic-like modifications.

Many Crenarchaeota belonging to the order Sulfolobales 
flourish in hot acidic habitats that are strongly oxidizing. 
Adaptive laboratory evolution over a 3-year period was used to 
test whether such organisms harbor additional thermoacido-
philic capacity and to search for epigenetic-like modifica-
tions.21 Three distinct cell lines derived from a single-type 
species were subjected to high-temperature serial passage while 
culture acidity was gradually increased. A 178-fold increase in 
thermoacidophile was achieved after 29 increments of shifted 
culture pH resulting in growth at pH 0.8 and 80°C resulting in 
cell lines named super-acid-resistant Crenarchaeota (SARC). 
Genome and transcriptome sequencing of 1 lineage identified 
a set of 8 nonsynonymous changes and a lack of transposition. 
Four multigene components of the SARC transcriptome 
implicated oxidative stress as a primary challenge accompany-
ing growth at acid extremes. These components included accel-
erated membrane biogenesis, induction of metal resistance and 
an increased capacity for the generation of energy and reduct-
ant. These traits were subsequently evaluated for the involve-
ment of an epigenetic process.

Interestingly, genome and transcriptome sequencing of the 
other 2 cell lines revealed that 1 line had no mutation whatso-
ever, whereas all strains had conserved, heritable transcriptomes 
implicated in acid resistance.20 Relative to a similar passaged 
control produced in the absence of acid selection, the 3 evolved 
strains exhibited significantly enhanced genome stability. A 
mechanism that would confer these traits without DNA 
sequence alteration could involve post-translationally modified 
archaeal chromatin proteins. To test this idea, homologous 
recombination with isogenic DNA was used to perturb native 
chromatin structure. Recombination at upregulated loci from 
the heritable SARC transcriptome reduced acid resistance and 
gene expression in most recombinants. In contrast, recombina-
tion at a control locus that was not part of the heritable tran-
scriptome changed neither acid resistance nor gene expression. 

Variation in the amount of phenotypic and expression changes 
across individuals was consistent with Rad54-dependent chro-
matin remodeling that dictated crossover location and branch 
migration. These data support an epigenetic model implicating 
chromatin structure as a contributor to heritable traits in the 
archaeal SARC lineages.

Native chromatin proteins in Sulfolobus are basic and highly 
abundant and undergo post-translational modification through 
lysine monomethylation. In all SARC lines, 2 chromatin pro-
teins, Cren7 and Sso7d, were consistently undermethylated, 
whereas other chromatin proteins were unaltered.19 This pat-
tern was heritable in the absence of selection and independent 
of transient exposure to acid stress. The bulk of Sso7d was 
undermethylated at 3 contiguous N-terminal lysine residues but 
not at the central or C-terminal regions. The N-terminal region 
formed a solvent-exposed patch located on the opposite side of 
the binding domain associated with the DNA minor groove. By 
analogy to eukaryotic histones, this patch could interact with 
other chromosomal proteins and be modulated by differential 
post translational modification. Previous work established an 
epigenetic-like mechanism of adaptation and inheritance in 
Sulfolobus.20,21 The identification of heritable epigenetic marks 
consisting of chromatin protein hypomethylation along with 
the broad conservation of at least one of these chromatin pro-
teins (Cren7)22,23 in all Crenarchaeota further supports the 
occurrence of an epigenetic process in Archaea.

If as predicted there is a protein network in which chromatin 
proteins interact with other proteins along the chromosome, 
then the protein interactions may be influenced by the methyla-
tion state and provide a means of communicating triggers that 
lead to epigenetic responses. If true, then archaea may offer a 
unique view of the origin of epigenetic process that predate 
the evolution of the nucleus and led to the rise of subcellular 
compartmentalization. As epigenetics is a critical component of 
multicellularity,24,25 the study of epigenetic processes in archaea 
may shed light on the evolution of multicellularity.
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