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Background: Lymph node metastasis (LNM) is difficult to precisely predict before

surgery in patients with early-T-stage non-small cell lung cancer (NSCLC). This study

aimed to develop machine learning (ML)-based predictive models for LNM.

Methods: Clinical characteristics and imaging features were retrospectively collected

from 1,102 NSCLC ≤ 2 cm patients. A total of 23 variables were included to develop

predictive models for LNM by multiple ML algorithms. The models were evaluated by the

receiver operating characteristic (ROC) curve for predictive performance and decision

curve analysis (DCA) for clinical values. A feature selection approach was used to identify

optimal predictive factors.

Results: The areas under the ROC curve (AUCs) of the 8 models ranged from 0.784

to 0.899. Some ML-based models performed better than models using conventional

statistical methods in both ROC curves and decision curves. The random forest classifier

(RFC) model with 9 variables introduced was identified as the best predictive model.

The feature selection indicated the top five predictors were tumor size, imaging density,

carcinoembryonic antigen (CEA), maximal standardized uptake value (SUVmax), and age.

Conclusions: By incorporating clinical characteristics and radiographical features, it

is feasible to develop ML-based models for the preoperative prediction of LNM in

early-T-stage NSCLC, and the RFC model performed best.

Keywords: non-small cell lung cancer, machine learning, lymph node metastasis, predictive model, cross-

validation

INTRODUCTION

Lung cancer remains the leading cause of global cancer death (1). Early-T-stage non-small
cell lung cancer (NSCLC) has been detected more frequently following the rapid development
and employment of radiographical technology (2). An accurate nodal stage is critical for
treatment decision-making (3). Currently, there are several evaluation methods, such as
computed tomography (CT), positron emission tomography/CT (PET/CT), mediastinoscopy
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and endobronchial ultrasound transbronchial needle aspiration
(EBUS-TBNA), that can be used to classify the nodal stage before
operation. However, performing mediastinoscopy or EBUS-
TBNA is not cost-effective for patients with early-stage NSCLC.
Furthermore, although CT and PET/CT have been widely used
for the preoperative evaluation of lung cancer, the incidence of
occult lymph node metastasis (LNM) in early-T-stage NSCLC
remains high and cannot be ignored (4, 5). Therefore, new
reliable methods for the preoperative prediction of LNM are
highly required.

Machine learning (ML) is an emerging computer-based
method that has been widely used for data analysis in medicine
during the past decade (6, 7). It learns from data and finds the
dataset pattern to identify the outcome (7, 8). Supervised ML is
a process in which the model is trained with fully labeled and
classified data. Compared with conventional statistical methods
such as logistic regression (LR), which relies on predetermined
models, ML can deeply detect the interactions among variations
and iteratively learn from data to update algorithms (9).

A number of predictive models have been made based on
ML algorithms. Several studies have reported effective ML-based
models for the prediction of LNM in other carcinomas, such
as breast cancer (10, 11). It was reported that radiomics could
be used to predict LNM by analyzing radiological images in
NSCLC (12). However, few reports have incorporated clinical
characteristics and radiographical features as in our study. This
study aimed to develop and validate effective ML-based models
for the prediction of LNM in patients with early-T-stage NSCLC.

MATERIALS AND METHODS

Study Population
Between January 2013 and June 2019, 1,102 patients who
underwent surgical resection for NSCLC at Peking Union
Medical College Hospital were included in this study. The
inclusion criteria were as follows: (1) single NSCLC lesion; (2)
tumor maximum diameter ≤ 2 cm on CT; and (3) receiving
lung resection with systematic lymph node dissection. The
exclusion criteria were as follows: (1) small cell lung cancer
(SCLC); (2) multiple lung cancer; (3) receiving radiotherapy
or chemotherapy before surgery; (4) distant metastasis; and (5)
incomplete clinical records. The pathological classification of
carcinomas was based on the 2015 World Health Organization
(WHO) classification (13). The clinical and pathological staging
was performed according to the 8th edition of the TNM staging
system (14). This study was approved by the Ethics Committee
of Peking Union Medical College Hospital. All patients signed
informed consent before operation.

Clinical Characteristics and
Radiographical Features
A total of 23 variables were analyzed in this study. The
patients’ clinical characteristics included age, sex, smoking status
and serum tumor biomarkers. All preoperative serum tumor
biomarkers were measured within 3 months before surgery,
including carbohydrate antigen 24-2 (CA242), squamous cell
carcinoma antigen (SCCAg), carcinoembryonic antigen (CEA),

carbohydrate antigen 19-9 (CA199), carbohydrate antigen 12-
5 (CA125), carbohydrate antigen 72-4 (CA724), carbohydrate
antigen 15-3 (CA153), neuron-specific enolase (NSE), tissue
polypeptide-specific antigen (TPS), cytokeratin 19-fragments
(Cyfra211) and pro-gastrin-releasing peptide (proGRP). CT
features were reviewed by one radiologist and two thoracic
surgeons independently, including tumor location side, tumor
maximum size, spiculation, vessel convergence, lobulation,
pleural indentation, calcification, and imaging density. If
disagreement occurred, the final result was reached by consensus.
Based on imaging density on CT, the cancer lesions were divided
into pure ground-glass opacity (pGGO), mixed GGO (mGGO)
and solid nodules. The mGGO was further divided into two
groups according to different percentages of solid components,
whose cut-off value was 50% (the ratio between the maximal
diameter of the solid component at the mediastinal window
and the maximal tumor diameter at the lung window). In
addition, the maximal standardized uptake value (SUVmax) on
PET/CT was also included. However, PET scan was not routinely
performed in early-T-stage NSCLC. All patients underwent CT
or PET scan within 60 days at our hospital before the operation.

Construction of ML-Based Models
All patients were randomly divided into training and testing
groups at a ratio of 8:2, keeping the distribution of node-
positive and node-negative data in both groups consistent.
To construct more reliable ML-based predictive models, all
continuous variables were preprocessed by z-score normalization
except for multinomial naïve Bayes (MNB) in which min-max
normalization is preferred (15). Some continuous variables with
missing data (Table S1), such as SUVmax and tumor biomarkers,
were imputed by median value (16, 17).

Eight algorithms were applied to predict LNM, including
adaptive boosting (AdaBoost), artificial neural network (ANN),
decision tree (DT), gradient boosting decision tree (GBDT),
logistic regression (LR), MNB, random forest classifier (RFC),
and extreme gradient boosting (XGBoost) (18–23). Among
all 8 algorithms, LR and MNB are considered conventional
methods, and the others are representative supervised ML-based
algorithms. Only DT, LR, and MNB were interpretable, in which
users were able to recognize function between variable and
predictive outcome.

The prediction ability of the 8 models was first evaluated
by the receiver operating characteristic (ROC) curve, which is
a conventional diagnostic test method that only pays attention
to the sensitivity and specificity but ignores the clinical utility
of predictive information. Decision curve analysis (DCA) was
performed to calculate the clinical values of these models, which
is a novel method to assess the information value between
diagnostic models by considering the possible range of a patient’s
risk and benefit preferences without actually measuring these
preferences for one particular patient (24).

Validation Strategy and Feature Selection
Overfitting is a common problem in ML, especially with
high dimensions (number of variables). To minimize the
negative influence of overfitting, some strategies, such as the
preselection of variables and cross-validation, were feasible (25,
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TABLE 1 | Univariate analysis of patients’ clinical characteristics and image

features.

Total Lymph node status P-value

pN+ pN0

All patients 1102 116 (10.5) 986 (89.3)

Age, years 58 [51–65] 59 [53–66] 58 [50–64] 0.382

Sex

Male 403 (36.6) 52 (44.8) 351 (35.6) 0.051

Female 699 (63.4) 64 (55.2) 635 (64.4)

Smoking status

Yes 218 (19.8) 32 (27.6) 186 (18.9) 0.026

No 884 (80.2) 84 (72.4) 800 (81.1)

Tumor side

Left 461 (41.8) 49 (42.2) 412 (41.8) 0.925

Right 641 (58.2) 67 (57.8) 574 (58.2)

Tumor size, cm 1.3 [1.0–1.7] 1.7 [1.5–2.0] 1.2 [1.0–1.6] <0.001

Imaging density

pGGO 431 (39.1) 0 (0.0) 431 (43.7) <0.001

mGGO (solid <

50%)

330 (30.0) 51 (44.0) 279 (28.3)

mGGO (solid ≥

50%)

146 (13.2) 27 (23.3) 119 (12.1)

Solid nodule 195 (17.7) 38 (32.7) 157 (15.9)

Spiculation

Yes 587 (53.3) 70 (60.3) 517 (52.4) 0.106

No 515 (46.7) 46 (39.7) 469 (47.6)

Vessel convergence

Yes 234 (21.2) 17 (14.7) 217 (22.0) 0.067

No 868 (78.8) 99 (85.3) 769 (78.0)

Lobulation

Yes 403 (36.6) 52 (44.8) 351 (35.6) 0.071

No 699 (63.5) 64 (55.2) 635 (64.4)

Pleural indentation

Yes 294 (26.7) 43 (37.1) 251 (25.5) 0.007

No 808 (73.3) 73 (62.9) 735 (74.5)

Calcification

Yes 21 (1.9) 4 (3.4) 17 (1.8) 0.414

No 1081 (98.1) 112 (96.6) 969 (98.2)

Tumor SUVmax 1.3 [0.7–2.9] 5.9 [3.2–8.7] 1.2 [0.7–2.3] <0.001

CA242 6.4 [3.4–12.7] 7.5 [4.5–16.5] 6.1 [3.3–12.5] 0.131

SCCAg 0.8 [0.6–1.0] 0.8 [0.6–1.0] 0.8 [0.6–1.0] 0.473

CEA 1.89 [1.20–2.83] 3.63 [2.08–6.69] 1.79 [1.15–2.60] <0.001

CA199 10 [6.8–16.9] 12.1 [7.4–22.0] 9.9 [6.7–16.8] 0.072

CA125 10.7 [8.0–15.0] 13.3 [9.0–30.1] 10.5 [7.9–14.1] 0.001

CA724 1.9 [1.2–4.3] 2.5 [1.4–5.6] 1.9 [1.2–4.2] 0.128

CA153 9.6 [7.3–13.1] 10.6 [8.0–14.4] 9.5 [7.2–12.9] 0.030

NSE 13.6 [11.6–15.6] 13.5 [11.8–15.8] 13.6 [11.5–15.6] 0.577

TPS 46.68

[29.41–83.10]

54.22

[28.77–110.40]

46.68

[29.30–79.80]

0.492

Cyfra211 1.92 [1.42–2.68] 2.01 [1.63–2.97] 1.90 [1.40–2.62] 0.013

ProGRP 32.1 [26.0–40.5] 33.6 [26.5–45.4] 32.1 [26.0–40.1] 0.115

pGGO, pure ground glass opacity; mGGO,mixed ground glass opacity; Solid< 50%/Solid

> 50%: the ratio between the maximal diameter of the solid component at the mediastinal

window and the maximal tumor diameter at the lung window < 50%/ > 50% in

mGGO; SUVmax , maximal standardized uptake value; CA242, carbohydrate antigen 24-

2; SCCAg, squamous cell carcinoma antigen; CEA, carcinoembryonic antigen; CA199,

carbohydrate antigen 19-9; CA125, carbohydrate antigen 12-5; CA724, carbohydrate

antigen 72-4; CA153, carbohydrate antigen 15-3; NSE, neuron-specific enolase; TPS,

tissue polypeptide-specific antigen; Cyfra211, cytokeratin 19-fragments; proGRP, pro-

gastrin-releasing peptide.

26). Therefore, 5-fold cross-validation and feature selection were
performed in this study. The 5-fold cross-validation randomly
split the dataset into 5 subsets. For each repeated time, four
subsets were used as the training group and the remaining subset
was used as the testing data. This procedure was repeated 5
times, and each subset should be used exactly once as the testing
group. To rank and select meaningful variables, a classifier-
specific evaluator was used, returning a ranked list of variables for
each algorithm. The ranks of each variable in different algorithms
were compared, and the variables with high ranks were identified.

Statistical Analysis
Univariate analysis was performed using IBM SPSS 25.0 (SPSS
Inc; Chicago, IL, USA). Quantitative data were first tested for
normality by the Shapiro-Wilk test. Normal data are expressed
as the mean ± standard deviation (SD), while non-normal
data are expressed as the median with interquartile range
(IQR). Student’s t-test was used to compare normal quantitative
parameters, while the Mann-Whitney U test was used to
compare non-normal quantitative parameters. For categorical
data, Pearson’s chi square test or Fisher’s exact test was applied.
Python programming language (version 3.7, Python Software
Foundation) was used for the construction of ML models and
DCA. Student’s t-test was also used for the comparison of
different ML models (AUCs). A P-value < 0.05 was considered
statistically significant.

RESULTS

Patient Characteristics
All 1,102 patients’ clinical characteristics and radiographical
features are listed in Table 1. Univariate analysis was performed
for data without a median value imputed. LNM occurred in
10.5% (116/1102) of patients with NSCLC ≤ 2 cm. In total,
699 (63.4%) patients were female, and LNM occurred more
frequently in smokers (P = 0.026). The maximum tumor size on
CT in patients with positive nodes was significantly larger than
that in patients with negative nodes (P< 0.001). All patients had a

maximal diameter no smaller than 4mm. Tumor imaging density
(P < 0.001) and pleural indentation (P = 0.006) also presented

significant differences between node-positive and node-negative

patients. None of the patients with positive nodes in this study
had a pGGO cancer nodule. Moreover, patients with LNM were
significantly different from those without LNM in 4 serum tumor
biomarkers: CEA (P < 0.001), CA125 (P = 0.001), CA153 (P =

0.030), and Cyfra211 (P = 0.013).

Predictive Performance and Clinical Utility
of ML-Based Models
A total of 23 preoperative variables were used to develop

predictive models for LNM based on 8 algorithms. The predictive
performance of all models is shown in Figure 1 and Table 2. The

best performance was observed in the GBDT model (AUC =

0.899, SD = 0.048), which performed similarly to RFC (AUC =

0.890, SD = 0.045, P = 0.773), XGBoost (AUC = 0.883, SD =

0.047, P = 0.627), AdaBoost (AUC = 0.873, SD = 0.048, P =

0.432), and ANN (AUC = 0.868, SD = 0.049, P =0.341). All
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FIGURE 1 | Receiver operating characteristic (ROC) curve for 8 models.

AdaBoost, adaptive boosting; ANN, artificial neural network; DT, decision tree;

GBDT, gradient boosting decision tree; LR, logistic regression; MNB,

multinomial naïve Bayes; RFC, random forest classifier; XGBoost, extreme

gradient boosting.

ML-based models except DT (AUC = 0.802, SD = 0.057) were
better than the two conventional methods, LR (AUC= 0.867, SD
= 0.049, P = 0.338) and MNB (AUC = 0.784, SD = 0.058, P =

0.002). Moreover, all models performed significantly better than
using only tumor size (AUC = 0.753, SD = 0.023, P < 0.001; the
cut-off value was 1.5 cm), SUVmax (AUC = 0.734, SD = 0.024, P
< 0.001; the cut-off value was 2.8) or CEA (AUC = 0.720, SD =

0.026, p < 0.001; the cut-off value was 2.98 ng/ml).
Furthermore, the decision curve showed the clinical values

of these models (Figure 2). The net benefits of 8 models at
each threshold probability are shown in Table S2. Most of
these models presented better net benefits than two control
models that were represented by positive and negative line,
respectively. The negative line represents the net benefit is
zero when none of patients receive lobectomy with systematic
lymph node dissection (SND), assuming that all patients have
no positive nodes. On the contrary, the positive line represents
the net benefits at the time when all patients have positive nodes
and receive lobectomy with SND. Four models (RFC, XGBoost,
GBDT, and LR) performed significantly better than the others
at most of threshold points. At the range of 0.2–0.5, the LR
model was less beneficial than RFC, XGBoost and GBDT onmost
occasions. The RFC model with 9 variables introduced, which
achieved a very high AUC (0.890) and had the highest net benefits
almost across the entire range of threshold probabilities, was
regarded as the best predictive model in this study, although its
AUC value was slightly lower than that of GBDT (P = 0.773).

Variable Importance
By feature selection, the 23 variables for each algorithm were
ranked by their predictive importance (Table S3). The top 10

TABLE 2 | Predictive performance (AUC) of 8 models and using several variables

alone.

Model AUC No. of optimal

dimensions

Mean SD 95% CI

AdaBoost 0.873 0.048 0.779–0.968 7

ANN 0.868 0.049 0.772–0.964 7

DT 0.802 0.057 0.691–0.913 2

GBDT 0.899 0.044 0.813–0.985 11

LR 0.867 0.049 0.771–0.963 13

MNB 0.784 0.058 0.670–0.898 11

RFC 0.890 0.045 0.801–0.979 13

XGBoost 0.883 0.047 0.792–0.975 7

Tumor size 0.753 0.023 0.707–0.798 1

SUVmax 0.734 0.024 0.688–0.780 1

CEA 0.720 0.026 0.669–0.770 1

AUC, area under the receiver operating characteristic curve; AdaBoost, adaptive

boosting; ANN, artificial neural network; DT, decision tree; GBDT, gradient boosting

decision tree; LR, logistic regression; MNB, multinomial naïve Bayes; RFC, random forest

classifier; XGBoost, extreme gradient boosting; SUVmax , maximal standardized uptake

value; CEA, carcinoembryonic antigen; CA125, carbohydrate antigen 12-5; Cyfra211,

cytokeratin 19-fragments; CA153, carbohydrate antigen 15-3.

FIGURE 2 | Decision curve for 8 models. AdaBoost, adaptive boosting; ANN,

artificial neural network; DT, decision tree; GBDT, gradient boosting decision

tree; LR, logistic regression; MNB, multinomial naïve Bayes; RFC, random

forest classifier; XGBoost, extreme gradient boosting.

variables are shown in Figure 3. The five top-ranked predictors
were tumor size, imaging density, CEA, SUVmax, and age. The
relationship between the AUCs of models and the number of
variables were evaluated in Figure 4. The AUCs of most models
reached a plateau when 7 variables were introduced, while
those of ANN, DT, and MNB started to drop down when they
reached the highest points. The AUCs of RFC for each number
of variables are shown in Figure 5. Its AUC value reached a
plateau when 9 variables were introduced and reached the highest
value when 13 variables were introduced, but it did not increase
significantly with the change from 9 variables (AUC = 0.886) to
13 variables (AUC = 0.890) introduced. Considering the clinical
utility, the 9 top-ranked variables were identified to construct the
optimal predictive model, which included tumor size, SUVmax,
imaging density, vessel convergence sign, CEA, CA125, sex, age,
and spiculation sign.
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FIGURE 3 | Ranks of the top 10 variables for the prediction of lymph node

metastasis. Variables were ranked using a classifier-specific evaluator based

on machine learning algorithms. Each variable was ordered according to their

mean ranks. The lower rank represents more contributions to the prediction of

lymph node metastasis. For example, SUVmax was ranked 2nd, 3rd, 3rd, and

5th in RFC, GBDT, LR, and XGB, respectively. TS, tumor size; ID, imaging

density; CEA, carcinoembryonic antigen; SUVmax, maximal standardized

uptake value; VCS, vessel convergence sign on CT; CA125, carbohydrate

antigen 12-5; Cyfra211, cytokeratin 19-fragments; proGRP,

pro-gastrin-releasing peptide.

FIGURE 4 | Predictive performance (AUCs) of 8 models as number of

variables increases. AdaBoost, adaptive boosting; ANN, artificial neural

network; DT, decision tree; GBDT, gradient boosting decision tree; LR, logistic

regression; MNB, multinomial naïve Bayes; RFC, random forest classifier;

XGBoost, extreme gradient boosting.

DISCUSSION

Lobectomy with systematic lymph node dissection remains the
standard treatment for patients with early-T-stage NSCLC
(≤ 2 cm) (27). However, sublobar resection, including
segmentectomy and wedge resection, has been proposed to
achieve more precise intervention with the advancement of
imaging techniques in recent years. In addition, the reasonable
extent of lymph node dissection remains controversial. An exact
nodal status is critical for treatment selection and prognosis.

In this study, using ML algorithms, we developed 8 models
to predict LNM in 1,102 patients with NSCLC ≤ 2 cm,
incorporating their clinical characteristics and radiographical
features. ROC analysis and DCA were used to evaluate the

FIGURE 5 | Predictive performance (AUCs) of the random forest classifier

(RFC) model at each number of variables.

predictive performance and clinical values of the models,
respectively. Most of 8 models maintained high AUCs and All
ML-based models (with AUCs ranging from 0.868 to 0.899)
except DT performed better than two models using conventional
statistical methods (LR and MNB) in the prediction of LNM
(Figure 1 and Table 2).

DCA has been used for many medical studies and has shown
great clinical utility (28, 29). In the decision curve, most of these
models performed better than positive line and negative line,
indicating that the overall net benefit of giving lobectomy with
SND to patients identified by the models to have high risk of
LNMwas higher than that of giving the same surgical procedures
to all patients or no patient. Four models (RFC, XGBoost, GBDT,
and LR) performed better than the others at most of threshold
points (Figure 2). Thus, these four potential models were used
to identify variable importance by feature selection (Figure 3).
The other four models, AdaBoost, MNB, DT, and ANN, had
lower net benefits in the decision curve (Figure 2), although
they possessed high AUCs in the ROC curve. This indicated
that models with high predictive accuracy might not be clinically
practical and require further evaluation by other methods, such
as DCA.

Using conventional univariate analysis, previous studies
reported the risk factors associated with LNM in NSCLC
≤ 2 cm, including tumor size, serum CEA and imaging
density (30, 31). In addition, SUVmax was also thought to
be a risk factor in patients with cT1 NSCLC (32). Thus,
the AUCs when using tumor size (AUC = 0.753), SUVmax

(AUC = 0.734), or CEA (AUC = 0.720) alone were also
calculated, which were significantly lower than those of ML-
based models (Table 2). Thus, previous studies might not
provide precise predictive information for LNM. Reliable
predictive models for LNM in patients with NSCLC are
needed. To our knowledge, our study was the first to provide
potential models for the prediction of LNM in patients
with NSCLC by incorporating clinical characteristics and
radiographical features.
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Although most of the ML-based models in our study cannot
demonstrate the connection between the predictive variables and
the outcomes, the contribution of each variable to the models
could be inferred by feature selection. Tumor size, imaging
density, serum CEA, SUVmax, and age were indicated to be
the most contributive risk factors of LNM (Figure 3), which
was similar to the results of univariate analysis (Table 1). Since
none of the patients with pGGO NSCLC had positive nodes
in our and previous studies (30, 31), it could be inferred that
pGGO might be predictive of node-negative status in early-T-
stage NSCLC. It was also reported that a higher serum CEA
level was significantly associated with a higher incidence of LNM
(31, 33). Although only 611 patients’ SUVmax values (pN+: n
= 62, pN0: n = 549; p > 0.05) were available because some
patients did not undergo PET scans, SUVmax was ranked at 4
among the four potential models (Figure 3) and was ranked at
2 in the RFC model (Figure 4). Meanwhile, a high AUC (0.734)
for SUVmax was also obtained. Above all, SUVmax might be one
of the most important predictive factors, which was consistent
with previous studies (32, 34). Surprisingly, age showed no
significance in univariate analysis (p = 0.382) but was ranked at
the top 5 (Figure 3). This might be attributed to the surprising
superiority of ML-based models in data mining, which could
find more relations between the variables and the outcomes than
conventional methods.

According to the ROC curve (Figure 1) and decision curve
(Figure 2), the RFC model with 9 variables introduced (AUC =

0.890) was identified as the optimal model. By considering the
clinical utility, an application based on the RFC algorithm with
9 variables (AUC = 0.886) should be developed in the future.
These 9 variables were tumor size, SUVmax, imaging density,
vessel convergence sign, CEA, CA125, sex, age, and spiculation
sign. Thus, clinicians from other hospitals could benefit from
our study.

In addition to the clinical values, there were several
methodological indications in our study. First, although there
were several studies of machine learning involving NSCLC,
few of them have reported predictive models for LNM using
ML algorithms by incorporating clinical characteristics and
radiographical features. Most of them performed image analysis
by radiographical data (12) or histological slides (35). This is the
first study to predict LNM in NSCLC ≤ 2 cm, indicating the
feasibility and potential of ML algorithms applied in NSCLC.
More predictive models of NSCLC may be developed using ML
algorithms to solve clinical problems in the future. Second, based
on ROC analysis and DCA, multiple supervised ML algorithms
performed better than conventional methods. Thus, the ML
algorithms would play an important role in the analysis of large
medical datasets. Third, in addition to the ROC curve, a decision
curve was used to evaluate the clinical utility of these models.
Some models performed worse in the decision curve, although
they had very high AUCs. This provides a method to further
evaluate the clinical values of ML-based models.

There were also some limitations in our study. First,
there were some patients who received sublobar resection
(wedge resection or segmentectomy), and thus, the

incidence of LNM in this population might have been
underestimated. Second, missing data were inevitable.
This is because not all patients with early-T-stage NSCLC
receive PET scans or tumor biomarker tests. Except for
SUVmax and serum biomarkers, the clinical records of other
variables were complete. The median value was imputed to
solve this problem (16, 17). Third, this is a retrospective
study that could not completely avoid data selection and
measurement biases. More prospective studies or multicenter
studies may be needed to develop predictive models in
the future.

CONCLUSIONS

ML-based models are effective in the prediction of LNM in
NSCLC ≤ 2 cm by incorporating clinical and radiographical
characteristics. Based on ROC analysis and DCA, some
ML-based models performed better than models using
conventional methods, and the RFC model performed best.
The feature selection approach identified that tumor size,
imaging density, CEA, SUVmax, and age were the most
important predictive risk factors for LNM.
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