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Abstract With an increasingly ageing global population, more people are presenting with 
concerns about their cognitive function, but not all have an underlying neurodegenerative diagnosis. 
Subjective cognitive impairment (SCI) is a common condition describing self-reported deficits in 
cognition without objective evidence of cognitive impairment. Many individuals with SCI suffer from 
depression and anxiety, which have been hypothesised to account for their cognitive complaints. 
Despite this association between SCI and affective features, the cognitive and brain mechanisms 
underlying SCI are poorly understood. Here, we show that people with SCI are hyperreactive to 
uncertainty and that this might be a key mechanism accounting for their affective burden. Twenty-
seven individuals with SCI performed an information sampling task, where they could actively 
gather information prior to decisions. Across different conditions, SCI participants sampled faster 
and obtained more information than matched controls to resolve uncertainty. Remarkably, despite 
their ‘urgent’ sampling behaviour, SCI participants were able to maintain their efficiency. Hyperre-
activity to uncertainty indexed by this sampling behaviour correlated with the severity of affective 
burden including depression and anxiety. Analysis of MRI resting functional connectivity revealed 
that SCI participants had stronger insular-hippocampal connectivity compared to controls, which 
also correlated with faster sampling. These results suggest that altered uncertainty processing is a 
key mechanism underlying the psycho-cognitive manifestations in SCI and implicate a specific brain 
network target for future treatment.

Editor's evaluation
This study tests the hypothesis that subjective cognitive impairment (SCI) is linked to hyperreac-
tivity to uncertainty. Using an information-gathering task, the authors demonstrate that individuals 
with SCI sample faster and more than controls under uncertainty. The reported findings provide 
important new clues about the psychological and neural manifestations of SCI.

Introduction
With an ageing population, an increasing number of people are seeking medical advice for concerns 
about cognitive decline (Deary et al., 2009; Harada et al., 2013). While in some individuals these 
complaints might be related to a progressive pathological process such as Alzheimer’s disease (AD), 
they can also be expressed by people without an underlying neurodegenerative disorder (McWhirter 
et al., 2020). When objective clinical evidence of significant cognitive impairment is not evident along-
side self-reported cognitive complaints, individuals are categorised as having subjective cognitive 
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impairment/decline (SCI/D) (Jessen et al., 2014; Jessen et al., 2020; Reid and Maclullich, 2006). 
Although most follow a relatively benign course, a small proportion develops objective cognitive 
impairment and subsequently progress to dementia (Arvanitakis et al., 2018; Kryscio et al., 2014; 
Mendonça et al., 2016). Nevertheless, it remains unclear what drives subjective cognitive complaints 
in those people who do not have evidence of underlying neurodegeneration. Understanding the 
mechanisms of cognitive, behavioural, and psychiatric manifestations in SCI is thus crucial to improve 
clinical outcomes and enhance understanding of presentation of people who present with cognitive 
concerns.

A wealth of evidence suggests a particularly high prevalence of a range of mental health prob-
lems associated with SCI, in particular affective disorders such as anxiety and depression (Hill et al., 
2016; Hohman et al., 2011; Pavisic et al., 2021; Reid and Maclullich, 2006). Similarly, people who 
primarily suffer from these psychiatric disorders often report sub-optimal cognitive performance, 
further emphasising the intertwined relationship between affective burden and subjective cognitive 
experience (Millan et al., 2012). Moreover, treating anxiety and depression may improve subjective 
cognitive complaints in individuals with SCI (Allott et al., 2020). Despite the association between SCI 
and affective burden being increasingly recognised, little is understood about the underlying cogni-
tive mechanisms and brain networks involved.

A rich body of theoretical and empirical work suggests that affective dysregulation might be related 
to uncertainty processing and related behaviours (Bishop and Gagne, 2018; Carleton, 2016; Grupe 
and Nitschke, 2013; Gu et al., 2020). People who express higher levels of anxiety and depression 
often report higher levels of intolerance to uncertainty (Boelen et al., 2016; Boswell et al., 2013; 
Carleton et al., 2012; McEvoy and Mahoney, 2011; Saulnier et al., 2019). Mechanistically, intoler-
ance to uncertainty might be reflected in several cognitive and behavioural processes underpinning 
goal-directed behaviour when people decide and act under uncertainty (Grupe and Nitschke, 2013). 
For example, when someone is crossing the road, they make their decision based on how confident 
they are that the environment is safe (i.e. they have an assessment of how uncertain the environment is 
for their intended action) (Bach and Dolan, 2012; Gottlieb and Oudeyer, 2018). If uncertainty is high, 
agents often try to reduce it by gathering information to inform their decision (e.g. checking passing 
cars and traffic lights and looking for a safer place to cross). People who are more sensitive to uncer-
tainty might have an exaggerated estimation of uncertainty or preparedness when required to face it, 
eventually affecting their decisions and outcomes (Grupe and Nitschke, 2013). Similarly, uncertainty 
sensitivity might affect self evaluation of cognitive abilities (e.g. having lower confidence in recollec-
tion) amplifying memory complaints and subsequent emotional reaction (Fitzgerald et  al., 2017; 
Nelson, 1990). Such a framework, which involves estimation, valuation, preparation, and learning 
under uncertainty allows a detailed investigation of the psychopathology of affective dysfunction 
(Gottlieb and Oudeyer, 2018; Grupe and Nitschke, 2013; Sharot and Sunstein, 2020).

Investigation of the dynamics of how people decide and act under uncertainty might hold an 
important key to understanding the relationship between SCI and affective dysfunction. This might be 
challenging to achieve using classical behavioural paradigms, for example beads task or variants of it 
(Phillips et al., 1966). These paradigms often involve randomly drawing samples from a distribution 
to make inferences about the distribution (e.g, deciding the predominant colour of beads in a jar). 
However, when people gather information to reduce uncertainty, they dynamically assess their envi-
ronment and update their expectations in order to decide whether a new piece of evidence is needed 
and whether they can tolerate its cost (Juni et al., 2016; Petitet et al., 2021). Although the economic 
aspect of this behaviour has been extensively examined in previous studies (Clark et al., 2006; Jones 
et al., 2019; Juni et al., 2016), investigation into how information is gathered is limited. Capturing 
behavioural markers that might not be directly apparent using such tasks (e.g. sampling speed and 
efficiency) might provide important insights into underpinning mechanisms of affective disorders. This 
distinction has been formalised as ‘active’ information gathering, characterised by situations in which 
participants have agency over not only how much information they gather but also how information 
is collected in face of uncertainty (e.g. what resources to consult and when) (Gottlieb and Oudeyer, 
2018; Petitet et al., 2021).

In this study, we adopted this approach using a recently developed behavioural paradigm to inves-
tigate how people with SCI decide and act (gather information) under uncertainty (Petitet et  al., 
2021). A crucial question of this study was whether uncertainty processing is associated with affective 
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burden. Further, to investigate the underlying brain structures and networks that might be implicated 
in the process, brain resting functional neuroimaging (rfMRI) data were also collected. In an active 
form of the task, participants collected informative clues, which came at a known cost, to reduce their 
uncertainty before committing to decisions. Crucially, they were allowed to freely gather information 
whenever and in whichever way they wanted. In a passive form of the task, this agency over uncer-
tainty was removed. Participants were allowed only to accept or reject offers that had fixed levels 
of uncertainty weighed against potential reward. Decisions were made based on whether tolerating 
uncertainty was worth the reward on offer. This enabled us to calculate how people weigh uncertainty 
against reward in a passive environment where agency over uncertainty is absent. Before decisions, 
participants also reported their subjective uncertainty, enabling us to measure the accuracy of uncer-
tainty estimation that might influence both active and passive behaviour.

The results from the behavioural tasks showed that individuals with SCI gather significantly more 
information than healthy matched controls before they commit to final decisions. They did this regard-
less of the cost of information and at a faster rate than controls. Despite this faster sampling, SCI 
participants impressively were capable of maintaining their sampling efficiency (i.e. gathering samples 
that were as informative as controls). This meant that they exceeded the speed-efficiency trade-off 
that characterises sampling behaviour of healthy controls. Crucially, in individuals with SCI, sampling 
speed and over-sampling (indices of heightened reactivity to uncertainty) were associated with affec-
tive burden (derived from self-report measures of anxiety and depression).

By contrast, when they had no agency over the reward and uncertainty on offer (passive choice 
task), SCI participants had intact metacognitive assessment and valuation of uncertainty. This suggests 
that controllability when dealing with uncertainty might be a crucial aspect in affective dysfunction, 
as differences between SCI participants and controls were apparent only when they had agency over 
uncertainty (i.e. during the active information gathering phase preceding decisions).

Functional neuroimaging analysis investigating whole-brain resting connectivity between regions 
of interest across all known brain networks revealed that individuals with SCI, in comparison to healthy 
controls, had increased insular hippocampal connectivity. Further, the strength of this connectivity in 
SCI correlated with reactivity to uncertainty indexed by sampling speed.

Taken together, the results indicate that hyperreactivity to uncertainty might be a key mechanism 
in SCI, and link this process to the insular cortex and hippocampus.

Results
Experimental design
Participants performed a recently developed behavioural task (Petitet et  al., 2021) designed to 
investigate active information gathering and decision making under uncertainty (Figure 1). In this 
paradigm, participants were asked to maximise their reward by trying to localise a hidden purple 
circle of a fixed size as precisely as possible. They could reduce uncertainty about the location of 
the hidden circle by touching the screen at different locations to obtain informative clues: if a purple 
dot appeared where they touched, this meant that the location was situated inside the hidden circle, 
otherwise, the dots were coloured white. Obtaining these clues came at a cost (‍ηs‍) that participants 
had to pay from an initial credit reserve (R0) they started each trial with. Participants could sample the 
search field freely without constraints to the location or the speed at which they touch the screen. 
At the end of each trial, participants were required to move a blue disc to where they thought the 
hidden circle was located. A feedback was given after this, indicating credits participants won (or lost) 
based on how precise their localisation was and the credits they lost to obtain information (i.e. partic-
ipants had to make a trade-off between obtaining more information and the cost of this information). 
There were two levels of sampling cost (low and high) and two levels of initial credit reserve (low and 
high). Uncertainty in the task was quantified as expected error (‍EE‍) which is the average error that an 
optimal agent is expected to obtain when placing the blue disc at the best possible location. For more 
details see Materials and methods.

Demographics
All participants (healthy controls and individuals with SCI) had ACE-III cognitive scores within normal 
performance limits (>87/100) (Bruno and Schurmann Vignaga, 2019; Elamin et al., 2016; Hsieh et al., 
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2013). There was no significant difference between SCI participants and controls in cognitive scores 
(Controls: ‍µ = 97.89‍, ‍SD = 1.80‍; SCI: ‍µ = 95.41‍, ‍SD = 4.21‍; ‍z = 1.91‍, ‍p = 0.06‍). Consistent with previous 
reports (Hill et al., 2016; Hohman et al., 2011; Pavisic et al., 2021; Reid and Maclullich, 2006), SCI 
participants in the study were significantly more depressed and anxious than healthy controls (Depres-
sion: ‍z = 4.41‍, ‍p < 0.001‍, Anxiety: ‍z = 3.08‍, ‍p < 0.01‍; Table  1 and Figure 5a.). Since depression and 
anxiety correlated positively with each other in both groups (Spearman’s ‍R2 = 0.19‍, ‍p = 0.02‍, SCI Spear-
man’s ‍R2 = 0.47‍, ‍p < 0.001‍, Figure 5b.), a principal component analysis (PCA) was performed to extract 
a dimension that accounts for the maximum shared variance between the two measures. This dimension 
could be regarded as a measure of affective burden in participants and accounted for 84% of the vari-
ance shared between depression and anxiety. Higher scores of affective burden indicate more severe 
depression and anxiety. There was no significant correlation between cognitive scores and this affective 
dimension (‍p = 0.07 & p = 0.49‍, for controls and SCI respectively, controlling for age and gender).

9595

87 87

87 87

+75 credits

Active Sampling (18 sec)

Circle Placement (6 sec)

Outcome (1 sec)

e

Placement error

Error cost

# samples

Sampling
cost

Initial reward

Score = R0 - s.ηs - e.ηe

87 87

Hidden circlePlacement disk

Figure 1. Task paradigm – Active information sampling. Participants were required to find the location of a hidden purple circle as precisely as 
possible. Clues about the location of the hidden circles could be obtained by touching the screen at different locations. This yielded dots that were 
coloured either purple or white depending on whether they were situated inside or outside the hidden circle: purple dots were inside and white dots 
were outside. Two circles of the same size as the hidden circle were always on display on either side of the screen to limit memory requirements of 
the task. Inside these two circles, an initial credit reserve (R0) was displayed. There were two levels of R0: low = 95 credits and high = 130 credits. At the 
beginning of each trial, a purple dot was always shown to limit initial random sampling. Participants then had 18 s on each trial, during which they could 
sample without restrictions to speed, location or number of samples. Each time they touched the screen to add a dot, the number of credits available 
decreased depending on the cost of sampling (‍ηs‍) on that trial. There were two levels of ‍ηs‍: low = –1 credit/sample and high = –5 credits/sample. Once 
the 18 s had passed, a blue disc of the same size as the hidden circle appeared at the centre of the search field. Participants were then required to drag 
this disc on top of where they thought the hidden circle was located. Following this, the score they obtained on that trial was calculated and presented 
as feedback at the end of the trial.
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Extensive sampling in SCI
As prescribed by rational behaviour, participants in both groups (SCI and healthy controls) adjusted the 
extent of their search (‍s‍) to the sampling cost (‍ηs‍), acquiring fewer samples when this cost increased 
(Effect of ‍ηs‍ on ‍s‍, Figure 2a., Supplementary file 1). While there was no significant main effect of 
initial credit (R0), its interaction with sampling cost was significant (‍β = 0.02‍, ‍95%CI = (−0.04,−0.004)‍, 
‍t3232 = 2.41‍, ‍p = 0.016‍, Supplementary file 1), which means that the aversive effect of sampling cost 
on the number of samples obtained was blunted when participants started their search with a larger 
credit reserve (Figure 2a.).

The influence of these economic features (‍ηs‍ and R0) on the number of samples acquired was 
not significantly different between SCI participants and controls (‍SCI × ηs : p = 0.13; SCI × R0 = 0.27‍). 
Nevertheless, overall, individuals with SCI sampled significantly more than controls (Main effect of 
SCI on ‍s‍:‍β = +0.19‍, ‍95%CI = (0.058, 0.32)‍, ‍t3232 = 2.81‍, ‍p < 0.01‍, Figure  2a., Supplementary file 1). 
Gathering more samples led SCI participants to finish their active search at lower levels of uncertainty 
(‍EE‍) than controls on average (Main effect of SCI on the EE reached at the end of the sampling phase: 

‍β = 0.26‍, ‍95%CI = (−0.453,−0.06)‍, ‍t3232 = 2.66‍, ‍p < 0.01‍, Supplementary file 1), which translated into 
smaller localisation errors (Main effect of SCI on localisation error: ‍β = −0.18‍, ‍95%CI = (−0.35,−0.004)‍, 
‍t3232 = −2.01‍, ‍p = 0.045‍).

Next, we asked whether SCI participants’ more extended information gathering led to better 
performance. To answer this question, we calculated, on each trial, the optimal number of samples, 
‍s⋆‍, that maximises the expected value of the trial (‍EV ‍). Both acquiring extra samples beyond this 
point (i.e. over-sampling) and not sampling enough to reach it (i.e. under-sampling) result in a smaller 
expected value (Figure 2—figure supplement 2). Thus, this analysis provided some insight into the 
usefulness of the extensive sampling behaviour SCI participants exhibited compared to controls.

Both healthy controls and individuals with SCI over-sampled relative to the optimal stopping point 
when the sampling cost was high (‍p < 0.001‍ for both groups, see Supplementary file 3 for statistical 
details). Consistent with above, over-sampling in these conditions was significantly more pronounced 
in SCI participants compared to controls (Group difference in ‍(s − s⋆)‍ at high ‍ηs‍; Low R0: ‍t(52) = 2.066‍, 

‍p = 0.04‍, High R0: ‍t(52) = 3.32‍, ‍p < 0.01‍). Thus, SCI participants’ tendency to gather more information 
than controls in these conditions led them to acquire samples with a price outweighing their instru-
mental benefit.

By contrast, when the sampling cost was low, controls under-sampled relative to the optimal solu-
tion (‍p < 0.001‍ for the two conditions with low ‍ηs‍, see Supplementary file 3). Thus, because they 
acquired more samples in these conditions too, SCI participants better approached optimal sampling 
behaviour (Group difference in ‍(s − s⋆)‍ at low ‍ηs‍; Low R0: ‍t(52) = 3.29‍, ‍p < 0.01‍, High R0: ‍t(52) = 3.7‍, 

‍p < 0.001‍; Figure 2c.).
To summarise, individuals with SCI sampled more than controls across all experimental conditions, 

regardless of economic constraints. This was sub-optimal when sampling was expensive (i.e. they 
overpaid for information) but led to more optimal behaviour when sampling was cheap.

Table 1. Demographics.

N (M/F)

Controls SCI

p-value*27 (13/14) 27 (13/14)

Mean SD Mean SD

Age 62.04 6.28 59.81 7.70 0.34

ACE-III 97.89 1.80 95.41 4.21 0.06

BDI-II 4.59 4.36 15.44 11.24 <0.001

HADS Dep. 1.48 1.81 5.26 4.61 <0.001

HADS Anx. 4.30 3.16 7.04 3.32 <0.01

ACE-III: Addenbrooke’s Cognitive Examination. BDI-II: Beck Depression Inventory. HADS: Hospital Anxiety 
Depression Scale.
* Student-test or Wilcoxon rank-sum test for parametric and non-parametric data, respectively.

https://doi.org/10.7554/eLife.75834
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Intact passive decision making in individuals with SCI
A passive version of the paradigm was used to investigate what drove SCI participants’ extensive 
sampling behaviour. More specifically, we tested two hypotheses. First, SCI individuals might have 
inflated subjective estimates of uncertainty. If this were the case, they might need to reduce uncer-
tainty to a greater extent in order to reach comparable subjective uncertainty levels. Second, SCI 
participants might have intact estimation of uncertainty but nonetheless assign greater weight to 
it when balancing it against reward. To test these hypotheses, SCI participants and healthy controls 
performed a modified version of the paradigm in which they were required to first, report their 
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Figure 2. Extensive sampling in SCI. (a) Across different conditions, individuals with SCI sampled more than 
healthy controls. (b) Consequently, SCI participants reached final uncertainty levels (EE) lower than controls prior 
to committing to decisions. (c) Healthy controls and individuals with SCI over-sampled when sampling cost was 
high. Over-sampling was more significant in SCI than healthy controls. When sampling cost was low, healthy 
controls under-sampled while SCI participants were optimal. The panel on the bottom right depicts the changes 
in expected value (‍EV ‍) as a function of the number of samples deviating from optimal. The optimal number of 
samples is when ‍EV ‍ is maximum. Error bars show ± SEM. See Supplementary file 1, Supplementary file 2 and 
Supplementary file 3 for full statistical details.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Expected error as a function of sampling.

Figure supplement 2. Optimal sampling.
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estimations of experimentally defined levels of uncertainty and second, to accept/reject offers based 
on whether reward on offer is worth the risk imposed by uncertainty (Figure 3a.).

Generalised mixed effects model was used to investigate the differences in subjective uncertainty 
between SCI participants and controls. This showed no significant difference in this measure between 
the two groups (Interaction Group × EE:‍β = +0.001‍, ‍95%CI = (−0.12, 0.11)‍, ‍t5396 = −0.03‍, ‍p = 0.98‍, 
Figure 3b., Supplementary file 4), suggesting that the tendency to sample more in the active exper-
iment was unlikely caused by biased subjective estimates of uncertainty (i.e. there is no difference 
in the perceived informational utility of the samples). Similarly, there was no significant difference 
between the two groups in offer acceptance or in the effects of uncertainty and reward on offer 
acceptance (Main effect of SCI on offer acceptance: ‍β = +0.029‍, ‍95%CI = (−0.75, 0.80)‍, ‍t5392 = +0.07‍, 

‍p = 0.94‍; SCI interaction with reward and uncertainty: ‍p = 0.70‍ & ‍p = 0.60‍, respectively, Figure 3c., 
Supplementary file 5). This is consistent with the finding that SCI participants’ extensive sampling 
behaviour in the active paradigm was mostly independent from economic constraints (no significant 
interaction SCI ‍×R0‍ or SCI ‍×ηs‍; Figure 2).

Taken together, these results indicate that extensive sampling in SCI is not related to the way indi-
viduals estimate or value uncertainty. Instead, it is likely to capture an intrinsic drive to gather informa-
tion specifically when SCI have agency over the level of uncertainty (i.e. during active sampling) (see 
Appendix 1 for a computational model capturing this effect).
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Figure 3. Intact metacognitive judgement and passive decision making in SCI. (a) Subjective estimates of uncertainty (z-scored sign-flipped confidence 
ratings) mapped well onto experimentally defined uncertainty across study participants. There was no significant difference between SCI participants 
and controls in estimating uncertainty. (b) There was no significant difference in offer acceptance between individuals with SCI and controls, indicating 
similar weights assigned to uncertainty and reward when making decisions. Error bars show 95% CI. See Supplementary files 4 and 5 for statistical 
details.
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Faster and more efficient sampling in SCI
The key advantage of our paradigm is the possibility to investigate not only how much informa-
tion people gather but also how quickly and efficiently they do so (Petitet et al., 2021). To capture 
these extra dimensions of sampling behaviour, we used two behavioural measures: (1) inter-sampling 
interval, ‍ISI ‍, which is the average time interval between consecutive screen touches (shorter ‍ISI ‍ indi-
cates faster sampling); (2) information extraction rate, ‍α‍, which provides an estimate of the rate at 
which the ‍EE‍ decays over successive samples (higher ‍α‍ values indicate higher sampling efficiency).

In young healthy adults, we previously reported a speed-efficiency trade-off whereby slower 
sampling was associated with greater information extraction rate (i.e. greater reduction of uncer-
tainty at each step of the search) (Petitet et al., 2021). This finding was replicated in the present 
study (Effect of ‍ISI ‍ on ‍α‍; Controls: ‍β = +0.054‍, ‍95%CI = (0.032, 0.075)‍, ‍t1618 = 4.97‍, ‍p < 0.0001‍; SCI: 

‍β = +0.052‍, ‍95%CI = (0.028, 0.076)‍, ‍t1618 = 4.97‍, ‍p < 0.0001‍, Figure 4c., Supplementary file 8). Inves-
tigating group effect using LMM showed that, overall, SCI participants sampled significantly faster 
than healthy controls (Main effect of group on ‍ISI : β = −0.29‍, ‍95%CI = (−0.43,−0.16)‍, ‍t3232 = −4.24‍, 

‍p < 0.0001‍, Figure 4a., Figure 4—figure supplement 1, Supplementary file 6). Remarkably, despite 
this faster sampling, SCI participants reduced uncertainty as efficiently as controls (Main effect of 
group on ‍α : β = +0.007‍, ‍95%CI = (−0.015, 0.03)‍, ‍t3232 = 0.61‍, ‍p = 0.54‍, Figure  4b., Supplementary 
file 6). In other words, individuals with SCI exceeded the speed-efficiency trade-off that characterised 
healthy controls’ sampling (Figure 4c.).
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Figure 4. Faster but efficient sampling in SCI. (a) Across different conditions of the task, SCI participants sampled 
faster than the healthy controls. (b) Sampling efficiency was not different between individuals with SCI and control. 
(c) Faster sampling was associated with lower efficiency giving rise to a speed-efficiency trade-off. SCI participants 
exceeded the speed efficiency trade-off that characterised controls’ sampling behaviour as they extracted more 
information than the control per unit time (sec). Conditional plot was generated by sliding 25% quantile bins of ‍ISI ‍ 
and computing average ‍α‍ for each bin. Error bars show ± SEM. See Supplementary file 6 for full and statistical 
details.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Sampling as a function of time.
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Overall, the performance of individuals with SCI indicates hyperreactivity to uncertainty, mani-
fested as more extended, faster though equally efficient information sampling compared to controls.

Affective burden is associated with more extensive and faster active 
sampling
Next, we investigated whether markers of hyperreactivity to uncertainty in SCI (faster and exten-
sive sampling) were associated with affective burden. Non-parametric Spearman’s partial correlations 
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Figure 5. Affective burden correlates with faster and extensive sampling. (a) Individuals with SCI were significantly more depressed and anxious than 
healthy matched control. (b) Anxiety scores and depression scores significantly correlated with each other across study participants of both groups. An 
affective burden score corresponding to severity of depression and anxiety was extracted using principal component analysis (PCA). This dimension 
accounted for 84% of the variance between anxiety and depression. (c) Affective burden was associated with increased reactivity to uncertainty indexed 
by speed and extent of sampling. More severe affective burden (i.e. higher severity of anxiety and depression) were associated with faster (shorter ‍ISI ‍) 
and more extensive sampling (i.e. over-sampling). BDI II: Beck’s Depression Inventory. HADS: Hospital Anxiety and Depression Scale (only anxiety score 
was included). ISI: Inter-sampling Interval in seconds. ‍∗∗ : p < 0.01‍, ‍∗ ∗ ∗ : p < 0.001‍. Error bars show ± SEM. Grey and purple lines show regression 
across all participants and within SCI group, respectively. Shaded area in correlation plots show 95% CI.

https://doi.org/10.7554/eLife.75834


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Attaallah et al. eLife 2022;0:e75834. DOI: https://doi.org/10.7554/eLife.75834 � 10 of 27

controlled for age and cognitive score showed that affective burden across SCI participants was 
significantly associated with sampling speed as well as with deviation from optimal sampling, such 
that both faster and extensive sampling were associated with higher affective burden (Correlation 
between affective burden and ‍ISI : R2 = 0.17‍, ‍p = 0.039‍; correlation between affective burden and 

‍s − s⋆ : R2 = 0.17‍, ‍p = 0.041‍, Figure 5c.). A similar pattern was also observed in the control group for 
over-sampling behaviour (‍R2 = 0.17‍, ‍p = 0.035‍) but not for ‍ISI ‍ (‍p = 0.78‍).

To assess the individual contribution of anxiety and depression to these findings in SCI, the same 
analysis was performed separately for each affective component. This showed that BDI-II score 
(depression) correlated with faster sampling (‍R2 = 0.17‍, ‍p = 0.039‍) but not over-sampling (‍p = 0.15‍) in 
SCI. The HADS score (anxiety) on the other hand correlated with over-sampling (‍R2 = 0.17‍, ‍p = 0.038‍) 
but not speed (‍p = 0.16‍). However, these effects became insignificant (‍p = 0.12‍ for both) when the 
two affective components partialled out each other (partial correlations), suggesting that while there 
might be distinctive effects of depression and anxiety, these effects are better explained by the 
general affective burden imposed by these two dimensions given their association.

Finally, the correlation between affective burden and passive task performance was investigated 
using LMMs. The results showed that affective burden had no significant effect (main or interaction) 
on subjective uncertainty or acceptance probability (Main effect of affective burden on subjective 
uncertainty: ‍β = −0.003‍, ‍t5394 = −0.27‍, ‍p = 0.79‍; Main effect of affective burden on offer accep-
tance: ‍β = −0.151‍, ‍t5390 = −1.96‍, ‍p = 0.05‍; See Supplementary files 4 and 5 for full statistical details 
including interactions).

These results thus indicate that hyperreactivity to uncertainty (indexed by faster and extensive 
sampling) is associated with affective dysregulation in SCI, mainly when agency is involved.
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Figure 6. Increased insular hippocampal connectivity in individuals with SCI compared to healthy controls. (a) Whole-brain ROI-to-ROI functional 
connectivity analysis with 40 ROIs from different brain networks and regions. SCI participants have increased functional connectivity between insular 
cortex (IC) and hippocampal/para-hippocampal (PaHC) regions. TFCE: Threshold Free Cluster Enhancement. See Supplementary file 9 for further 
statistical details. (b) Increased insular-hippocampal connectivity correlated with faster sampling (shorter ISI) in SCI, suggesting that hyperreactivity to 
uncertainty is related to this specific network. Grey and purple shaded line show regression across all participants and within SCI group, respectively. 
Shaded area show 95% CI.
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Increased insular-hippocampal connectivity in SCI is associated with 
faster sampling
Resting-state functional MRI data were collected in 23 SCI participants and 25 controls. We first inves-
tigated differences in functional connectivity between SCI participants and controls using a whole-
brain network functional connectivity analysis. This entailed investigating the connections between 
40 atlas-defined regions of interest (ROIs) that represent the key nodes in brain networks including 
salience, default mode, sensorimotor, visual, dorsal attention, frontoparietal, language, and cerebellar 
networks as well as limbic brain regions including the hippocampus, para-hippocampus and amygdala 
(see Materials and methods).

Compared to healthy controls, individuals with SCI showed significantly greater functional connec-
tivity between the insular cortex and hippocampal/para-hippocampal regions (Insular-hippocampal: 
‍TFCE = 64.82‍, ‍pFWE < 0.01‍, Insular-para-hippocampal: ‍TFCE = 70.02‍, ‍pFWE < 0.01‍; Figure 6a, Supple-
mentary file 9). There was no other significant difference in resting functional connectivity between any 
of the other ROIs included in the analysis. Thus, functional connectivity disruptions in SCI participants 
appeared to be limited and specific to the insular-hippocampal network highlighted in Figure 6a.

Finally, we asked whether such functional signatures of SCI bore any relationship to the behavioural 
markers of hyperreactivity to uncertainty identified above (‍ISI ‍ & ‍s − s⋆‍). This analysis used non-
parametric partial correlations controlling for age, gender, and cognitive score. The strength of 
connectivity from ROI-ROI analysis between bilateral insular cortex and hippocampus (right and left) 
was extracted for this purpose. Multiple correlation testing was corrected with Bonferroni’s method. 
Across SCI participants, stronger bilateral insular connectivity with the right hippocampus significantly 
correlated with faster sampling rate (‍R2 = 0.44‍, ‍pcorr < 0.01‍, Figure 6b). This suggests a role for this 
network over-activity in the urgent information sampling behaviour exhibited by SCI participants. 
There was no significant association with deviation from optimal sampling (‍p = 0.19‍), suggesting that 
sampling speed might be a more sensitive marker of uncertainty reactivity, despite that these two 
measures were significantly correlated in the group (‍R2 = 0.28‍, ‍p < 0.01‍). Similarly, insular-hippocampal 
connectivity was not significantly correlated with affective burden across SCI participants (‍p = 0.37‍).

Discussion
A rich body of literature indicates a strong association between SCI and affective dysregulation such 
as anxiety and depression (Hill et al., 2016; Hohman et al., 2011; Pavisic et al., 2021; Reid and 
Maclullich, 2006). However, the mechanisms underlying such a burden are not fully established. In 
this study, we hypothesised that affective dysfunction in SCI might be related to deficits in processing 
uncertainty. Using a purpose-designed behavioural paradigm, we investigated how people decide 
and act under uncertainty in active and passive contexts. In the active form, participants could gather 
information at a cost to reduce uncertainty before committing to decisions. In the passive form, they 
made decisions responding to offers that had fixed levels of uncertainty and potential reward. The 
results showed that when participants had agency (i.e. in the active form), individuals with SCI exhib-
ited behaviour indicative of increased reactivity to uncertainty, manifested as more rapid and exten-
sive sampling compared to age- and gender-matched healthy controls. These behavioural markers 
of heightened reactivity to uncertainty correlated with the severity of affective burden in SCI partic-
ipants. Furthermore, resting functional neuroimaging analysis showed that individuals with SCI had 
increased insular-hippocampal connectivity, which in turn correlated with reactivity to uncertainty 
indexed by sampling speed. By contrast, estimation and weighing of uncertainty in passive decisions 
were both intact in SCI participants, suggesting that their hyperreactivity to uncertainty was specifi-
cally expressed in an active situation in which uncertainty is controllable. Overall, the results point to a 
specific deficit in processing uncertainty in individuals with SCI that might be underlying their affective 
dysregulation and is related to increased insular-hippocampal connectivity in the condition.

These results resonate with previous research indicating that people with depression and anxiety 
might have altered uncertainty processing (Bishop and Gagne, 2018; Boswell et al., 2013; Carleton 
et al., 2012; Grupe and Nitschke, 2013; Gu et al., 2020; Hartley and Phelps, 2012; Pulcu and 
Browning, 2019; Saulnier et al., 2019). A recent investigation, for example, showed that a common 
factor accounting for shared variance between both syndromes was associated with disrupted learning 
in probabilistic environments reflecting impaired uncertainty processing (Gagne et al., 2020). Other 
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reports pointed to a possible alteration of uncertainty estimation and reward-related valuation in 
these syndromes affecting decision making under uncertainty (Pizzagalli et  al., 2005; Pizzagalli 
et al., 2008; Pulcu and Browning, 2019). However, evidence on how affective dysfunction relates 
to more active forms of behaviour such as information gathering prior to committing decisions is 
limited. One early investigation in social psychology showed that individuals suffering from depression 
tend to acquire more high-utility information than non-depressed individuals in a simulated interview 
environment where participants played the role of the interviewer and had to select interview ques-
tions from a standardised list of questions that differed in their diagnostic utility (Hildebrand-Saints 
and Weary, 1989). While this investigation along with other similar reports from social psychology 
literature advance the notion that disrupted information gathering might be a key feature in affective 
disorders, a mechanistic account supporting this claim is still not established (Aderka et al., 2013; 
Camp, 1986; Joiner et al., 2009; Locander and Hermann, 1979). For example, previous studies 
using classical behavioural paradigms of information seeking such as the beads task failed to report 
consistent effects of anxiety and depression on performance (Jacoby et al., 2014). Such inconsisten-
cies might be due to the fact that the behavioural paradigms used in these prior studies often neglect 
an important aspect of information gathering – controllability – which has been hypothesised to be a 
crucial feature of both anxiety and depression (Abramson et al., 1978; Barlow, 1991). In the present 
study, this important component was accounted for by using a novel behavioural paradigm allowing 
participants to gather information with minimal limitations to the speed and efficiency of sampling. 
This in turn revealed an insightful aspect of information gathering behaviour in individuals with SCI 
who not only sampled more than controls, but also showed that they do this more rapidly without 
losing efficiency.

One might argue that rather than suggesting that SCI individuals are hyperreactive to uncertainty 
in the active task, our findings might alternatively be explained by a lower reactivity to reward – as 
participants lost more credits to obtain the extra information. However, some observations in the 
study suggest that this might not be the case. First, the influence of economic constraints (R0, ‍ηs‍) on 
sampling behaviour and speed did not significantly differ between individuals with SCI and controls. 
If SCI participants were less reactive to reward, then one would expect economic constraints to affect 
sampling behaviour in SCI participants to a lesser degree than age- and gender-matched controls. 
Instead, the group effect (i.e. acquiring more samples in individuals with SCI) was equally manifested 
in all experimental conditions, regardless of the current cost-benefit structure. Second, acquiring 
more samples indeed allowed SCI participants to achieve lower uncertainty levels prior to decisions, 
suggesting that these additional samples carried instrumental utility and were not merely reflective of 
wasteful sampling behaviour driven by insensitivity to reward.

Another account of SCI individuals’ extensive sampling behaviour might involve subjective costs 
that are not directly specified in economic terms in the task. Namely, SCI individuals and controls 
might differ in the subjective cost they assign to sampling speed and efficiency. As demonstrated 
previously, these additional agent-related factors contribute to the utility of the samples being 
acquired and thus influence the extensiveness of sampling (Petitet et  al., 2021). Given that SCI 
participants sampled faster but as efficiently as controls, these subjective costs appear to be lower 
in this population (see Appendix 1 for a formal demonstration using a computational model). As a 
result, samples carry higher utility overall, which promotes more extended data gathering. Poten-
tially, there are several other subjective costs that people might be considering when gathering 
information. For example, SCI participants might have exaggerated cost linked to bad performance 
or inaccurate placements of the circle. We aimed to limit this specific cost by not displaying the 
hidden circle as feedback and showing the credits won or lost instead (Figure 1). In addition, since 
the task depends on touching the screen to obtain clues, the cost of these motor actions might 
have influenced sampling behaviour (Carland et al., 2019; Cisek and Kalaska, 2010; Morel et al., 
2017; Pierrieau et al., 2021; Rangel and Hare, 2010; Scott, 2012). It is possible, for example, that 
SCI participants might be regarding reaching and touching the screen as less effortful than controls 
or assigning lower costs for motor precision. While we tried to limit the influence of the motor 
aspects on performance by strictly controlling the settings (e.g. fixed distance from the screen, using 
only index finger of dominant hand), the contribution of motor elements to the observed behaviour 
cannot be entirely determined or excluded and might pose a limitation. Such inter-individual differ-
ences could be in part captured by the intercept term in the computational model used to fit active 
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information sampling data (w0), which was not significantly different between the two groups (see 
Appendix 1).

In a similar vein, while the results from the passive task suggest that SCI individuals have intact 
estimation of uncertainty, this might not necessarily apply to a dynamic situation such as the active 
task. The distinct contexts of the two tasks (passive viewing vs. active gathering) may impose different 
computations involved in uncertainty estimation. For example, SCI individuals and controls might 
specifically differ in how they judge self-generated configurations of uncertainty (active task) vs. exter-
nally predefined ones (passive task) (Acosta, 1982; Gaschler et  al., 2014; Kemper et  al., 2012; 
Kemper and Gaschler, 2017). People might also differ in the reference points (temporal or spatial) 
they compare updated environments with as more information is added (Koop and Johnson, 2012; 
O’Donoghue and Sprenger, 2018; Sher and McKenzie, 2006; Tversky and Kahneman, 1986). It 
is also possible that these computations might be cognitively effortful, influencing how frequently 
or/and efficiently people re-estimate and update uncertainty during their search (Bhui et al., 2021; 
Lieder and Griffiths, 2019). All these factors might have contributed with different degrees to the 
pattern of the results observed in the study and might be a limitation to active information sampling 
investigations in general.

It should also be noted that the measure of subjective uncertainty based on self-reports in the 
passive may map imperfectly onto actual internal uncertainty (Navajas et al., 2017; Peters, 2022). 
Self-reports of confidence might be contaminated by other factors such as perceptual uncertainty 
(e.g. meaning of perceived stimuli on the task), memory (e.g. remembering task instructions or 
previous estimations) and decisions (e.g. confidence in estimation). The contribution of these meta-
cognitive dimensions could be explored in future studies, especially given that SCI – by definition – is 
characterised by inconsistency between self-report estimates and objective measures (Jessen et al., 
2020). Similarly, SCI might involve different cognitive domains (e.g. memory, attention, language, 
etc.) with different levels of severity (Diaz-Galvan et al., 2021; Jessen et al., 2020; Miebach et al., 
2019; Si et al., 2020; Smart et al., 2014). How such differences relate to uncertainty processing and 
affective burden will require a fine-grained approach aimed specifically at characterising SCI cognitive 
complaints in-depth to disentangle the dimensions involved.

Various brain regions have previously been implicated in anxiety and depression and their mecha-
nistic characterisation as deficits in uncertainty processing including amygdala (Grupe and Nitschke, 
2013; Morriss et al., 2019), hippocampus (Gray and McNaughton, 2003; Harrison et al., 2006; 
Rigoli et al., 2019; Strange et al., 2005; Tobia et al., 2012), and insular cortex (Grupe and Nitschke, 
2013; Morriss et al., 2019; Tanovic et al., 2018). Consistent with these reports, we found that indi-
viduals with SCI displayed heightened connectivity between these regions (insular-limbic). Concep-
tually, the insula stands out in the context of SCI not only because of its consistent implications in 
various forms of uncertainty processing and affective syndromes in health and disease (Morriss et al., 
2019; Namkung et al., 2017; Paulus and Stein, 2006; Singer et al., 2009; Tanovic et al., 2018), 
but also because of its potential role in subjective awareness and interoception (Craig, 2009). The 
insular cortex receives input from different brain regions carrying interoceptive information about 
various bodily sensations, such as temperature, heartbeat, bowel distension and more (Namkung 
et al., 2017; Uddin et al., 2017). Subjective experience of these stimuli has been shown to correlate 
with insular activity on functional neuroimaging using MRI or positron emission tomography (Craig 
et al., 2000; Critchley et al., 2004). More recent accounts of insular function extend this contribution 
of subjective awareness to involve emotional states and higher subjective awareness (Chang et al., 
2013; Craig, 2009; Namkung et al., 2017). It is thus not surprising to find insular involvement in a 
condition that is primarily defined by altered subjective experience. A few studies have demonstrated 
altered insular task-related activity in SCI linked to impaired memory performance and future-guided 
decision making, however, without pointing to how these findings are related to affective burden or 
subjectivity (Cai et al., 2020; Hu et al., 2017). By contrast, damage to the insula might impair subjec-
tivity and self-awareness as seen in patients with anosognosia for hemiplegia and other forms of insular 
injury (Fotopoulou et al., 2010; Karnath et al., 2005; Spinazzola et al., 2008), as well as resulting in 
dysfunctional emotional awareness (e.g. as seen in fronto-temporal dementia), under-reactivity, lack 
of self-monitoring and passivity (Kleiner et al., 2007; Manes et al., 1999; Sturm et al., 2006). Such 
findings are opposite to what is observed in individuals with SCI who often report heightened levels 
of subjective affective dysfunction and were found in this study to be behaviourally more reactive.
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This insula-centred formalisation of affective dysfunction, uncertainty processing, and subjec-
tivity might be further supported by taking into consideration hippocampal contribution. One 
prominent view of hippocampal involvement in goal-directed behaviour suggests that it constitutes 
a crucial part of a behavioural inhibition system (BIS) that is concerned with processing aversive 
cues such as uncertainty (Gray and McNaughton, 2003). According to this view, the hippocampus 
acts as a comparator between one’s expectations and the environment, resulting in behavioural 
aversion to threatening and negative stimuli. It has therefore been suggested that hyperactivity of 
the BIS might be an important neurobiological basis of anxiety and affective dysregulation (Gray 
and McNaughton, 2003). When anticipating decisions and actions under uncertainty, the hippo-
campus might be encoding possible future states and their associated risks (Addis et al., 2011; 
Martin et al., 2011; Schacter et al., 2008; Schacter et al., 2017; Weiler et al., 2010). However, 
when such situations are avoidable (as in the active task), aversion might be expressed as a propen-
sity to quickly collect information to avoid facing uncertainty in the future. Hippocampal signals 
encoding future trajectories and prior experiences from these contexts might be shared with the 
insula, which in turn process emotional responses resulting in a feeling of anxiety and depression 
(Chang et al., 2013; Craig, 2009; Paulus and Stein, 2006). Additionally, because of the hippo-
campus’ well-established mnemonic function, insular-hippocampal processing of uncertainty might 
also affect one’s awareness of memory performance, giving rise to subjective cognitive complaints 
characterising SCI. Testing such a hypothesis will require future research with a detailed examination 
of the nature of subjective complaints, their severity, and association with uncertainty and expres-
sion of concerns.

These neuroimaging findings are consistent with previous fMRI studies (task-related and resting) 
in SCI showing altered connectivity between temporal brain regions (e.g. hippocampus and para-
hippocampus) and several other areas and networks including default mode and salience networks 
(Cai et al., 2020; Dillen et al., 2017; Hafkemeijer et al., 2013; Hu et al., 2017; Rodda et al., 2009; 
Verfaillie et al., 2018; Viviano and Damoiseaux, 2020). These investigations have reported both 
increased and decreased activation in these networks without converging spatial specificity or clear 
relationship with behaviour. While the hippocampus seems to be a key region commonly involved 
in SCI by many fMRI studies, a consistent pattern of its activity in the condition is still lacking (Dillen 
et al., 2017; Hafkemeijer et al., 2013; Rodda et al., 2009; Verfaillie et al., 2018). This might be due 
to issues related to sample size, methods used and importantly, phenotyping of SCI group included 
in such studies.

A recent account of these fMRI studies has tried to reconcile these apparent inconsistencies by 
promoting the idea that SCI might be related to general inefficiency in signal processing across 
whole-brain networks (Viviano and Damoiseaux, 2020). Our findings, however, point to a specific 
hippocampus-related network that might be involved in uncertainty processing and affective regula-
tion. This could have future theoretical implications in SCI as converging reports support the role of 
regions of this network (limbic region and insula) in uncertainty processing and affective functioning 
(Gray and McNaughton, 2003; Grupe and Nitschke, 2013; Harrison et al., 2006; Morriss et al., 
2019; Rigoli et al., 2019; Strange et al., 2005; Tanovic et al., 2018; Tobia et al., 2012). Further 
validation of our neuroimaging results might be needed using other techniques (e.g. task-related MRI, 
lesion studies) as well as replication efforts, ideally with larger samples.

One major future direction is to investigate how the mechanisms and brain networks uncovered 
in this study relate to AD spectrum and prospective risk of developing dementia. For example, while 
not needed to make a clinical diagnosis of SCI (Jessen et al., 2014), AD-related biological indicators 
(e.g. CSF biomarkers and amyloid and tau PET imaging) might provide valuable information on how 
processing uncertainty and information gathering relates to AD pathology in preclinical population 
with SCI. This could be further supported by evidence from longitudinal follow-up of individuals with 
SCI to establish risk factors and outcomes. Another line of research might benefit from adopting a 
transdiagnostic approach to examine whether and how cognitive mechanisms of information seeking 
and related affective dysfunction are shared (or distinguished) in different stages of AD and other 
forms of neurodegeneration. Similarly, examining patients who suffer from anxiety and depression 
without expression of cognitive complaints would help further delineate the association between 
affective burden and uncertainty-related behaviours.

https://doi.org/10.7554/eLife.75834


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Attaallah et al. eLife 2022;0:e75834. DOI: https://doi.org/10.7554/eLife.75834 � 15 of 27

In conclusion, our results provide evidence that hyperreactivity to uncertainty might be a key mani-
festation of SCI and is related to heightened functional connectivity between the insula and the hippo-
campus. These manifestations might be underlie affective burden in the condition.

Materials and methods
Participants
Twenty-seven individuals with SCI (age: ‍µ = 59.81‍, ‍SD = 7.70‍, 14 females) along with 27 healthy age- 
and gender-matched controls (age: ‍µ = 62.04 ± SD = 6.28‍) were recruited for the study. Sample size 
was determined based on our previous study testing and validating the behavioural paradigm in 
healthy young controls (Petitet et al., 2021) as well as comparable studies investigating information 
gathering in patient groups (Clark et al., 2006; Hauser et al., 2017). SCI participants were clinically 
assessed by trained neurologists (co-authors MH and SM) in the cognitive disorders clinic at John 
Radcliff Hospital, Oxford. In addition to clinical assessment, the diagnosis of SCI was supported by 
normal performance on standardised objective cognitive assessment using Addenbrooke’s Cogni-
tive Examination (ACE-III) with cutoff >87/100 (Bruno and Schurmann Vignaga, 2019; Elamin et al., 
2016; Hsieh et al., 2013) as well as normal clinical MRI scan. This definition is consistent with the 
criteria proposed in previous key reports (Jessen et al., 2014; Jessen et al., 2020), suggesting that 
SCI diagnosis relies on two key components (i) subjective report of cognitive decline and (ii) normal 
performance on standardised objective cognitive tests.

All participants gave written consent to take part in the study and were offered monetary compen-
sation for their participation. The study was approved by the University of Oxford ethics committee 
(RAS ID: 248379, Ethics Approval Reference: 18/SC/0448). Table 1 shows demographics of the study 
groups. All participants completed the behavioural tasks and questionnaires. Neuroimaging data 
were obtained from 23 SCI participants and 25 healthy controls who were MRI compatible and gave 
consent to be scanned for research purposes.

Clinical measures
All participants underwent a cognitive assessment using Addenbrooke’s Cognitive Examination III 
(ACE-III; Hsieh et al., 2013). They also completed self-report questionnaires of depression and anxiety 
(Beck Depression Inventory II, BDI-II; Beck et al., 1996, and Hospital Anxiety Depression Scale, HADS; 
Zigmond and Snaith, 1983).

Procedure
A 17-inch touchscreen PC was used to present the task, which was coded using MATLAB (The Math-
Works inc, version 2018b) and Psychtoolbox version 3 (Brainard, 1997; Kleiner et al., 2007). The 
distance between participants and the screen was (50 cm) allowing them to reach it comfortably using 
their dominant hand. Task environment was adjusted according to handedness and participants were 
instructed to use their index finger for all their responses. An experimenter was present at all times in 
the testing room to answer any questions they might have.

Experimental paradigm
In this study, we used a shorter version of Circle Quest, an active information gathering task that 
has been previously validated and extensively tested in young healthy people (explained in detail in 
Petitet et al., 2021). In this paradigm, participants were required to maximise their reward by trying 
to localise a hidden circle as precisely as possible. They could infer the location of the circle using clues 
that they could obtain by touching the screen at different locations on a designated search field (grey 
circle in Figure 1). Participants could acquire as many samples as they wanted without limitations to 
when and how these samples were obtained on each trial. There were two types of clues: purple dots 
if the location was situated inside the hidden circle, and white dots if the location was outside the 
circle. The sizes of hidden circle and dots were fixed on all trials (circle radius: 130 Px, 5.80% of the 
search space, dot radius: 4 Px). Two circles of the same size as the hidden circle were always displayed 
on either side of the screen in order to limit memory requirements of the task. Within these two circles 
was displayed the credits that participants could potentially win if they managed to localise the hidden 
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circle with no errors. After the information-gathering phase, participants could localise the hidden 
circle using a blue disc that had the same size as the hidden circle.

These aspects of the task were explained to participants using an interactive tutorial with the help 
of the experimenter. Following this, they performed a training task to further expose them to the 
task environment and its scoring rules. During training, participants were presented with different 
configuration of dots (four purple dots and four white dots) from which they could infer the location 
of the hidden circle with different levels of uncertainty (e.g. when purple dots are spaced out this 
indicated a lower level of uncertainty than when they were clumped close together). In this training 
task, participants were instructed to only move the blue disc to where they thought the hidden circle 
was located. Uncertainty in the task was experimentally quantified as expected error (‍EE‍) which is 
equal to the error an optimal agent would obtain if they placed the blue disc at the best possible 
location. A penalty was introduced representing how far localisation was from the true location of the 
hidden circle. This penalty was subtracted from credits assigned to each trial that participants could 
potentially win if their localisation was perfect (i.e. placing the blue disc exactly on top of the hidden 
circle). The penalty incurred for each error pixel was fixed on all trials and was equal to 1.2 credit/
pixel, thus localisation error penalty was equal to the distance between the blue disc and hidden circle 
centre multiplied by 1.2. Once participants completed training, they were required to complete a task 
comprehension questionnaire to become eligible to continue with the behavioural task. All partici-
pants recruited for this study had no issues with this questionnaire.

Active sampling task
In this version of the task, participants incurred costs for acquiring information: with each additional 
sample obtained, they lost credits from an initial credit reserve they started each trial with (i.e. from 
the potential reward they could win if they managed to perfectly find the location of the hidden circle 
using the blue disc). There were two levels of sampling cost (‍ηs‍; low: –1 credit/sample and high: –5 
credits/sample) and two levels of initial credit (‍Ro‍; low: 95 credits, high: 130 credit/sample) giving rise 
to four experimental blocks (15 trials each) that were counterbalanced between participants. Each trial 
lasted 18 s, during which participants could sample the search field freely at any location of the search 
field. After 18 s, the blue disc appeared automatically and participants had 6 s to move it on top of 
where they thought the hidden circle was located. They then received feedback indicating the number 
of credits they won on the trial. This score was calculated as follows:

	﻿‍ Score = R0 − s.ηs − e.ηe‍� (1)

where R0 is initial credit reserve, ‍s‍ is number of samples acquired, ‍e‍ is localisation error (the distance 
in pixels between the centre of the hidden circle and the centre of the blue disc), and ‍ηe‍ is spatial error 
cost which was fixed and equal to 1.2 per pixel.

Passive choice task
In this version of the task, participants’ agency was limited. They were required to make passive 
decisions (accepting/rejecting offers) based on predetermined levels of uncertainty and reward for 
these offers. At the beginning of each trial, participants saw a configuration of dots (four purple dots 
and four white dots) mapping onto different experimentally defined levels of uncertainty (five levels 
of ‍EE‍: 16.3–24.4, 27.1–38.9, 57.5–58.9, 73.33–74.18, 91.9–93.3 pixels). They were required to indi-
cate how confident they are about the location of the hidden circle using a rating scale on the side 
of the scene. Subjective uncertainty score was calculated by z-scoring sign-flipping these confidence 
ratings. Following this, the reward on offer appeared in the two circles on the side of the screen (four 
reward levels ‍R‍: 40, 65, 90, 115 credits). Participants were required to indicate whether they would 
like to place the blue disc given the reward and uncertainty of the offers. They did this by pressing 
’Yes’ or ’No’ appearing on the screen. There were 20 different offer combinations and each offer was 
presented five times, thus participants completed 100 trials overall. Participants were told that after 
indicating their preferences, 10 of their accepted offers will be randomly selected for them to play, 
and that these ten offers would decide their score in the game.
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Quantifying uncertainty
Uncertainty in Circle Quest paradigm was quantified as the expected error (EE), that is the average 
error an ideal participant would obtain by placing the localisation disc (blue disc) at the best possible 
location given the dots on the screen (i.e. given the information displayed). Calculating this metric first 
required to compute the probability of any pixel on the screen to be the centre of the hidden circle. 
This was done by sequentially applying Baye’s rule as described below.

The probability that a location on the screen ‍λ‍ is the centre of the hidden circle given the observa-
tion ‍o‍ (‍o+‍ if the dot is purple, ‍o−‍ if the dot is white) at location ‍σ‍ was calculated as:

	﻿‍ ps(λ|o,σ) = ps(λ)×ps(o,σ|λ)
ps(o,σ) ‍� (2)

where ‍ps(λ)‍ is the prior probability, ‍ps(o,σ|λ)‍ is the likelihood, and ‍ps(o,σ)‍ is the probability of 
making the observation ‍o‍ at the sampling location ‍σ‍. Note that because Baye’s rule was applied 
sequentially, ‍s‍ refers here to the stage of the search, that is, the number of samples currently displayed 
on the screen. The posterior probability ‍ps(λ|o,σ)‍ becomes the prior probability ‍ps+1(λ)‍ for the next 
sample. The likelihood function was defined as:

	﻿‍




ps(o+,σ|λ) = 1 if |λ− σ| ≤ r

ps(o+,σ|λ) = 0 if |λ− σ| > r

ps(o−,σ|λ) = 1 − ps(o+,σ|λ)‍�

(3)

where ‍r‍ is the radius of the hidden circle (which is constant). Finally, the probability of the observa-
tion ‍o‍ at the sampling location ‍σ‍ is the sum over all possible hidden circle centres ‍λ‍ of the probability 
of the observation given ‍λ‍, weighted by the probability of ‍λ‍ to be the hidden circle centre:

	﻿‍
ps(o,σ) =

∑
λ

ps(o,σ|λ) × ps(λ)
‍� (4)

The posterior distribution over all hidden circle locations was converted into an expected error 
map as follows:

	﻿‍
EEs(λ) =

∑
i

ps(λi) × |λ− λi|
‍� (5)

Simply put, ‍EEs(λ)‍ is the average distance between ‍λ‍ and all locations on the screen, weighted 
by the probability of these locations to be the centre of the hidden circle. At any stage of the search, 
there exists an ideal circle placement location ‍λ

⋆
s ‍ where ‍EEs(λ⋆s )‍ is minimal. Throughout the paper, and 

consistent with previous work (Petitet et al., 2021), uncertainty was quantified as the expected error 
at the ideal placement location given the information on the screen (i.e. ‍EEs(λ⋆s )‍). In the interest of 
simplicity, the rest of this paper uses the abbreviation EE to refer to this metric.

Quantifying sampling efficiency
On average, ‍EE‍ decreased exponentially over successive samples (Figure 2—figure supplement 1). 
Because participants were free to sample anywhere on the screen, EE could decrease more or less 
sharply depending on the quality of participants’ choices of sampling locations (Petitet et al., 2021). 
Sampling efficiency captures how well participants reduced ‍EE‍ from one sample to the next. It was 
estimated as the information extraction rate ‍α‍ by fitting the following model to individual datasets:

	﻿‍

ÊE(n,1) =
∑60

i=1 EE(i,1)
60

ÊE(n,s) = (ÊE(n,1) − ÊE∞) × (1 − αn)s−1 + ÊE∞

0 < α < 1 & ÊE∞ > 0 ‍�

(6)

where ‍n‍ is the trial number, ‍s‍ is the sample number and ‍ÊE∞‍ is the asymptotic ‍EE‍ which reflects 
the limitations to uncertainty reduction imposed by the task. This simple two-parameters model was 
fitted using a least mean squared error procedure, implemented in MATLAB (The MathWorks inc, 
version 2019a).

https://doi.org/10.7554/eLife.75834
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Quantifying deviation from optimality
Behaving rationally in the active task means stopping sampling when the expected value, EV, is 
maximal. The latter evolves dynamically with every new sample acquired, and is calculated by simply 
replacing the error term in the score equation (Equation 1) by ‍EE‍, as follows:

	﻿‍ EV(s) = R0 − s × ηs − EE(s) × ηe‍� (7)

By using the estimated expected error, ‍ÊE(n,s)‍, from Equation 6, we could compute the expected 
value at every stage of the search given the cost-benefit structure (R0, ‍ηs‍, ‍ηe‍) of the trial and the partic-
ipant’s average sampling efficiency (‍α‍). That is:

	﻿‍ ÊV(s) = R0 − s × ηs − ÊE(s) × ηe‍� (8)

The probability of a rational agent to stop sampling at each stage of the search could be estimated 
by applying a softmax function over all possible ‍ÊV(s)‍ values, as follows:

	﻿‍
p(s) = exp(ÊV(s))∑∞

i=0 exp(ÊV(i))‍�
(9)

Figure  2—figure supplement 2 provides a visualisation of such predictions. Note that they 
account for inter-individual differences in sampling efficiency. For every participant and experimental 
conditions, the optimal number of samples ‍s⋆‍ was defined as the number of samples at which ‍ÊV(s)‍ 
was maximal (i.e. highest probability of the rational agent to stop). By definition, acquiring less or 
more samples than ‍s⋆‍ results in lower average scores than the optimal expected value. We quantified 
deviations from optimality as the difference between the number of samples participants actually 
acquired and ‍s⋆‍.

Statistical analyses
Statistical analysis was performed either in MATLAB R2019a or R version 4.0.2. Data from active and 
passive tasks were analysed mainly using generalised mixed effects models with full randomness using 
fitglme function in MATLAB. These were either logistic or linear models depending on the response 
variable. Full description and statistical details of these models can be found in Supplementary Files. 
Post-hoc follow-up analyses were conducted using appropriate statistical tests of difference (student 
t-test or Wilcoxon rank-sum test) depending on whether parametric assumptions were met. Principal 
component analysis was applied to HADS anxiety and BDI-II questionnaire scores using pca function 
in MATLAB. The first component of this PCA analysis was used as a measure of affective burden. All 
Correlations were performed using Spearman’s non-parametric testing within the two groups sepa-
rately, controlling for possible confounds such as age, gender, and cognitive score when required.

Magnetic Resonance data acquisition
Structural and functional magnetic resonance scans were obtained using 3T Siemens Verio scanner 
at John Radcliffe Hospital, Oxford. Structural images were T1-weighted with 1 mm isotropic voxel 
resolution (MPRAGE, field of view: 208 × 256 × 256 matrix, TR/TE = 200/1.94ms, lip angle = 8°, iPAT 
= 2, prescan-normalise). Resting-state functional MRI (rfMRI) measures spontaneous changes in blood 
oxygenation (BOLD signal) due to intrinsic brain activity. rfMRI images had voxel size = 2.4 × 2.4 
×2.4 mm (GE-EPI with multi-band acceleration factor = 8, field of view: 88 × 88 × 64 matrix, TR/TE = 
735/39ms. flip angle = 52°, fat saturation, no iPAT). MR images were obtained from 23 SCI participants 
and 25 healthy controls who were MRI compatible or consented to have MR scans as part of the study.

Magnetic resonance data processing and analysis
Resting-state connectivity analysis was conducted in MATLAB 2019b using CONN toolbox v20.b 
(Whitfield-Gabrieli and Nieto-Castanon, 2012) running SPM12. Default processing pipeline was 
used. This included functional realignment and unwarp, slice-timing and motion correction, segmen-
tation, and normalisation to MNI space. To increase signal-to-noise ratio, spatial smoothing was 
applied using spatial convolution with Gaussian kernel of 8 mm full width half maximum. Denoising 
was done using linear regression of potential confounds and temporal band-pass filtering (0.008–
0.09 Hz). This linear regression controlled for noise components from white matter and cerebrospinal 
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fluid areas (16 parameters each). Head motion was controlled for using 12 noise parameters, which 
included three translation and three rotation parameters in addition to their first-order derivatives. 
Confounding effects arising from identified outliers and from linear BOLD signal trends were also 
controlled for.

Following this, whole-brain ROI-to-ROI was run using 40 atlas-defined ROIs. These ROIs included 
the default nodes in CONN used to run network functional connectivity analysis as they represent 
key nodes in brain networks including salience, default mode, sensorimotor, visual, dorsal attention, 
frontoparietal, language, and cerebellar networks. In addition, limbic brain regions including the 
hippocampus, para-hippocampus and amygdala were added as these regions have been consistently 
implicated in processing uncertainty (Harrison et al., 2006; Morriss et al., 2019; Rigoli et al., 2019). 
Overall, this analysis examined 780 connections, controlling for age and gender differences. Signifi-
cance testing was done using Threshold Free Cluster Enhancement (TFCE) with corrected connection 
significance threshold equal to 0.05.
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•  Supplementary file 1. Active Search. Generalised mixed effects models investigating the effect of 
the group (SCI vs. controls) on performance. Models were specified as follows: Response variable ~ 
1 + group*η + group*R0 + ηs*R0 + group:ηs :R0 + (1 + ηs*R0 |participant). SCI: subjective cognitive 
impairment. R0 : initial credit reserve. ηs : sampling cost. EE: uncertainty before committing to 
decisions.

•  Supplementary file 2. Active Search. Number of samples obtained per condition. R0 : initial credit 
reserve. ηs : sampling cost.

•  Supplementary file 3. Active Search. Deviation from optimal (s−s*) for each condition. R0 : initial 
credit reserve. ηs : sampling cost. : number of samples obtained. s*: optimal number of samples.

•  Supplementary file 4. Active Search. Generalised mixed effects models investigating the effects 
ofthe group (SCI vs. controls) and affective burden on uncertainty estimation. Models were specified 
as follows: Subjective Uncertainty ~ 1 + group* EE+ (1 + EE |participant) + (1 |trial). Subjective 
Uncertainty ~ 1 + Burden* EE+ age + ACE-III +(1 + EE |participant) + (1 |trial). EE: Experimentally 
defined expected error. ACE-III: Addenbrook’s Cognitive Examination score.

•  Supplementary file 5. Passive choices. Generalised mixed effects models investigating effects of 
group (SCI vs. controls) and affective burden effect on passive decision making under uncertainty. 
Models were specified as follows: choice ~ 1 + group*R + group*EE + R*EE + group:R:EE + (1 + 
R*EE |participant). Choice ~ 1 + Burden*R + Burden*EE + R*EE + Burden:R:EE + Age + ACE-III (1 
+ R*EE|participant). R: reward on offer. EE: expected localisation error. SCI: subjective cognitive 
impairment group. ACE-III: Addenbrook’s Cognitive Examination score.

•  Supplementary file 6. Active Search. Generalised mixed effects models investigating the effect 
of the group (SCI vs. controls) on sampling speed (ISI) and efficiency (α). Models were specified as 
follows: Inter-sampling Interval (ISI) ~ 1 + group*ηs + group*R0 + ηs*R0 + group:ηs :R0 + (1 + ηs*R0 
|participant); Information extraction rate (α) ~ 1 + group*ηs + group*R0 + ηs*R0 + group:ηs :R0 + (1 
+ ηs*R0 |participant).

•  Supplementary file 7. Active Search – Inter-sampling interval per condition. R0 : initial credit 
reserve. ηs : sampling cost.

•  Supplementary file 8. Active Search. Speed efficiency trade-off. Models were specified as follows: 
α ~ 1 + ISI + (1 +ISI |participant) + (1 + ISI |condition) + (1 |trial).

•  Supplementary file 9. ROI to ROI resting functional connectivity. PaHC: para-hippocampus. Hipp: 
hippocampus. IC: insular cortex. unc: uncorrected. FWE: family-wise error. FDR: false discovery rate.

•  Supplementary file 10. ROI to ROI resting functional connectivity with potential outliers (three 
SCI individuals and one control with values above or below Q3 + 1.5IQR) excluded. PaHC: 
parahippocampus. Hipp: hippocampus. IC: insular cortex. unc: uncorrected. FWE: family-wise error. 
FDR: false discovery rate.

•  Supplementary file 11. Motion parameters and other quality control measures. (a) Six motion 
parameters were used during realignment procedure for rfMRI processing. These correspond to 
six timeseries containing three transnational and three rotational parameters over time for each 
subject. None of these parameters was significantly different between SCI and controls groups (all 
‍pcorr > 0.61‍). (b) Five quality control estimates were used during preprocessing of neuroimaging 
data (Whitfield-Gabrieli and Nieto-Castanon, 2012). These included number of valid scans after 
scrubbing procedure, mean and maximum motion (extracted from the six parameters above), mean 
and maximum global signal change. None of these parameters was significantly different between 
the two groups (all ‍pcorr > 0.16‍ ). Based on mean motion and mean global signal changes, four 
potential outliers (three SCI participants and one control with values above or below ‍Q3 + 1.5IQR‍) 
were identified. A second version of neuroimaging analysis was performed with these participants 
excluded (Supplementary file 10). There were no changes to the results or conclusions made in 
the paper. These findings suggest that rfMRI differences between SCI participants and controls are 
unlikely due to motion artifacts. Mean and max motion was calculated based on Power et al., 2012. 
Error bars show ± 95% CI.

•  Supplementary file 12. Quality control parameters do not correlate with task measures and 
affective burden. Across study participants, no correlation was found between mean motion (or 
global signal change) and hyperreactivity to uncertainty (‍ISI ‍ or Deviation from optimal) or affective 
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burden (all ‍pcorr = 1‍ ). Specifically, no correlation between ‍ISI ‍ (the measure that correlates with 
insular-hippocampal connectivity) and these quality control measures (mean motion and mean GS 
change) across SCI participants (‍p = 0.13 & p = 0.49‍ , respectively). These findings suggest that 
correlation between ‍ISI ‍ and insular-hippocampal connectivity is unlikely due to motion artifacts. 
Correlations were controlled for age and gender. Error bars show ± 95% CI.

Data availability
Anonymised data and code for replicating the main results in the manuscript have been deposited on 
the Open Science Framework platform: https://osf.io/7ysqu/.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Attaallah B, Petitet P, 
Slavkova S, Turner V, 
Saleh Y, Manohar S, 
Husain M

2021 Raw and processed 
behavioural data from 
Circle Quest task in SCI and 
controls

https://​osf.​io/​7ysqu/ Open Science Framework, 
7ysqu
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Appendix 1
Computational model of sampling speed, efficiency and extent
To further characterise active sampling behaviour, we fitted a previously validated computational 
model that also accounts for a putative hidden cognitive cost in addition to the economic costs 
imposed by the task (Petitet et al., 2021). Participants are assumed to incur a cognitive cost at each 
step of their search that is a function of how efficiently and quickly they sample. The model calculates 
the expected utility of a sample (‍EUs‍) given these costs and returns five parameter estimates per 
participant. The first two parameters represent the weights participants assign to sample costs (ws) 
and benefits (we). The other three parameters describe the cognitive cost function in terms of a 
penalty for sampling speed (‍wspeed‍) and efficiency (‍wα‍), as well as an intercept (w0). The model was 
specified as follows:

	﻿‍

EUs(ISI,α, tmax) = EUs−1 + p(s|ISI, tmax).[we.ηe × (1 − α).(EEs−1 − ÊE∞) − ws.η1+s
s − ηc(ISI,α)]

Previous EU + Probability of acquiring the sample given the current time

.
[
Expected information benefit − Sampling cost − Cognitive effort cost

]
‍�

(10)

where ‍ηc(ISI,α)‍ is a cognitive cost function. ‍ηe‍ is the placement error penalty and ‍tmax‍ is the 
allowed search time per trial. These two variables were fixed (‍η‍ = 1.2 credits/pixel, ‍tmax = 18‍ seconds) 
in the version of the task used in the study. ‍ÊE∞‍ is the information sampling asymptotic limit, which 
was estimated for each individual beforehand to take into consideration inter-individual variations in 
asymptotic information sampling performance.

Based on previous work (Petitet et al., 2021), the following quadratic cognitive cost function 
was used:

	﻿‍
ηc(ISI,α) = w0 + wspeed ×

1
ISI2 + wα × α2

‍�
(11)

The likelihood function was obtained by applying a softmax function over the 3-dimensional 
space of ‍EU ‍ (‍EU ‍ depends on ‍ISI,α, s‍) for a given task condition, as follows:

	﻿‍
ps(stop|ISI,α, tmax) = exp(EUs(ISI,α,tmax))∑

i
∑

a
∑tmax

t exp(EUs(i,a,t))‍� (12)

For each individual, model fitting involved findings the parameters that achieved the lowest 
negative log-likelihood of observing the multivariate distribution of number of samples acquired (‍s‍), 
inter-sampling interval (ISI) and sampling efficiency (‍α‍).

Parameter optimisation was performed in MATLAB (The MathWorks inc, version 2019a) using 
Bayesian Adaptive Direct Search (BADS ; Acerbi and Ma, 2017). Further information about this 
modelling framework is provided in Petitet et al., 2021.

Analysis of the model’s parameter estimates
The analysis of computational model parameters was in agreement with the analysis of raw 
behaviour reported in the main text. SCI participants and controls did not significantly differ in the 
decision weight they assigned to sampling cost and benefit during active search (‍p = 0.80 & p = 0.48‍, 
respectively; Figure 1). This is an alternative way to parameterise the fact that extensive sampling in 
SCI was not driven by task-related economic considerations. By contrast, the cognitive cost function 
of SCI participants differed from those of controls. SCI participants assigned a lower subjective 
penalty to sampling speed and efficiency (Group difference; ‍wspeed‍, ‍wα : z = 2.12, p = 0.03‍; Figure 1). 
This explains why they performed the task along a different speed-efficiency trade-off from controls. 
The intercept term w0 – which captures a constant subjective cost associated with sampling actions 
(e.g. motor cost) – did not differ between SCI participants and controls (‍p = 0.80‍).

https://doi.org/10.7554/eLife.75834
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Appendix 1—figure 1. SCI participants assign lower costs to speed and efficiency. There was no significant 
difference in the weights SCI participants assigned to sampling benefit (we) or cost (ws), suggesting the differences 
in active sampling between the two groups were unlikely due to economic constraints of the task. On the other 
hand, individuals with SCI had lower weights assigned to efficiency (‍wα‍) and speed (‍wspeed ‍), indicating a lower 
cognitive cost to engage in faster and efficient sampling. w0 captures a subjective fixed cost of sampling that is not 
explicitly specified in the task (e.g. cost of the motor action). This was not significantly different between the two 
groups.‍∗ : p < 0.05‍

https://doi.org/10.7554/eLife.75834
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