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Abstract

Copper (Cu), iron (Fe), and zinc (Zn) are essential trace minerals for the reproduction,

growth, and immunity of mammalian herbivore populations. We examined the relationships

between Cu, Fe, and Zn in soils, common plants, and hepatic stores of two wild herbivores

to assess the effects of weather, sex, and population density on the transfer of trace miner-

als from soils to mammals during the growing season. Soils, grasses, woody browse, hispid

cotton rats (Sigmodon hispidus), and white-tailed deer (Odocoileus virginianus) were sam-

pled across 19 sites. Concentrations of Cu, Fe, and Zn in grasses and browse species were

not correlated with concentrations of those minerals in soils sampled from the same areas.

Leaves of woody browse were higher in Cu, lower in Fe, and similar in Zn when compared

with grasses. Available concentrations of soils were positively related to liver Cu and Zn in

hispid cotton rats, which was consistent with the short lives and high productivity of these

small mammals that rely on grass seed heads. Interactions between soil concentrations and

weather also affected liver Cu and Fe in deer, which reflected the greater complexity of tro-

phic transfers in large, long-lived, browsing herbivores. Population density was correlated

with liver concentrations of Cu, Fe, and Zn in hispid cotton rats, and concentrations of Cu

and Fe in deer. Liver Cu was < 5 mg/kg wet weight in at least 5% of animals at two of eight

sites for hispid cotton rats and < 3.8 mg/kg wet weight in at least 5% of animals at three of 12

sites for deer, which could indicate regional limitation of Cu for populations of mammalian

herbivores. Our data indicate that supplies of trace minerals may contribute to density

dependence of herbivore populations. Local population density may therefore influence the

prevalence of deficiency states and disease outbreak that exacerbate population cycles in

wild mammals.
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Introduction

Trace minerals such as copper (Cu), iron (Fe), and zinc (Zn) are essential nutrients for growth,

reproductive success, and normal physiological and immune function in animals [1]. Defi-

ciency or imbalances in trace mineral concentrations can increase the spread and intensity of

disease and exacerbate the adverse effects of other environmental stressors on populations [1].

For example, animals that are deficient in trace nutrients may be more susceptible to infection

(e.g., poor immune response) and more vulnerable to environmental exposure and predation

(e.g., anomalies of the skin, pelage, teeth, bone, muscle, and vasculature that impair thermoreg-

ulation and movement) [2–4]. However, clinical symptoms of deficiency appear and disappear

in wild animals according to the severity of the deficiency, making it difficult to detect and

study deficiencies in populations of wildlife [5]. Conversely, toxicity due to elevated levels

more commonly causes clinical symptoms to appear, and therefore is more easily detected for

trace minerals especially where animals are exposed to high concentrations of the mineral in

soils and plants [6,7].

Examining concentrations of trace minerals both in the environment (e.g., soils and plants)

and within animals may be essential to monitoring health for populations of herbivores. The

combined effects of abiotic and biotic factors in the environment dictate trace mineral supply

while trace mineral levels within individual animals in a population give an indication of

demand and acquisition [1]. Cross-sectional studies of soils and plants across sites can be used

to assess availability of trace minerals on the landscape especially during peak periods of plant

growth. Assessing trace minerals in the body of herbivores can be done for the short-term

(weeks) by examining plasma samples, or for the long-term (months or years) with liver and

bone samples [8,9]. Liver mineral concentrations indicate dietary supplies, as well as the rate

of use of liver stores, over a season, which captures the changes in trace mineral concentrations

of individual plant species over the growing season [10]. Liver mineral concentrations may not

indicate forage selection of herbivores but ratios of the stable isotopes of carbon (δ13C: δ12C)

and nitrogen (δ15N: δ14N) can track forage selection in animals [11]. Values of δC13 in tissues

of herbivores provide an indication of diet selection because C3 plants range between -33 to

-24 ‰ and C4 plants range between -14 to -11 ‰ [11]. Additionally, values of δ15N in animals

provide an indication of trophic position as well as metabolism [11]. For example, isotopic

concentration varies with tissue [12] and muscle tissue, such as heart, can be used for long-

term diet analysis [13], while feces can be used as a short-term indicator [1].

Wild herbivore populations integrate changes in the plant community at scales of space and

time that increase with body size from the smallest rodents to the largest ungulates [14,15].

The majority of rodents are r-selected species; therefore, populations exhibit greater variation

in population densities at shorter time scales (e.g., 1–5 years) that reflect responses to land-

scape changes at finer scales (e.g., 1–5 ha) than ungulates. This is commonly seen in the cyclical

booms and busts in population size that are characteristic of the hispid cotton rat (Sigmodon
hispidus) with maximum lifespans no longer than 6 months in the wild [16–18]. However,

ungulates, such as white-tailed deer (Odocoileus virginianus) can live up to 10 years or longer

in the wild [19], are k-selected species, and are additionally a principal focus of conservation

planning and management of wildlife due to their economic and cultural importance. Conse-

quently, populations of white-tailed deer are managed through harvest and habitat manipula-

tion to avoid large perturbations in numbers within regions [20]. Additionally, longer-lived

animal and plant species are directly affected by weather over multiple years and may incorpo-

rate evidence of long-term weather trends in their tissue [21–23]. These same weather trends

also drive the breakdown of soil parent materials, releasing available nutrients, which are

incorporated into plants and are then consumed by herbivores on the landscape [24]. Even
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though variation in available nutrients, plant growth, and animal populations can occur spa-

tially within a year, longer-trend climate data (i.e., five years) are needed to fully represent site

specific differences in nutrient availability.

We examined the relationship between the availability of Cu, Fe, and Zn in soils with those

minerals in plants, and two herbivore species (hispid cotton rats and white-tailed deer). We

took a bottom-up approach and firstly studied the relationship between five-year regional cli-

mate and soil mineral content across sites. We then studied the relationship between five-year

regional climate and soil mineral content with plant mineral content during peak growing sea-

son across sites. We chose the same plant species across sites to demonstrate intra- as well as

interspecies differences in mineral content across sites. To capture variables that demonstrated

a relationship with the stored liver minerals of our two herbivore species, we included variables

that differed across sites (five-year regional climate, soil mineral content), population densities

(intraspecies competition through population density across sites) and individual variation

(sex and diet of individuals). We hypothesized that two herbivores (white-tailed deer and his-

pid cotton rats) with different life history strategies would differ in their relationships between

liver stores of Cu, Fe, and Zn and the attributes of site, population, and individual.

Materials and methods

Study sites

We studied 19 grassland sites across four ecoregions [25] in central Texas (Fig 1 and S1 Table):

the Edwards Plateau (n = 8), the Blackland Prairies (n = 4), the Post Oak Savannah (n = 6),

and the Gulf Prairies and Marshes (n = 1). The attributes of weather, soils, plant communities

and fauna are described extensively by Griffith et al. [26].

Study sites consisted of Texas Parks and Wildlife Department (TPWD) Wildlife Manage-

ment Areas (WMA), TPWD State Parks (SP), Texas Ecological Laboratory (TX Eco) private

properties, one private property (Texana Springs Ranch), the Rob and Bessie Welder Wildlife

Foundation, and the Texas A&M University (TAMU) AgriLife Research Station and Ranches

(S1 Table). We selected sites with no summer supplemental feeding (i.e., corn, protein pellets,

etc.) of white-tailed deer. We used weather records to track environmental conditions across

Fig 1. Locations of grassland study sites (n = 19) in relation to long-term environmental conditions in Texas.

Precipitation and temperature gradients are 30-year annual averages from 1981–2010 adapted from open access data

through PRISM Climate Group [27], across Texas. Ecoregion classification, latitude, and longitude for each site are

listed in S1 Table.

https://doi.org/10.1371/journal.pone.0248204.g001
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study sites and to characterize study sites in the year of collection, the prior 5 years and the

prior 30 years [27]. The season of plant growth was characterized by monthly precipitation

and maximum monthly temperature from May to September. Winter temperatures were

assessed by minimum monthly temperatures from October to February. Summer average

monthly precipitation and maximum temperature ranged from 38 to 143 mm and 27 to 36˚C,

respectively over a 30-year period (1981–2010) across sites [27] (Fig 1). During 2017, summer

and winter temperature and summer rainfall were similar to the 30-year average (S1 Table).

Soils, plants, & rats

Soils, grass species, woody browse species, and hispid cotton rats were sampled across 15 of

the 19 study sites (S2 Table). Soils and plants were collected during peak growing season

(May–June 2017) while rodents were trapped during late growing season (September–October

2017) due to low capture efficiencies across sites during May–June 2017. At each site, we

selected open grasslands to set three grids containing four, 200 m transects spaced 10 m apart.

Sherman live traps [large folding aluminum trap (7.62 x 8.89 x 22.86 cm), H. B. Sherman

Traps, Tallahassee, Florida, USA] were placed every 10 m along each transect. Traps were set

and baited with sunflower seeds at night, checked in the morning, and closed during the day

for a total of 252 traps/night [17]. Sampling was conducted for two consecutive nights at each

location for a total capture effort of 504 trap nights/site. Capture efficiency was calculated

using the Effective Trap-Night metric (ETN), similar to Rodriguez et al. [17] (S2 Table).

Rodent density was calculated by dividing the total number of hispid cotton rats caught by the

total area surveyed at each site (S2 Table). Traps were set at dusk and checked at daybreak to

prevent rodent mortality due to overheating. All animals were weighed [Spring Scale #40300

(100 ± 1 g or 300 ± 1 g), Pesola, Schindellegi, Switzerland], identified to species, sex, and age

class (i.e., adult or subadult). Non-target species were released after weighing and identifica-

tion. Hispid cotton rats (n = 73; n = 33 females and n = 40 males) were collected and eutha-

nized by inhalation overdose with chloroform in a sealed container [28]. We capped the

number of hispid cotton rats sampled at 10 of each sex at each site due to time constraints on

the number we could reasonably euthanize between trappings sessions. Carcasses were frozen

for storage and thawed to remove heart and liver samples. Animals were humanely handled in

accordance with the guidelines published by the American Society of Mammalogists [28] and

were approved by the Texas A&M AgriLife Research Agriculture Animal Care and Use Com-

mittee (Permit # 2016-018A) as well as TPWD Scientific Research Permit # SPR-0117-001.

Upon conclusion of this study, all specimens were deposited in the Biodiversity Research and

Teaching Collections at Texas A&M University [Texas Cooperative Wildlife Collection

(TCWC) # 66836–66908].

Soil samples were collected along each grid (n = 12), at the beginning (0 m), middle (100

m), and end (200 m) of each transect, for a total of 36 soil samples/site. We removed the duff

soil layer and collected 0.5 L of soil to a depth of 15 mm with a small hand trowel. We mea-

sured depth below duff layer to 15 mm with a ruler. Soil depth was selected for consistency

across sites to sample within the primarily humus, and mineral particle composed topsoil

where plant roots grow [24]. Soil samples were stored on ice in the field and frozen at -4˚C in

the lab for later processing.

Vegetation samples included grass and woody browse species that were: a) present across

our sampling locations and, b) representative of the ecological sites that contained our sam-

pling grids. We sampled aboveground mass of grasses and leaves of browse species. Three sam-

ples (one per each grid) of each of 11 grass species were collected as encountered within each

site. These included: bermuda grass (Cynodon dactylon), king ranch bluestem (Bothriochloa
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ischaemum var. songarica), little barley (Hordeum pusillum), little bluestem (Schizachyrium
scoparium), rescuegrass (Bromus catharticus), silver bluestem (Bothriochloa saccharoides),
texas wintergrass (Nassella leucotricha), and four wildrye species [Canada (Elymus canadensis),
southeastern (Elymus glabriflorus), squirreltail (Elymus elymoides), and Virginia (Elymus virgi-
nicus)]. Three samples (one per each grid) of each of nine browse species were collected as

encountered within each site, including ashe juniper (Juniperus ashei), honey mesquite (Proso-
pis glandulosa), eastern red cedar (Juniperus virginiana), and six oak species [blackjack (Quer-
cus marilandica), live (Quercus virginiana), plateau live (Quercus fusiformis), post (Quercus
stellata), vasey (Quercus vaseyana), and water (Quercus nigra)]. We attempted to collect

between 300–600 g of each sample of current year’s new growth of grasses and green leaves of

woody browse in plastic bags that were stored on ice in the field and then frozen in the lab at

-4˚C for future processing. Soil particles were removed by hand from roots of grass species to

prevent contamination with soil minerals.

White-tailed deer

Adult white-tailed deer (n = 305; n = 125 females and n = 180 males) were hunter-harvested

across 12 of the 19 sites during the 2015–2017 hunting seasons (October–February; S3 Table).

Liver and heart were collected within three hours post-mortem, placed on ice in the field, and

frozen in the lab at -4˚C for storage, in accordance with TPWD State Park Scientific Study Per-

mit # 2017-R3-12.

Distance sampling via spotlight surveys was conducted during late summer (July–

August) 2018. Surveys were completed the year after the majority of white-tailed deer sam-

ples were collected to obtain standardized estimations of densities across sites by methods

used for long-term monitoring of deer by TPWD [20]. Surveys were conducted to compare

deer densities across 12 sites including 10 sites where deer tissue was sampled. South Llano

River SP and TPWD Richland Creek WMA were not surveyed due to high public use during

summer months and inaccessibility, respectively. Surveys were completed after weaning

young and before the mating season to minimize sex differences in habitat utilization [29].

We surveyed three road transects (5900 m/transect) on each site during each night to com-

plete a total of nine surveys that included three repeats of each transect within each site over

the course of four weeks. Spotlight surveys began 30 minutes before sundown to capture

peak diel activity [30] and ended between 22:00 h and 04:00 h. Hand-held spotlights

[ShowMe Series 08 (100,000 candlepower), Able2 Products Co., Cassville, Missouri, USA]

were used by two observers from the cab of a truck to survey 180˚ on each side of the vehi-

cle, which was driven under 15 km/h. Binoculars [Prostaff 3s (10 x 42), Nikon, Melville,

New York, USA] were used to identify animals to sex and life stage (fawn or adult). We

recorded location of the vehicle (GPS model: Oregon 650t; Garmin, Olathe, Kansas, USA)

and the distance and bearing from the observer to the animal (laser rangefinder: RX-1200i

TBR, Leupold, Beaverton, Oregon, USA). Animal clusters were defined as groups that

moved as a unit in which the distance between animals was less than ~10 m [31]. We

recorded distance to the middle of the cluster and the number of animals within the cluster.

Perpendicular distances were calculated from the measured distance to animals and bear-

ings in the Universal Transverse Mercator (UTM) coordinate system. We used the R (ver-

sion 3.5.2) [32] statistical package DISTANCE (version 0.9.7) [33] for conventional

estimates of distance sampling. Detection functions were derived for each site with greater

than 35 animal observations (S3 Table). We pooled observations of five sites to derive detec-

tion functions [31] because those sites had few observations (n < 35).
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Lab analysis

We used a convection oven at 80˚C to dry soil samples over 48 hours. We randomly selected

three samples (one sample per grid) of dried soil from each site for mineral analysis. Minerals

were extracted by Mehlich III procedure with diethylenetriamine-pentaacetic acid (DTPA)

[34,35] to determine available concentrations of Cu, Fe, and Zn [36] by inductively coupled

plasma mass spectrometry at the Texas A&M Soil, Water, and Forage Testing laboratory in

College Station, TX 77845 USA. All plant samples were freeze-dried and homogenized through

a 1-mm screen in a centrifugal mill (Retsch ZM 200; Verder Scientific, Haan, Germany).

Ground samples were analyzed for ash content by muffle furnace at 500˚C for five hours [37].

Samples were weighed (0.25–0.30 g) and digested in 8 mL HNO3 with a microwave system

(MARS 6; One Touch Plant Method; CEM, Mathews, North Carolina, USA) at 200˚C for 10

min. Duplicate standards of apple leaves (SRM 1515; NIST: National Institute Standards and

Technology; US Department of Commerce, Gaithersburg, Maryland, USA) were included in

each set of 40 digestions along with two method blanks (no sample). Sample digests and blanks

were diluted with 60 mL of deionized water (-18 MO /cm; Thermo-Scientific Gen-CAD, Wal-

tham, Massachusetts, USA) to produce a 10% v/v HNO3 solution. Diluted sample digests were

analyzed for Cu, Fe, and Zn concentrations by atomic emission spectroscopy (MP-AES 4200;

Agilent Technologies, Tokyo, Japan) [38,39]. Calibration curves were prepared from single ele-

ment standards for atomic emission spectroscopy (1000 μg/mL; Specpure, Alfa Aesar, Ward

Hill, Massachusetts, USA).

Two selected grass species (little bluestem and silver bluestem) and two selected browse spe-

cies (eastern red cedar and honey mesquite) that occurred most commonly across sites were

sampled for stable isotope analysis (δ13C and δ15N) at the Stable Isotopes for Biosphere Science

(SIBS) Laboratory in College Station, TX 77843. Samples were weighed (1.075–2.025 mg) with

a microbalance into 4 x 6 mm tin capsules (Costech Analytical Technologies, Valencia, Califor-

nia, USA), and analyzed for δ13C: δ12C and δ15N: δ14N ratios using an elemental combustion

system (Costech Analytical Technologies, Valencia, California, USA) coupled to an isotope

ratio mass spectrometer in continuous flow (He) mode (Thermo Fisher Scientific, Delta V

advance, Waltham, Massachusetts, USA).

Liver and heart samples from hispid cotton rats were oven dried to constant mass at 80˚C

for 48 to 72 hours, depending on size. Tissues from white-tailed deer (liver and heart samples)

were lyophilized (FreeZone 18, Labconco Corporation, Kansas City, Missouri, USA) and

ground using a commercial kitchen chopper (Pro Prep Chopper-Grinder, Waring Commer-

cial, Stamford, Connecticut, USA).

Liver samples from hispid cotton rats and deer were digested by microwave in 8 mL nitric

acid (MARS 6; One Touch Animal Tissue Method; CEM, Mathews, North Carolina, USA) to

assay minerals by atomic emission spectroscopy against an internal standard of beef liver

(486 ± 74 mg/kg Cu, 165 ± 29 mg/kg Fe, and 93 ± 22 mg/kg Zn, dry weight). Hispid cotton rat

liver mineral deficiencies reported on a wet weight basis were converted from dry weight using

the total moisture content of liver tissue samples (75.3 ± 1.9%), which was similar to liver mois-

ture content in laboratory rats [40]. White-tailed deer liver deficiencies reported on a wet

weight basis were converted from dry weight using the calculated moisture content from the

lipid content of individual deer (69.9 ± 2.6%). Lipids were removed in petroleum ether (E-812,

Buchi, Flawil, Switzerland) prior to isotope analysis of heart muscle from white-tailed deer;

however, sample sizes of rodent hearts were not sufficient for lipid extraction (< 0.4 g). Heart

samples were reground in an oscillating mixer mill (Retsch GmbH, Haan, Germany) for analy-

sis at the SIBS Laboratory in College Station, TX 77843 USA. Samples were weighed (0.575–

0.625 mg) with a microbalance into 4 x 6 mm tin capsules (Costech Analytical Technologies,
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Valencia, California, USA), and analyzed for δ13C: δ12C and δ15N: δ14N ratios using an ele-

mental combustion system (Costech Analytical Technologies, Valencia, California, USA) cou-

pled to a stable isotope mass spectrometer in continuous flow (He) mode (Thermo Fisher

Scientific, Delta V advance, Waltham, Massachusetts, USA). Isotopic values of 13C and 15N for

plant and animal samples were expressed in standard delta notation (δ) in per mil units (‰).

We used atmospheric N and Vienna-Pee Dee Belemnite for calibration of 15N and 13C ratios

respectively. Quality assurance was performed using certificated standards, including USGS40

(δ15N SD = 0.06 ‰, δ13C SD = 0.07 ‰) and USGS41 (δ15N SD = 0.40 ‰, δ13C SD = 0.09 ‰).

Quality control was performed using in-house plant standards, including SIBS-pCo (δ15N

SD = 0.20 ‰, δ13C SD = 0.09 ‰) and SIBS-pEc (δ15N SD = 0.14 ‰, δ13C SD = 0.07 ‰).

Repeated measures of samples (n = 1 for plants, n = 3 for hispid cotton rats, n = 7 for white-

tailed deer) resulted in an overall sample precision of 0.17 ‰ for δ15N and 0.04 ‰ for δ13C.

Statistical analysis

We used linear mixed model regression to track trace minerals across trophic levels [41].

Observations beyond the 99th percentile were identified as outliers using the BACON algo-

rithm in Stata [42]. Observations that were identified as outliers were excluded from analysis

for only the variable under consideration and not for additional variables. Models for Cu, Fe,

and Zn in soil (Y) included summer precipitation (PREC), summer maximum temperature

(STEM), and winter minimum temperature (WTEM) as fixed effects: Y = PREC + STEM

+ PREC � STEM + WTEM. Models for minerals in grass and browse included the respective

soil concentrations (i.e., soil Cu, Fe, and Zn) (SOIL) and plant species (SPEC) and the same

environmental effects: Y = SOIL + SPEC + PREC + STEM + PREC � STEM + WTEM. Models

for Cu, Fe, and Zn in the liver of hispid cotton rats and white-tailed deer included the respec-

tive mineral concentrations in soil, the same environmental variables, with attributes of ani-

mals including sex (SEX) and density of the respective population (DENS), and the diet index

of the respective species (C13, N15): Y = SOIL + PREC + STEM + PREC � STEM + SEX

+ DENS + C13 + N15. The diet index was the isotope values of δ13C and δ15N in the heart,

which was standardized to the most common grass species across sites (i.e., silver bluestem) by

subtracting the grass values from the heart values. If silver bluestem was not found at a site, we

used the average isotope values for silver bluestem in that ecoregion. Models for δ13C and δ15N

values in grasses and browse included plant species and the same fixed effects of environment:

Y = SPEC + PREC + STEM + PREC � STEM + WTEM. Models for δ13C and δ15N values in

herbivores (i.e., heart tissues of hispid cotton rats and white-tailed deer) included the same ani-

mal attributes and fixed effects of environment: Y = GEND + DENS + PREC + STEM + PREC
� STEM + WTEM. We used backward elimination step-wise regression, starting with the full

model and progressively excluding interactions and fixed effects with beta coefficients that

were not significantly different from zero (P> 0.05). Margins (�X ± standard error) were calcu-

lated for the observed range of each fixed effect in the final model. Tests of ANOVA were used

to demonstrate significant differences in mineral levels across trophic groups. Post hoc mar-

gins were calculated using Bonferroni’s method to adjust for multiple comparisons across all

terms and additionally a pairwise comparison across groups.

Results

Study sites and animals

Little bluestem and silver bluestem were grass species common among sites (n = 10 sites and

n = 11 sites, respectively), and eastern red cedar and honey mesquite were woody browse
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species common among sites (n = 8 sites for both species). Hispid cotton rat densities ranged

from 0 to 2,028 animals/km2 while capture efficiencies varied from 0 to 16% (S2 Table).

White-tailed deer densities ranged from 0.5 to 27 animals/km2 (S3 Table).

Soil minerals

Mean concentrations of available Fe in soil (32.5 ± 31.7 mg/kg) were greater and absolutely

more variable than those of Cu (0.5 ± 0.3 mg/kg) and Zn (1.0 ± 1.1 mg/kg) across sites (S4

Table). Concentrations of available Cu and Zn in soil increased from 0.3 to 0.8 mg/kg and 0.1

to 2 mg/kg, respectively, with winter minimum temperature (3–11˚C) across sites, while con-

centrations of available Zn and Fe decreased from 2 mg/kg to zero availability (i.e., unavail-

able) and 69 mg/kg to zero availability, respectively with summer maximum temperature (31–

34˚C) across sites (S1 Fig). Additionally, Soil Cu concentrations decreased from 0.7 to 0.1 mg/

kg, while predicted soil Fe concentrations increased from 10 to 69 mg/kg with increasing sum-

mer precipitation across sites (S1 Fig).

Plant minerals

Concentrations of available Cu, Fe, and Zn in soils were not correlated with concentrations of

those minerals in grasses or browse (Tables 1 and 2). An increase in grass Zn concentration

from 24 to 34 mg/kg was associated with an increase in summer precipitation (72–125 mm),

whereas grass Cu and grass Fe concentrations did not show a relationship with long-term

weather trends across sites. Browse Cu demonstrated a relationship with interactions among

environmental conditions as follows: summer maximum temperature and precipitation had a

significant negative interaction with browse Cu. Predicted browse Cu was greater in sites with

warm, dry summers (14.3 mg/kg at 34˚C and 72 mm precipitation) than in sites with cool, dry

summers (0.67 mg/kg at 31˚C and 72 mm precipitation) and greater in sites with cool, wet

summers (20.9 mg/kg at 31˚C and 125 mm) than in sites with warm, wet summers (unavail-

able at 34˚C and 125 mm precipitation; Table 2). Conversely, an increase in summer precipita-

tion (72–125 mm) across sites was associated with an increase in browse Fe from 73 to 114

mg/kg. Warming winter temperatures (3–11˚C) across sites were associated with increased

concentrations of Cu (1–16 mg/kg) and Zn (17–34 mg/kg) in browse (Table 2). Mean concen-

trations of Fe in browse (88.5 ± 33.6 mg/kg) were lower and less variable than in grasses

(195.5 ± 177.5 mg/kg); however, mean concentrations of Cu in browse (6.0 ± 5.4 mg/kg) were

higher and more variable than in grasses (4.0 ± 1.7 mg/kg; Fig 2 and Table 3). Mean concentra-

tions of Zn did not differ between grasses (27.9 ± 11.9 mg/kg) and browse (23.9 ± 17.7 mg/kg;

Fig 2 and Table 3).

Animal minerals

Mean concentrations of Fe and Zn in liver were lower in deer (329.5 mg/kg Fe, 72.6 mg/kg

Zn) than in hispid cotton rats (620.4 mg/kg Fe, 83.3 mg/kg Zn), whereas mean concentrations

of Cu in liver were greater in deer (141.7 mg/kg) than in rodents (10.4 mg/kg; Table 3). Liver

Cu, Fe, and Zn were more variable among deer (SD = 147.3 mg/kg Cu, 150.6 mg/kg Fe, 30.6

mg/kg Zn) than among hispid cotton rats (SD = 3.9 mg/kg Cu, 147.5 mg/kg Fe, 14.9 mg/kg

Zn; Fig 2).

Liver mineral levels were below deficiency thresholds for 18% (n = 13 of 73 sampled) of his-

pid cotton rats and 30% (n = 93 of 305 sampled) of white-tailed deer. We defined a population

of rodents or deer at a site as limited if greater than 5% of the sampled population were below

mineral deficiency thresholds of the proxy species. Two out of eight sites had populations of

hispid cotton rats that were Cu limited and 11 out of 12 sites had populations of white-tailed
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deer that were Cu, Fe, or Zn limited. (S2 Fig). Additionally, the site with the highest rodent

population densities (i.e., TPWD Cooper WMA), had the largest number of hispid cotton rats

with Cu concentrations in the liver below the diagnostic mean of 5 mg/kg wet weight (n = 10

of 23 sampled; n = 6 females; n = 4 males) [43]. Hispid cotton rats were not apparently limited

by Fe or Zn for any of the locations because liver concentrations of all rodents sampled

exceeded the diagnostic mean of 30 mg/kg Fe and 25 mg/kg Zn wet weight in laboratory rats

[44,45]. However, concentrations of Fe and Zn may have been limiting for white-tailed deer

because 10% of deer (n = 30 of 305 sampled; n = 14 females; n = 16 males) were below normal

concentrations of 120 mg/kg wet weight Fe in wild mule deer and 11% (n = 35 of 305 sampled;

n = 3 females; n = 32 males) were below 28 mg/kg wet weight Zn in wild roe deer [9,46]. Addi-

tionally, nine of 12 sites had populations of deer deficient in liver Fe (range: 10% (n = 8 of 77

sampled)– 17% (n = 1 of 6 sampled)) and seven of 12 sites had populations of deer deficient in

liver Zn (range: 17% (n = 1 of 6 sampled)– 18% (n = 14 of 77 sampled)). Both male and female

white-tailed deer were also apparently limited by Cu; 11% (n = 35 of 305 sampled; n = 14

females; n = 21 males) of white-tailed deer had liver Cu concentrations below the normal

mean for red deer at 3.8 mg/kg wet weight, and three of 12 sites had populations of deer defi-

cient in liver Cu (range: 33% (n = 2 of 6 sampled)– 52% (n = 23 of 44 sampled) [47].

Soil mineral concentrations across sites were positively associated with rodent liver concentra-

tions of Cu and Zn and deer liver concentrations of Cu; however, soil concentrations of Fe across

sites were negatively associated with deer liver concentrations of Fe (Table 4). Environmental

conditions across sites were correlated with liver mineral concentrations of both hispid cotton

rats and white-tailed deer. Summer maximum temperature and precipitation had a significant

Table 1. Mixed model regression results for grass mineral concentrations (mg/kg dry mass) with standardized beta coefficients of fixed effects.

Dependent variable (Y)

Parameters and main effects Level Grass Cu Grass Fe Grass Zn

Observations 153 150 152

χ2 [df] 119.86 [10] 29.93 [10] 143.97 [11]

Intercept Bermuda grass 5.84 333.55 39.95

Species Canada wildrye -4.07� -102.97 -16.32�

King Ranch bluestem -1.56� -213.88� -13.09�

Little barley -1.94� -54.65 -7.84�

Little bluestem -1.14� -124.15� -21.97�

Rescuegrass -0.75 -204.43� -12.29�

Silver bluestem -1.64� -161.78� -9.45�

Southeastern wildrye -4.00� -23.17 -22.06�

Squirreltail wildrye -2.70� -219.91� -3.54

Texas wintergrass -3.11� -190.87� -22.05�

Virginia wildrye -3.15� -170.34� -11.10�

Soil mineral — — —

Summer precip. — — 2.48�

Summer max. temp. — — —

Summer precip. � Summer max. temp. — — —

Winter min. temp. — — —

Summer precip., summer precipitation; Summer max. temp., Summer maximum temperature; Summer precip.

� Summer max. temp, the interaction of summer precipitation with summer maximum temperature; Winter min. temp., winter minimum temperature.

Asterisks (�) indicate that the coefficient is significantly different from zero (P< 0.05).

Dashes (—) represent tested, non-significant effects that were subsequently removed from the model (P> 0.05).

https://doi.org/10.1371/journal.pone.0248204.t001
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positive interaction on rat liver Fe. The interaction demonstrated that predicted values of rodent

Fe were greatest in sites with cool, dry summers and in sites with warm, wet summers (Table 4).

Deer liver Cu and Zn also increased with summer precipitation, from 17.8 to 681.8 mg/kg and

64.3 to 110.3 mg/kg, respectively, and with summer maximum temperature, from below detec-

tion limits to 664.5 mg/kg and 47.6 to 85.8 mg/kg, respectively, across sites, with no interaction.

Precipitation additionally was associated with a decrease in deer liver Fe across sites. Winter

warming, from 3 to 11˚C, was negatively correlated with liver Fe concentrations in rodents, but

positively correlated with liver Fe concentrations in deer across sites (Table 4).

An increase in population density across sites from 0 to 2,028 rodents/km2 was negatively

associated with Cu (13 to 8 mg/kg), Fe (707 to 470 mg/kg), and Zn (91 to 77 mg/kg) in the

liver of hispid cotton rats (Table 4). Similarly, an increase in population density across sites

from 0.5 to 27 deer/km2 was negatively associated with predicted Fe in the liver of deer

(Table 4). However, population density was positively associated with Cu concentrations

(below detection limits to 273.0 mg/kg) in the liver of deer across sites (Table 4). Mineral stores

were associated with sex in both species: females had less Cu than males in hispid cotton rats

and in white-tailed deer, while females had more Zn than males in deer (Table 4). Finally, diet

(i.e., δ13C and δ15N) did not have a significant relationship with rodent liver mineral concen-

trations, but deer liver Cu did demonstrate a relationship and decreased from 185.1 to 9.4 mg/

kg with increasing δ13C values across sites.

Plant isotopes

Grass δ13C values (-13.1 ± 0.5 ‰) were higher and less variable than browse δ13C values

(-27.4 ± 1.0 ‰); however, grass and browse did not significantly differ in values of δ15N across

Table 2. Mixed model regression results for browse mineral concentrations (mg/kg dry mass) with standardized beta coefficients of fixed effects.

Dependent variable (Y)

Parameters and main effects Level Browse Cu Browse Fe Browse Zn

Observations 64 64 64

χ2 [df] 92.11 [12] 32.64 [9] 268.38 [9]

Intercept Ashe juniper 3.81 127.08 17.58

Species Blackjack oak 0.29 -79.37� 1.70

Eastern red cedar -2.41 -38.17� -9.31�

Honey mesquite 6.83� -44.88� 26.16�

Live oak 1.09 -76.53� -6.88

Plateau live oak 5.14� -50.56� -3.25

Post oak 0.60 -61.31� -3.00

Vasey oak 5.52 -45.95 -3.18

Water oak 0.20 -9.76 17.43�

Soil mineral — — —

Summer precip. 0.09 10.24� —

Summer max. temp. 0.04 — —

Summer precip. � Summer max. temp. -1.55� — —

Winter min. temp. 3.43� — 3.85�

Summer precip., summer precipitation; Summer max. temp., Summer maximum temperature; Summer precip.

� Summer max. temp, the interaction of summer precipitation with summer maximum temperature; Winter min. temp., winter minimum temperature.

Asterisks (�) indicate that the coefficient is significantly different from zero (P< 0.05).

Dashes (—) represent tested, non-significant effects that were subsequently removed from the model (P> 0.05).

https://doi.org/10.1371/journal.pone.0248204.t002
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Fig 2. Dry-weight concentrations of trace minerals across trophic levels. Box-plot of copper (Cu), iron (Fe), and

zinc (Zn) concentrations for soils, grasses, woody browse, hispid cotton rat livers (HCR; Sigmodon hispidus), and

white-tailed deer livers (WTD;Odocoileus virginianus) across Texas grasslands (S4 Table).

https://doi.org/10.1371/journal.pone.0248204.g002
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sites (Fig 3 and S5 Table). Summer precipitation and temperature were positively correlated

with δ13C values in browse, and δ15N values in both grasses and browse. The interaction demon-

strated that predicted values of δ13C in browse and δ15N values in both grasses and browse were

greater in sites with cool, dry summers (-25.9 ‰, 3.4 ‰, and 6.4 ‰, respectively, at 31˚C and 72

mm precipitation) than in sites with warm, dry summers (-29.6 ‰, -6.7 ‰, -5.5 ‰ at 34˚C and

72 mm precipitation) and greater in sites with warm, wet summers (-23.1 ‰, 5.9 ‰, and 3.6 ‰,

Table 3. ANOVA results for trace mineral concentrations (mg/kg dry mass) of copper (Cu), iron (Fe), and zinc

(Zn) with corresponding regression coefficients (β) across trophic groups.

Mineral Trophic group β P 95% CI

Cu Soil 0.5 0.98 [- 31.3, 32.3]

Grass 3.5 0.19 [- 32.6, 39.6]

Browse 5.5 0.79 [- 35.9, 46.9]

HCR 9.9 0.63 [- 30.5, 50.3]

WTD 145.4 0.00 [111.4, 179.3]

Fe Soil 32.5 0.45 [- 50.9, 115.9]

Grass 188.6 0.00 [93.7, 283.5]

Browse 56.0 0.31 [- 52.9, 164.9]

HCR 587.9 0.00 [481.9, 694.0]

WTD 389.4 0.00 [300.2, 478.6]

Zn Soil 1.4 0.70 [- 5.8, 8.6]

Grass 27.9 0.00 [19.7, 36.1]

Browse 22.5 0.00 [13.0, 31.9]

HCR 81.9 0.00 [72.7, 91.1]

WTD 71.2 0.00 [63.4, 78.9]

Hispid Cotton Rats (HCR); White-tailed Deer (WTD).

https://doi.org/10.1371/journal.pone.0248204.t003

Table 4. Mixed model regression results for hispid cotton rat (Sigmodon hispidus) and white-tailed deer (Odocoileus virginianus) liver mineral concentrations (mg/

kg dry mass) with standardized beta coefficients of fixed effects.

Dependent variable (Y)

Parameters and main effects Level Rat Cu Rat Fe Rat Zn Deer Cu Deer Fe Deer Zn

Observations 73 73 73 218 244 304

χ2 [df] 53.83 [3] 15.42 [5] 13.82 [2] 32.66 [6] 69.60 [4] 81.96 [3]

Intercept Female 8.56 521.96 81.86 272.70 509.41 85.70

Sex Male 2.27� — — 35.57� — -13.08�

Density (#/km2) -1.87� -85.95� -4.83� 87.84� -351.23� —

Soil mineral 1.15� — 4.08� 57.35� -224.39� —

Summer precip. — 191.24� — 163.90� -219.15� 11.36�

Summer max. temp. — -190.94� — 133.71� — 8.18�

Summer precip. � Summer max. temp. — 339.91� — — — —

Winter min. temp. — -110.10� — — 499.12� —

Adjusted δ15N — — — —

Adjusted δ13C — -40.19� — —

Summer precip., summer precipitation; Summer max. temp., Summer maximum temperature; Summer precip.

� Summer max. temp, the interaction of summer precipitation with summer maximum temperature; Winter min. temp., winter minimum temperature.

Asterisks (�) indicate that the coefficient is significantly different from zero (P< 0.05).

Dashes (—) represent tested, non-significant effects that were subsequently removed from the model (P> 0.05).

https://doi.org/10.1371/journal.pone.0248204.t004
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respectively, at 34˚C and 125 mm) than in sites with cool, wet summers (-32.2 ‰, -5.8 ‰, and

-5.9 ‰ at 31˚C and 125 mm precipitation). Increasing winter temperatures across sites (3 to

11˚C) were also associated with a decrease in browse δ13C values from -26.5 to -29.3 ‰.

Animal isotopes

Colder winter temperatures across sites were associated with a decrease in δ13C values in deer

heart muscle from -20.8 to -26.9 ‰, but an increase in deer δ15N values from 6.5 to 8.4 ‰ and

rodent δ15N values from 3.4 to 6.8 ‰ (Table 5). Summer conditions across sites affected hispid

cotton rat heart δ15N as well, with a negative interaction between summer temperature and

precipitation, with predicted values of δ15N being more enriched in sites with warm, dry sum-

mers (28.5 ‰ at 34˚C and 72 mm precipitation) than in sites with cool, dry summers (-5.7 ‰

at 31˚C and 72 mm precipitation) and more enriched in sites with cool, wet summers (11.2 ‰

at 31˚C and 125 mm) than in sites with warm, wet summers (-18.5 ‰ at 34˚C and 125 mm

precipitation (Table 5). Summer precipitation and hotter summer temperatures across sites

Fig 3. Stable isotope values of grasses, browse, hispid cotton rats, and white-tailed deer. Values for δ15N and δ13C in two species of grass [i.e., little bluestem

(Schizachyrium scoparium; n = 23) & silver bluestem (Bothriochloa saccharoides; n = 23) (S5 Table)], two species of woody browse [i.e., eastern red cedar

(Juniperus virginiana; n = 18) & honey mesquite (Prosopis glandulosa; n = 20) (S5 Table)], and two herbivores [i.e., hispid cotton rats (HCR; Sigmodon hispidus;
n = 73) (S5 Table) and white-tailed deer (WTD;Odocoileus virginianus; n = 283) (S5 Table)] across grasslands in Texas (S1 Table). Symbols are average values

with standard deviation bars.

https://doi.org/10.1371/journal.pone.0248204.g003
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also demonstrated a relationship with rodent δ13C values, with an increase from -26.6 to -19.6

‰ with increasing precipitation and an increase from -27.0 to -22.1 ‰ with increasing sum-

mer temperatures, but with no interaction. Summer temperatures were additionally associated

with an increase in white-tailed deer δ15N values from 6.1 to 7.4 ‰ across sites, while precipi-

tation was associated with a decrease in deer δ15N from 7.5 to 4.4 ‰ but with no effect on deer

δ13C values (Table 5). However, increases in deer density across sites (0.5 to 27 deer/km2) were

associated with an increase in deer δ13C values from -25.9 to -18.4 ‰ (Fig 4 and Table 5). Sim-

ilarly, an increase in hispid cotton rat density across sites (0 to 2,028 rodents/km2) was associ-

ated with an increase in rat heart δ15N values from 4.0 to 5.5 ‰ (Table 5). Finally, sex in hispid

cotton rats was not correlated with δ13C or δ15N values; however, male white-tailed deer were

more enriched in both δ13C and δ15N than female deer (Fig 4 and Table 5).

Discussion

We hypothesized that rodents and deer would differ in their relationships between trace min-

eral stores in their livers and environmental, individual, and population traits that varied

across the landscape ultimately because animal responses are driven by life-history traits, such

as reproduction, foraging strategies, and lifespan. We demonstrated that Cu, Fe, and Zn

exhibit differences in their relationships with these variables across trophic levels for hispid

cotton rats and white-tailed deer with a strong relationship with population density. We found

that population density was positively correlated with stores of Cu in white-tailed deer across

sites. Additionally, population density was negatively correlated with stores of Cu, Fe, and Zn

in hispid cotton rats and Fe in white-tailed deer across sites. Local population density may

therefore influence the vulnerability of individuals to deficiencies of Cu, Fe, and Zn and

increase their risk of impaired immunity or reproduction. However, our suggestion requires

confirmation from studies that monitor hepatic mineral stores and functional indices (e.g.,

immune function, fertility, pathologies) of white-tailed deer and hispid cotton rats through

cycles of density within populations over multiple years. Unfortunately, long term studies of

trace minerals are mostly associated with anomalies of Selenium or Fluoride that can be evalu-

ated in collections of bones and hair [7,9,48,49]. Long term programs that collect liver and

Table 5. Mixed model regression results for hispid cotton rat (Sigmodon hispidus) and white-tailed deer (Odocoileus virginianus) heart stable isotope values of 13C:
12C (δ13C) and 15N: 14N (δ15N) ratios, with standardized beta coefficients of fixed effects.

Dependent variable (Y)

Parameters and main effects Level Rat δ13C Rat δ15N Deer δ13C Deer δ15N

Observations 73 73 247 283

χ2 [df] 31.78 [2] 20.03 [5] 527.00 [3] 35.25 [4]

Intercept Female -24.19 5.87 -23.33 6.34

Sex Male — — 1.21� 0.75�

Density (#/km2) — 0.56� 1.94� —

Summer precip. 1.72� -2.79� — -0.67�

Summer max. temp. 1.05� 2.16� — 0.27�

Summer precip. � Summer max. temp. — -2.21� — —

Winter min. temp. — 0.79� -1.39� -0.43�

Summer precip., summer precipitation; Summer max. temp., Summer maximum temperature; Summer precip.

� Summer max. temp, the interaction of summer precipitation with summer maximum temperature; Winter min. temp., winter minimum temperature.

Asterisks (�) indicate that the coefficient is significantly different from zero (P< 0.05).

Dashes (—) represent tested, non-significant effects that were subsequently removed from the model (P> 0.05).

https://doi.org/10.1371/journal.pone.0248204.t005
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kidney from wildlife are rare, but those that monitor toxic minerals and pollutants for human

or wildlife health could provide evidence of temporal and spatial patterns of trace mineral defi-

ciency in relation to population density [50].

There are minimal data on trace mineral requirements for hispid cotton rats and white-

tailed deer for tissue concentrations as indicators of trace mineral deficiencies. Most studies

focus on daily forage concentrations and intake for nutrient requirements [51–54]; however,

laboratory rats (Sprague-Dawley Rats, Rattus norvegicus) and other wild deer species including

roe deer (Capreolus capreolus), red deer (Cervus elaphus), and mule deer (Odocoileus hemio-
nus) may be used as the best available proxies for assessing liver mineral stores of hispid cotton

rats and white-tailed deer, respectively [51,52].

Liver mineral deficiencies were observed in both rodents and deer. Cu was below deficiency

levels for both hispid cotton rats and white-tailed deer, but hispid cotton rats showed no fur-

ther deficiencies for Fe or Zn. Limitations of Fe and Zn are less common in deer and small

domestic ruminants; however, we did observe apparent limitations for Fe and Zn in deer when

compared with other wild deer species. These comparisons would be more valid within species

instead of across, however, with limited mineral studies on our select species, proxy species are

our best option for comparison.

Fig 4. Deer density relationship with deer diet. Relationship between density of deer (#/km2; Odocoileus virginianus) and δ13C values of heart tissue (± 95%

CI) across 11 grassland sites in Texas (S1 Table). Symbols are values for males (solid) and females (hollow) at each site predicted by mixed model regression.

https://doi.org/10.1371/journal.pone.0248204.g004
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Additionally, we demonstrated that Cu, Fe, and Zn at each trophic level differed in their

relationships with the select variables that varied across the landscape. Although mineral avail-

ability in soils can indicate productivity for agricultural production of corn, alfalfa, and wheat,

those mineral levels may not indicate productivity of wild plants and animals across landscapes

[55,56]. However, available concentrations of Cu and Zn in soil were positively associated with

liver stores of hispid cotton rats (Table 4). Small, herbivorous, income breeders such as hispid

cotton rats may better indicate trophic transfers of minerals than large herbivores such as

white-tailed deer, because populations of hispid cotton rats turn over rapidly [57]. High repro-

ductive rates and short lives suggest a greater reliance on direct allocation of dietary nutrients

to reproduction than in larger, long-lived species such as white-tailed deer. This r-selection

strategy may also be the reason why we did not observe differences between sexes of hispid cot-

ton rats in liver mineral concentrations or in diet selection, when compared to a k-selected

species, such as white-tailed deer. However, females of both rodents and deer did demonstrate

higher liver Cu concentrations, when compared to males. Sex differences in Cu concentrations

in other small mammals (i.e., gerbils and LaFerla mice) and in other body tissues (i.e., serum,

plasma, and brain) have been demonstrated, and align with our results, that females generally

have higher concentrations than males [58,59]. However, differences in liver Cu between male

and female deer are not always evident [60], which may be the outcome of differences in the

annual reproductive cycle that peaks with breeding in autumn for males and in late pregnancy

and early lactation during spring for females [61]. Hispid cotton rats also use smaller areas

than white-tailed deer; that is, they better indicate local changes in soils and plants [62–64].

Furthermore, high fecundity in small home ranges intensifies density dependent effects such

as competition for food [65]. Trace nutrient supplies may therefore exacerbate population

cycles of hispid cotton rats especially where soil mineral availabilities are low.

White-tailed deer use larger foraging areas than hispid cotton rats and expand or shift their

foraging areas when food is limited [66–68]. Deer therefore incorporate availability of nutri-

ents over a longer time period and a larger area than hispid cotton rats. Furthermore, storage

of minerals in the liver attenuates the signals from lower trophic levels over a broad temporal

and spatial scale. Consequently, variations in Cu, Fe, and Zn concentrations among deer were

much greater than those among hispid cotton rats (Fig 2). Sex differences in foraging were also

evident in white-tailed deer, but not in rodents. Male deer reduce foraging time during short

breeding windows [69], which can alter diet and movement [70–72]. Heart tissues of male

white-tailed deer had greater values of δ13C and δ15N than those of females collected at the

same locations (Fig 4 and Table 5). The isotopic difference between males and females proba-

bly reflects greater temporal variation in diet of males than females.

Population density was also correlated with nutrient supplies of white-tailed deer. As den-

sity increased across sites, deer shifted toward a diet more enriched in δ13C and with greater

variation in δ13C (Fig 4). Grasses and other species that utilize the C4 or CAM photosynthetic

pathway, contain more enriched values of δ13C in plant tissue. Conversely, C3 plants, includ-

ing woody trees and many shrub species, contain plant tissue with depleted values of δ13C

[73]. It is likely that deer included grasses in their diet as preferred browse and forbs became

less available with increasing population density across sites [11]. Increasing densities have

been associated with a greater proportion of grasses in the diets of white-tailed deer in the

Southern Plains ecoregion of Texas [74], but also with a greater portion of grasses as well as

browse in the Gulf Prairies and Marshes ecoregion of Texas [75]. Greater population densities

were associated with declines in liver Fe of deer but an increase in liver Cu concentration

(Table 4). Grasses were higher in Fe and lower in Cu than browse; that is, a shift to grasses

would increase supplies of Fe and decrease supplies of Cu, a pattern opposite to those observed

in the liver. Storage may be induced by declining supplies of a limiting nutrient; liver Cu stores
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were inadequate for deer in some sites and thus greater storage may have been induced as low

dietary supplies decreased further with increasing density. Conversely, Fe availabilities were

high across sites and declines in liver Fe stores may simply reflect a decline in intake as density

increased across sites.

Longer-lived species, such as white-tailed deer and woody browse, have the ability to incor-

porate effects of weather over several years, whereas shorter-lived species, such as hispid cotton

rats and grasses are more subject to short-term weather events within a season or year.

Weather trends largely did not demonstrate relationships with grass concentrations of trace

minerals; however, all three browse minerals demonstrated relationships with weather, most

likely due to deeper and more extensive root systems than many grass species, allowing growth

and incorporation of nutrients over several seasons to many years [76,77]. Grass and browse

concentrations of trace minerals were not significantly affected by soil concentrations at the

site scale, indicating an active uptake of trace minerals by most plants [78]. Our sampling strat-

egy was too coarse to examine mineral uptake of plants at the individual and species level in

relation to soil type. Although grass and browse mineral concentrations were driven by spe-

cies, taxa within the same Family varied widely in mineral content, which infers strong effects

of life history and growing conditions on mineral storage. Juknevičius and Sabienė [79] had

similar results for agricultural plants, indicating that mineral content varied with plant species

and Family. Oster et al. [10] demonstrated that even the same species of plant contained differ-

ent concentrations of minerals over the course of the growing season, depending on location.

This demonstrates the complexity of trophic transfer of nutrients beginning at the soil-plant

interface within the rhizosphere, which is further complicated by differences among species

and the functional responses of the animal to plant growth.

Soils and plant communities vary drastically across grasslands in Texas, providing a diver-

sity of forage across ecoregions for herbivores [25]. Wildlife species that inhabit multiple ecor-

egions (i.e., hispid cotton rats and white-tailed deer) are subject to differences in available

nutrients in the soils and plants as well as overall forage selection across space. Liver mineral

concentrations in both hispid cotton rats and white-tailed deer followed the main food source

of each species: grasses for rodents and browse for deer (Fig 2). With increases in population

density of animals, there is likely to be competition for forage, as well as other effects, such as

increased competition for mate selection, especially in areas with limited resources [80,81]. If

wild herbivores are unable to obtain the required nutrients from the landscape needed for

basic life-history traits, it is likely that animals will be more vulnerable to external stressors,

such as infection and disease [52].

Understanding the population dynamics and disease prevalence of hispid cotton rats and

white-tailed deer, along with trace nutrient limitations of the populations, are important for

wildlife, domestic animals, and humans. White-tailed deer serve as hosts of several diseases

(e.g., Epizootic Hemorrhagic Disease, Texas Cattle Fever) that also affect domestic animals

[82–84] while hispid cotton rats are known to be hosts for several zoonotic diseases, including

Chagas Disease and Hantavirus [85,86] that affect human populations. Trace nutrients may

provide the link between density dependence, population cycles, and disease prevalence in

wildlife, with implications for livestock and human health, especially across grasslands where a

large proportion of the human population, domestic livestock, and wildlife coexist.

We have demonstrated the importance of trace minerals on density dependence in little

and large herbivore populations, which are ultimately driven by landscape processes, including

soils, plants, and weather. Regional variation in trace mineral supplies in soils and plants may

therefore intensify the decline in a population and slow its recovery by limiting reproduction

and growth [87,88]. Trophic models that focus on energy (C) and protein (N) as drivers down-

play the importance of macro and microminerals within ecological systems [89]. As landscapes
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change due to human development, climate change, and woody encroachment, we have few

ways to proactively monitor how wildlife populations may be affected. Trace nutrient assess-

ments may be a valuable addition to routine censuses because liver stores of Cu, Fe, and Zn

may signal changes in population phases of rodents and vulnerability to disease within popula-

tions of white-tailed deer.
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