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Abstract

There is growing interest in models of regulatory sequence evolution. However, existing models specifically designed for
regulatory sequences consider the independent evolution of individual transcription factor (TF)–binding sites, ignoring
that the function and evolution of a binding site depends on its context, typically the cis-regulatory module (CRM) in
which the site is located. Moreover, existing models do not account for the gene-specific roles of TF-binding sites,
primarily because their roles often are not well understood. We introduce two models of regulatory sequence evolution
that address some of the shortcomings of existing models and implement simulation frameworks based on them. One
model simulates the evolution of an individual binding site in the context of a CRM, while the other evolves an entire
CRM. Both models use a state-of-the art sequence-to-expression model to predict the effects of mutations on the
regulatory output of the CRM and determine the strength of selection. We use the new framework to simulate the evo-
lution of TF-binding sites in 37 well-studied CRMs belonging to the anterior–posterior patterning system in Drosophila
embryos. We show that these simulations provide accurate fits to evolutionary data from 12 Drosophila genomes, which
includes statistics of binding site conservation on relatively short evolutionary scales and site loss across larger divergence
times. The new framework allows us, for the first time, to test hypotheses regarding the underlying cis-regulatory code by
directly comparing the evolutionary implications of the hypothesis with the observed evolutionary dynamics of binding
sites. Using this capability, we find that explicitly modeling self-cooperative DNA binding by the TF Caudal
(CAD) provides significantly better fits than an otherwise identical evolutionary simulation that lacks this mechanistic
aspect. This hypothesis is further supported by a statistical analysis of the distribution of intersite spacing between
adjacent CAD sites. Experimental tests confirm direct homodimeric interaction between CAD molecules as well as self-
cooperative DNA binding by CAD. We note that computational modeling of the D. melanogaster CRMs alone did not
yield significant evidence to support CAD self-cooperativity. We thus demonstrate how specific mechanistic details
encoded in CRMs can be revealed by modeling their evolution and fitting such models to multispecies data.
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Introduction
The evolution of a nucleotide sequence can be modeled by
various broadly applicable evolutionary models (Felsenstein
1981; Hasegawa et al. 1985; Halpern and Bruno 1998) as well
as evolutionary models designed for a specific type of
sequence (e.g., protein-coding sequences [Halpern and
Bruno 1998] and structured RNA [Jow et al. 2002; Bradley
and Holmes 2009]). In recent years, there has been a growing
interest in evolutionary models for regulatory sequences such
as transcription factor (TF)–binding sites, especially in light of
reports of frequent binding site turnover despite functional
constraints (Moses et al. 2006; Doniger and Fay 2007;
Spivakov et al. 2012) and reports of ultraconserved genomic

segments being associated with regulatory function (Visel
et al. 2008). Models of binding site evolution have a promi-
nent role in annotating the regulatory genome: Computa-
tional approaches for motif discovery and enhancer
prediction rely on such models to compare orthologous
noncoding sequences and assess their regulatory potential
(Moses et al. 2004; Sinha et al. 2006; He et al. 2009).

The first generation of site-evolution models included
applications of the Halpern–Bruno model (Halpern and
Bruno 1998) and the F81 model (Felsenstein 1981), parame-
terized by the position weight matrix (or motif) that repre-
sents the binding specificity of the TF (Moses et al. 2004;
Siddharthan et al. 2005; Sinha et al. 2006). Both of these
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models assume that each nucleotide in the binding site
evolves independently, an assumption that is commonly
made for modeling neutral DNA sequences but is question-
able for TF-binding sites. Lässig and coworkers (Berg et al.
2004; Mustonen and Lässig 2005) proposed a more advanced
model where selection was modeled as acting on the entire
binding site rather than each position independently, and
used this model to estimate selection strength on cAMP re-
ceptor protein-binding sites in bacteria (Mustonen and Lässig
2005) and to demonstrate the possibility of rapid adaptive
evolution of binding sites (Berg et al. 2004), a question that
had been previously addressed by Stone and Wray (2001).
A simplified version of the same idea was used by Kim et al.
(2009) to model TF-binding site evolution in Drosophila. In
their model, called the site-level selection (SS) model, the
functional effect of a mutation is dependent on the binding
energy of the site before and after the mutation. All sites with
energy above a threshold (henceforth called the strong sites)
are assumed to be functionally equivalent, as are all sites with
energy below the threshold (henceforth called the weak sites).
A mutation that changes a strong site to a weak site is con-
sidered functionally harmful and is selected against based on a
TF-specific selection coefficient that is estimated from data. In
the SS model, evolution at all nucleotides in the binding site is
linked together by this common functional constraint. Kim
et al. (2009) showed that the SS model more accurately fits
the observed patterns of binding site conservation between
D. melanogaster and D. yakuba than does the Halpern–Bruno
model.

Although these studies demonstrated the benefit of an
evolutionary model where selection acts at a binding site
level, they are unable to accurately explain observed levels
of regulatory sequence conservation. When applied to evolu-
tionary data from two closely related Drosophila genomes, the
SS model predicts higher evolutionary conservation than the
Halpern–Bruno model, and this prediction is closer to the ac-
tual level of conservation (Kim et al. 2009). However, the
evolutionary data displays even greater conservation than
predicted by the SS model. We speculate that the underpre-
diction of site conservation may be due to at least three
factors that the SS model neglects:

1) The continuous nature of the functional effect of muta-
tions. As mentioned earlier, the SS model assumes that
the functional effect of a site is determined by whether
the site is strong or weak. In other words, the SS model
defines a binary fitness for binding sites. However, it is
reasonable to expect that the functional contribution of
a binding site can be at multiple levels based on the
binding energy of the site (Stormo and Fields 1998),
which is typically estimated by the agreement between
the sequence and the TF motif.

2) The context within which a binding site evolves. The SS
model assumes that each site in a cis-regulatory module
(CRM) evolves independently of all other sites in that
CRM, and in a manner that is independent of the ex-
pression driven by the CRM, that is, independent of CRM
function. In reality, however, one may expect that some

binding sites can tolerate somewhat deleterious changes
(Spivakov et al. 2012) while other sites stay immutable
across large evolutionary distances (Visel et al. 2008),
even if the sites are bound by the same TF and with
similar strengths. This is because the fitness consequence
of an in-site mutation, and hence its evolutionary fate,
depends on the contribution of that site to the CRM’s
regulatory function, and the precise effect of the muta-
tion on function. The SS model tries to mitigate this issue
to an extent by learning a different selection coefficient
for each TF. This approach only captures the fact that
sites from different factors evolve differently, while forc-
ing sites from the same factor to evolve under the same
constraints, regardless of context. Here, context may refer
to the entire CRM or to the immediate neighborhood of
a site. For instance, a given CRM may have a functional
excess of sites for a specific TF, thereby reducing the
selective pressure for individual sites. On the other
hand, it is possible that a nearby site increases the selec-
tive pressure by mediating cooperative or competitive
binding.

3) The evolutionary changes in the context of the binding
site. Because the SS model (like all other models men-
tioned above) ignores the context of a site, it also ignores
evolutionary changes in the context. In reality, the con-
text of a site evolves with the site and may lead to inter-
esting evolutionary dynamics, such as compensatory
mutations in two different sites of the same CRM
(Ludwig and Kreitman 1995; Durrett and Schmidt
2008). For example, the strong pressure for conservation
of a site could be relaxed if a nearby site from the same TF
is made stronger or if a new site for the same TF is
created. Conversely, a site under relatively weak pressure
for conservation could be forced into a situation where
no mutations are tolerated, by the weakening of a nearby
site of the same TF or by the strengthening of a site with
an opposing regulatory effect.

We propose that these factors contribute to the disagree-
ment between SS model predictions and data, and develop
two models of binding site evolution to address these short-
comings. The first model, called “Predicted Expression-Based
Site Evolution Simulator” or “PEBSES,” simulates the evolution
of a binding site in the context of its CRM. The evolutionary
simulations include mutations within the binding site only
and not in the rest of the CRM, but selection is modeled
based on the predicted function of the entire CRM. In par-
ticular, a thermodynamic model that relates CRM sequence
to its function is used to determine the selection pressure on
the site, which then guides the evolutionary fate of in-site
mutations. The second model that we present, called
“Predicted Expression-Based CRM Evolution Simulator” or
“PEBCRES,” generalizes this to allow mutations anywhere in
the CRM, and not just within the site being modeled. In other
words, PEBCRES is a simulation model of CRM evolution,
based on a realistic model of CRM function.

First, we examine whether the new models provide better
fits to evolutionary data from Drosophila genomes, compared
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with existing models. For this, we examine over 800 predicted
TF-binding sites located across dozens of experimentally char-
acterized CRMs in D. melanogaster as well as their ortholo-
gous sequences from 11 other Drosophila genomes. Following
Kim et al. (2009), we summarize this evolutionary data in two
different statistical representations, with one summary focus-
ing on site conservation on relatively short evolutionary scales
and the other capturing site loss across larger divergence
times. We then compare each statistical summary with that
predicted from evolutionary simulations initialized with the
D. melanogaster CRM, and identify the model that agrees
most with the data. We find that both expression-based
models perform better than the SS model, which is based
only on the predicted strength of the site under study.

The new simulation frameworks developed here allow us
to incorporate mechanistic changes to the underlying se-
quence-to-expression (i.e., genotype-to-phenotype) model
and repeat the simulations using the resulting fitness func-
tion. Taking advantage of this feature, we fit different variants
of the PEBCRES model to data on site loss across the 12
Drosophila genomes. We find that a sequence-to-expression
model that incorporates self-cooperative DNA binding by the
TF Caudal (CAD) provides significantly better fits than an
otherwise identical model that lacks this mechanistic
aspect. Cooperative DNA binding by CAD has not been di-
rectly demonstrated in the literature. Therefore, we pursue
this hypothesis further by statistically examining the distribu-
tion of intersite spacing between adjacent CAD sites and find
a significant preference for a specific range of spacing values.
Finally, we perform experimental tests that confirm 1) direct
homodimeric interaction between CAD molecules and 2)
self-cooperative DNA binding by CAD that favors a particular
spacing between binding sites. We note that the hypothesis
about CAD self-cooperativity was also tested previously
through computational modeling of D. melanogaster CRMs
by He et al. (2010) and not found to have statistically signif-
icant support; yet, we found clear support for this hypothesis
when the same model of CRM function was utilized in model-
ing evolutionary data. This exercise demonstrates, for the first
time (to our knowledge), how specific mechanistic details
encoded in cis-regulatory sequences can be revealed by
modeling their evolution and fitting such models to multispe-
cies sequence data. The source code of the simulation pro-
grams presented here is available at http://veda.cs.uiuc.edu/
evolsimul (last accessed October 11, 2013).

Results

A Framework for Context-Aware Simulation of
Binding Site Evolution

We developed a framework for simulating binding site evo-
lution where the fitness effect of a mutation in the binding
site is 1) continuous rather than binary, 2) depends on the
context, that is, on other binding sites present in the CRM
within which the binding site is located, and 3) depends on
the predicted effect of that mutation on the expression driven
by the CRM. In this new evolutionary simulation program,
called PEBSES, the evolving genotype is a CRM and the fitness

is determined by the entire CRM sequence; however, muta-
tions are allowed only within a predesignated TF-binding site
in the CRM.

PEBSES uses a thermodynamics-based model called
GEMSTAT (He et al. 2010) to predict CRM expression from
its sequence (see Materials and Methods) and uses changes in
this predicted expression to assess the fitness of a genotype.
We represent the regulatory function of a CRM by an “ex-
pression profile” (a vector of gene expression levels in well-
defined cell types; fig. 1A). There is a fixed expression profile,
called the “ideal expression profile,” that serves as the pheno-
type under purifying selection. The fitness of a CRM sequence
is determined by 1) predicting the expression profile of that
CRM using the GEMSTAT model and 2) comparing this pre-
dicted expression profile to the ideal expression profile
(fig. 1A).

Our new evolutionary model, PEBSES, simulates a contin-
uous time Markov process describing substitutions within a
binding site (see Materials and Methods). It is exactly analo-
gous to the SS model of Kim et al. (2009) except for the fitness
function used; instead of a fitness function based on the
predicted affinity of a binding site, we use the fitness function
from He et al. (2012), which compares the GEMSTAT-
predicted expression pattern of a sequence with an ideal ex-
pression pattern. This addresses the main shortcomings of the
SS model, because the functional effect of a mutation is de-
pendent not only on the mutation and the binding site but
also on the expression profile and on the CRM in which the
site is located. Moreover, as GEMSTAT predicts expression
from sequence based on site strengths, not based on a thresh-
old on site strengths, the fitness function defines a continuous
rather than binary landscape on all mutations.

We emphasize that while the fitness function used in
PEBSES is based on the expression pattern driven by the
entire CRM, the evolutionary process is limited to a single
binding site, with mutations being restricted to the bound-
aries of the binding site. We designed PEBSES as binding site-
level simulation for two main reasons: 1) it is computationally
efficient, and 2) it provides a fair comparison with the binding
site-evolution models examined in Kim et al. (2012), especially
the SS model.

The Context Plays an Important Role in a Site’s
Evolutionary Dynamics

We adopted the methodology of Kim et al. (2009) to generate
summary statistics of binding site conservation for each of five
different TFs—Bicoid (BCD), CAD, Hunchback (HB), Kruppel
(KR), and Knirps (KNI)—in 37 different CRMs from D. mela-
nogaster. These CRMs were selected because each of them is
associated with an experimentally characterized expression
profile and because these experimental profiles can be pre-
dicted with moderate accuracy from respective sequences by
the GEMSTAT model (supplementary fig. S1, Supplementary
Material online). To generate descriptive statistics of binding
site conservation, 1) D. melanogaster CRM sequences were
aligned to orthologous D. yakuba sequences, 2) for every
predicted binding site in a D. melanogaster sequence, the
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binding energy of the site and its orthologous site was pre-
dicted using the TF’s motif (represented by a position-specific
weight matrix [PWM]), 3) the difference in computed binding
energies was noted as the “energy difference,” and 4) a histo-
gram of energy differences of orthologous sites was created by
examining sites across all CRMs (see supplementary methods
[Supplementary Material online] for a brief overview). This
histogram serves as the evolutionary data to be modeled. An
analogous histogram was computed based on the simulations
of evolutionary models such as the Halpern–Bruno model,
the SS model, or PEBSES model, and compared with the evo-
lutionary data. The results (fig. 2) show that PEBSES models
the evolutionary data more accurately than either the SS or
the Halpern–Bruno model. For instance, when focusing on
sites of the TF KR (fig. 2C), the energy difference histogram
from PEBSES predictions is in strong agreement with that
from real data, as measured by the Kolmogorov–Smirnoff
(KS) d statistic. The fits are significantly worse for the SS
and Halpern–Bruno models. The same is true for sites of
the TF CAD (fig. 2B). For BCD sites, the PEBSES and SS
models have comparable values of the KS d statistic (fig.
2A). Results for HB and KNI sites are shown in supplementary
figure S2 (Supplementary Material online), and, in both cases,
the PEBSES model has the lowest KS d statistic value, implying
better fits. An alternative, more compact way to compare the
different models is to plot the fraction of sites for which
energy difference is 0 (indicating perfectly conserved sites),
in the real data as well as in simulations under each model.
Following this criterion, figure 2D shows that the PEBSES
model makes the most accurate predictions of the observed
evolutionary characteristics of binding sites. Its overall error is
the lowest of the three models compared, and it makes the
most accurate predictions for CAD, KR, and KNI sites (for
BCD and HB sites, the best fits belong to the SS and Halpern–
Bruno models, respectively).

We note that PEBSES uses only one free parameter (see
Materials and Methods), whereas the SS model uses one free
parameter per TF (Kim et al. 2009). In addition to being a more
constrained model, PEBSES is arguably a more realistic model
of binding site evolution. It uses a state-of-the-art sequence-
to-expression model to assign fitness to sequences, and this
underlying model is in turn trained on sequence and expres-
sion data for a large number of CRMs. Moreover, it is easy to
change the underlying model used in PEBSES and simulate the
evolution of a site under different mechanistic assumptions,
for example, cooperativity between TFs, short range repres-
sion, synergy activation. We explore this feature in a later
section. The sequence-to-expression model used in these sim-
ulations incorporates self-cooperative DNA binding by BCD
and KNI (as suggested in He et al. [2010]), but no other TF.

The earlier mentioned results suggest that the context of a
site, represented by the sequence surrounding it and the
expression driven by the sequence, plays an important role
in the evolutionary dynamics of that site. Capturing this role
in simulating binding site evolution leads to better fits to
evolutionary data. It has been speculated that phenomena,
such as homotypic clustering, may buffer a CRM against mu-
tation in the sites (Spivakov et al. 2012), thereby increasing the

FIG. 1. Methodology. (A) The regulatory function of a CRM is repre-
sented by an expression profile, that is, gene expression levels in well-
defined cell types. An ideal expression profile (shown in green, with
brighter shades representing higher expression) is designated and the
fitness of a CRM sequence is computed by comparing this ideal expres-
sion profile to that predicted as being the CRM’s output (a more similar
CRM output profile has greater fitness). The CRM’s output is computed
based on its sequence and the concentration values of relevant TFs
(shown in red) in the same set of cell types. This computation is
done using the thermodynamics-based GEMSTAT model (He et al.
2010), which additionally uses the binding motifs of those TFs to
predict CRM function from sequence. (B) Cartoon illustration of
Wright–Fisher simulations underlying the PEBCRES model. A fixed-
sized population of individuals (CRMs) is evolved for n generations
(t1, t2, . . . tn). Random mutations are introduced in each generation
using a predetermined mutation rate parameter. Each individual is sam-
pled independently at random from the population in the previous
generation, and this sampling probability is dependent on the fitness
of the individual, which in turn is determined by the CRM’s output as
shown in (A).
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frequency of in-site mutations. Our earlier findings reveal a
complementary phenomenon, that is, that the context of a
site can also increase the selection pressure for conservation
at the site.

A Framework for Evolution of Entire CRMs

In the previous section, we showed that the context of a site
plays an important role in the evolution of that site. However,
PEBSES does not account for the possibility of additional
changes in the context of a site. It simulates the evolution
of a single site in the context of a CRM sequence, while that
context itself remains unchanged. However, as explained in
the Introduction, changes in the context of a site can interact
with mutations within the site itself, therefore shaping the
evolutionary fate of the site. To model this phenomenon, it is
necessary to simulate the evolution of the entire CRM. The
continuous time Markov chain simulation implemented in
PEBSES is not appropriate for this purpose. It assumes that a
mutation is expected to fix (or be eliminated) before another

mutation arises. This assumption is reasonable for short
sequences, for example, a single binding site, but may not
be true of approximately 500-bp-long CRMs.

In this section, we describe a framework that we call
PEBCRES, which we use to simulate the evolutionary fate of
an entire CRM (see Materials and Methods). PEBCRES is the
discrete-time population-based evolutionary simulation
framework that was presented in our earlier work (He et al.
2012), as the means to a theoretical exploration of the evo-
lutionary origins of homotypic-binding site clustering. Here,
we show for the first time how that framework can be used to
study the evolution of real CRMs and to model the evolu-
tionary dynamics of binding sites within those CRMs. We also
name the framework here. PEBCRES utilizes a sequence-
to-expression model (GEMSTAT, fig. 1A) to evaluate the fit-
ness of a genotype, but unlike PEBSES, it allows mutations to
appear anywhere in the CRM sequence (and not just within a
specified site). Also unlike PEBSES, it simulates a population of
evolving individuals (CRMs) rather than one evolving

FIG. 2. (A–C) Energy difference histograms from real data and from three evolutionary models—Halpern–Bruno (Halpern and Bruno 1998), SS (Kim
et al. 2009), and PEBSES (this work)—for binding sites of TFs BCD (A), CAD (B), and KR (C). A binding site in a Drosophila melanogaster CRM was
compared with its aligned site in D. yakuba (for real data histogram) or in a simulated descendent (for model-based histograms), and the difference in
predicted binding energies (LLR scores) of the two sites was noted. This was repeated for each of 159, 171, and 239 binding sites of BCD, CAD, and KR.
For model-based histograms, each site’s evolution was simulated on an average of 28 times. (D) The fraction of sites for which energy difference between
D. melanogaster and D. yakuba orthologs is 0 (Conservation; y axis) is shown for real data and for the Halpern–Bruno, SS and PEBSES models, and for five
different TFs. The difference between real data and a model’s prediction of this fraction is deemed the TF-specific error of that model, and the absolute
value of error is averaged over the five TFs and shown as the error of each model.
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genotype (fig. 1B). This allows a user of this program to
examine the interplay between selection and random drift
(Hedrick 2011) as it relates to CRM evolution. Given a CRM
from D. melanogaster, it initializes all individuals of a popula-
tion to have that sequence as the genotype, and then
performs discrete-time Wright–Fisher simulations of a
fixed-sized population for an appropriate number of genera-
tions (see Materials and Methods). The evolutionary fate of a
specific binding site in the original CRM is determined by
averaging over all individuals in the final generation.

As mentioned earlier, PEBCRES is an application of the
framework from He et al. (2012) to model real evolutionary
data. It differs from the application in He et al. (2012) in the
following aspects: 1) In PEBCRES simulations, the population
is initialized with the sequence from a real CRM from
D. melanogaster, instead of a random sequence. 2) The “ideal”
expression pattern is the pattern predicted by GEMSTAT for
the D. melanogaster CRM and, consequently, PEBCRES simu-
lates evolution under negative selection instead of positive
selection. 3) The evolutionary time of the simulation is deter-
mined to match real evolutionary distances between two
species, as opposed to an arbitrarily fixed number of
generations.

Figure 3 compares the histogram of binding site energy
differences from PEBCRES and PEBSES simulations to evolu-
tionary data. We find that PEBCRES simulations provide sig-
nificantly better fits to data on BCD and KNI sites, and
significantly worse fits for CAD sites, while both models ex-
hibit similar levels of agreement with data on HB and KR sites.
We also performed a set of PEBCRES simulations that in-
cluded insertions and deletions (indels) as evolutionary
events using indel rates and length distributions suggested
in the literature (He et al. 2012). These simulations agreed
with evolutionary data better than the SS model, although
the agreement is slightly worse than in the simulations with-
out indels (supplementary fig. S3, Supplementary Material
online). We note that while indels are important sources of
variation for Drosophila noncoding sequence (Sinha and
Siggia 2005; Nourmohammad and Lässig 2011), the statistical
summaries of evolution that we used here focus only on
aligned sites, therefore the goodness of fit is not expected
to be sensitive to such sources of variation.

A curious, possibly coincidental, observation about the
earlier mentioned results is that the two TFs—BCD and
KNI—for which PEBCRES simulations yield significantly
more accurate predictions than PEBSES are also the two

FIG. 3. (A–C) Energy difference histograms from real data and from the two evolutionary models—PEBSES and PEBCRES—presented in this work, for
TFs BCD (A), CAD (B), and KR (C). (D) The fraction of sites for which energy difference between D. melanogaster and D. yakuba orthologs is 0
(Conservation; y axis), shown for real data and for the PEBSES and PEBCRES models. The error of either model, as defined in legend of figure 2, is also
shown.
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TFs that are modeled as binding DNA with self-cooperativity
(in the underlying sequence-to-expression model). Self-
cooperative DNA binding introduces stronger dependencies
between mutations in different sites of the same TF, and
evolution of individual sites in the presence of such depen-
dencies is expected to be modeled better with a CRM-level
simulation (PEBCRES) than a site-level simulation (PEBSES).
By the same reasoning, the relatively inaccurate predictions of
CAD site conservation, made by the PEBCRES simulations,
could reflect self-cooperative binding by CAD, which is not
incorporated in the underlying thermodynamic model of reg-
ulatory function. We return to this point in a later section.

Modeling Binding Site Loss Rates

In the previous sections, we attempted to explain evolution-
ary data summarized in the form of energy difference histo-
grams for orthologous pairs of sites in two closely related
species (D. melanogaster and D. yakuba), where most
strong sites in one species are retained as strong sites in the
other species. Kim et al. (2009) proposed a complementary
method to describe binding site evolution, which is geared
toward larger evolutionary spans. Using D. melanogaster as a
reference species, they counted what percentage of predicted
sites of a given TF is lost in a second Drosophila species
(see supplementary methods [Supplementary Material
online] for a brief overview). Here, a site loss was called if
the D. melanogaster site was partly or entirely deleted in
the second species or had accumulated mutations that
reduce its predicted binding affinity below the defining
threshold. The site loss percentage thus computed was plot-
ted for different choices of the second species, revealing that
this percentage varies linearly with divergence time. Our next
tests of evolutionary models deal with this alternative sum-
marization of evolutionary data.

We performed PEBCRES simulations of CRM evolution for
a fixed number of generations that matches the evolutionary
distance between D. melanogaster and D. willistoni (see
Materials and Methods) and recorded the site loss percentage
between D. melanogaster and each of 11 other Drosophila
species—D. simulans, D. sechellia, D. erecta, D. yakuba,
D. ananassae, D. pseudoobscura, D. persimilis, D. virilis,
D. grimshawi, D. mojavensis, and D. willistoni, with D. willistoni
representing the greatest divergence and D. simulans repre-
senting the least divergence. This site loss profile was com-
puted for each of five different TFs, examining sites over the
same 37 D. melanogaster CRMs analyzed in previous sections.
Each TF’s site loss profile was compared with the analogous
profile obtained from alignments of the 37 D. melanogaster
CRMs with orthologous CRMs in the 11 other species, as in
Kim et al. (2009). Figure 4A and B show the site loss profile for
the TF BCD, from PEBCRES simulations and real data, respec-
tively. The first thing to note in both profiles is that the per-
centage of D. melanogaster sites lost in a second species
increases linearly (R2 of 1.00 and 0.97, respectively) with the
evolutionary divergence between D. melanogaster and that
species. Observing such a “molecular clock” in evolutionary
data is often taken as evidence against species (or branch)

specific adaptive evolution, and indicates that the collection
of sites analyzed evolved predominantly under purifying
selection. Indeed, this was the interpretation offered by Kim
et al. (2009). In our simulations, the observation of a molec-
ular clock is trivial as the model imposes no branch-specific
selection. However, the slope of the linear relationship, which
we call the “loss rate,” may be treated as a summary statistic
to be compared between model and data. Thus, in figure 4A
and B, the loss rate of 0.15 from real data is well matched to
the value of 0.18 observed in PEBCRES simulations. To our
knowledge, this is the first attempt to quantitatively explain
the rate of binding site loss or gain with models of sequence
function and evolution. Note that we only examine site loss
rates here (and not gains), for the same technical reasons
encountered by Kim et al. (2009): A recorded site loss is a
more reliable observation, whereas site gains are more likely to
be conflated with spurious site predictions.

To better illustrate the agreement between loss rates from
model and data, we devised the representation scheme
shown in figure 4C, where each TF is represented by a rect-
angle. The x and y axes of the plot represent the loss rate
inferred from model simulations and real data, respectively.
The center of the rectangle (marked by a cross) represents the
respective loss rates from the procedure outlined earlier, that
is, from an examination of sites in all 37 CRMs included in our
analysis. The sides of the rectangle represent an error estimate
as calculated by a resampling procedure using 50 samples of
18 CRMs each (out of the full set of 37) for real data and 50
samples of 500 CRMs each (~10–15 simulations per CRM) for
model predictions. The diagonal line represents perfect agree-
ment between data and model. All five TFs whose sites were
examined are represented on this plot. We find the model-
based loss rates to agree with real loss rates for four out of five
TFs, with the model overpredicting by approximately 0.02
(14%) on average. However, for sites of the TF CAD the real
loss rate of 0.10 is grossly overestimated by the model, at 0.24.
We examine this anomaly in depth in the next subsection,
and find it to point to self-cooperative DNA binding by
this TF.

Evidence for CAD Self-Cooperativity

Figure 4C reveals that the PEBCRES model shows reasonable
agreement with observed site loss rates for all TFs except
CAD. A similar disagreement was observed earlier (fig. 3)
when comparing energy difference histograms of CAD sites
from real data and simulations. As mentioned there, we hy-
pothesized that this discrepancy may be due to self-cooper-
ative DNA binding by CAD. Such cooperativity has not been
reported in the literature and is not incorporated into the
GEMSTAT model that was used in predicting genotype fit-
ness values in our simulations. However, some evidence for
such a mechanism was offered in the original analysis of Kim
et al. (2009), where the distance between CAD sites was found
to strongly correlate with loss rates, a potential signature of
cooperative binding. A similar observation was made by
Papatsenko et al. (2009). In the context of our analysis, such
cooperativity may explain the apparent anomalies pertaining
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to CAD site evolution that are revealed by figures 3 and 4. If a
pair of CAD sites act cooperatively, a model that ignores this
effect will underpredict the fitness effect of a mutation in
either site, and simulations based on such a model will lead
to overprediction of site loss.

Pursuing the earlier mentioned hypothesis, we modified
the GEMSTAT model of CRM function to include CAD self-
cooperativity, and retrained all model parameters on the 37
CRMs from D. melanogaster. We performed PEBCRES simu-
lations again to predict the site loss rates for all TFs. Figure 4D
shows the results of this exercise, in the same format as
figure 4C. The new simulations predicted a loss rate of 0.17
for CAD sites, significantly closer to the real value of 0.10 than
had been predicted above (0.24). The change in model af-
fected predictions for other TFs but the overall agreement
(see legend) for the model with CAD self-cooperativity was
better than the model without it. We also repeated the
experiments in figure 3, now with the new model, and

observed improved agreement with real data on CAD site
conservation between D. melanogaster and D. yakuba (sup-
plementary fig. S4, Supplementary Material online). We note
that the GEMSTAT model in its default configuration (figs. 2,
3, and 4C) incorporates self-cooperative DNA binding by BCD
and KNI because He et al. (2010) found evidence for these
mechanistic features by a statistical analysis of the same 37 D.
melanogaster CRMs that were studied by us. However, in that
work, the evidence for CAD self-cooperativity was not statis-
tically significant. In contrast, our analysis, which “fits” the
GEMSTAT model to evolutionary data on those 37 CRMs
via evolutionary simulations, suggests the presence of CAD
self-cooperativity. Additionally, we repeated the earlier men-
tioned exercise with several alternative formulations of the
GEMSTAT model, where we modeled self-cooperativity for
the single TFs (BCD, CAD, HB, KNI, and KR) and combina-
tions of TFs (BCD and CAD; BCD and KNI; BCD, KNI, and
CAD) at a time. We found (fig. 5B) that the evolutionary data

FIG. 4. (A, B) Site conservation for BCD (y axis) as a function of evolutionary distance between Drosophila melanogaster and a second Drosophila species
(x axis), based on PEBCRES simulations (A) and real data (B). Evolutionary distance is measured as the average number of substitutions in aligned
positions in the pairwise alignment (see Materials and Methods). The inset shows the R2 value and the (negative of) the slope of the best fit straight line,
called the loss rate. (C, D) Site loss rate from real data (y axis) and from PEBCRES simulations (x axis), shown by cross marks for each TF. Sides of the each
rectangle indicate the standard deviation of loss rates observed from bootstrap samples. The two panels show this information with two different
models of regulatory function—one with self-cooperative DNA binding by BCD and KNI (C) and one with self-cooperativity for BCD, KNI, and CAD (D).
The total error of a model was calculated as the horizontal distance between each cross and the diagonal, summed over all TFs, and is shown in the
inset.
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on site loss rates are best explained by models that include
self-cooperativity for CAD (e.g., a model that includes self-
cooperativity for BCD, CAD, and KNI, reported in fig. 4D).
These results can be viewed as evolutionary evidence for co-
operative interaction between CAD binding sites. We also
found that the spacing between neighboring CAD sites in
D. melanogaster has a statistically significant bias for a range
of 0–10 bp (base pairs), especially at 6 bp (fig. 6A; see Materials
and Methods), providing additional evidence for our hypoth-
esis. (The sequence-to-expression model allows cooperative
interactions between two homotypic-bound sites that are
within 50 bp of each other, and thus does not by itself suggest
the preferred spacing between cooperatively bound sites.)

Experimental Validation
We tested for direct physical interaction between CAD pro-
tein molecules using a variation of the LUMIER method
(Barrios-Rodiles et al. 2005; Vizoso Pinto et al. 2009), modified
to analyze direct binding in vitro (Cheng et al. 2013). A full
length CAD coding region was fused to either luciferase (Luc)
or maltose-binding protein (MBP), and physical interaction
was tested by measuring recovery of Luc-CAD following in-
cubation with and purification of MBP-CAD. A 7-fold increase
in recovered luciferase activity was observed with Luc-CAD
compared with an unfused Luc control. This ratio is referred
to as the luminescence intensity ratio (LIR). In contrast, pre-
viously published negative control TF pairs all showed an LIR
below 7 (Cheng et al. 2013; Kazemian et al. 2013). To further
control for nonspecific interactions, negative controls using
unfused MBP, MBP fused to the Circadian Locomotor Output
Cycles Kaput (CLK) TF or Luc fused to CLK (Cheng et al. 2013;
Kazemian et al. 2013) were also shown to result in lower
recovery of luciferase. These results confirm the homodimer-
ization of CAD molecules in vitro (supplementary table S1,
Supplementary Material online).

We next determined whether properly spaced pairs of
CAD binding sites exhibited higher binding affinity than in-
dividual sites or the same sites with altered spacing. We iden-
tified two adjacent CAD binding sites with an optimal
intersite spacing of 6 bp (see Materials and Methods) and
used a modification of a previously described oligobinding
assay (Hallikas and Taipale 2006; Cheng et al. 2013;
Kazemian et al. 2013) by mixing luc-tagged TFs with biotin-
labeled DNA sites with an excess of unlabeled competitor
DNAs. These competitors either match the wild type
sequence or have mutations that alter the CAD binding
sites or the spacing between them (fig. 6B). Differences in
affinity are reflected in the ability of different competitor
DNA molecules to prevent TF binding to the biotin-labeled
DNA probe and thus reduce recovery of the associated lucif-
erase activity with streptavidin beads. The wild type sequence
containing both binding sites at the optimal spacing was the
most effective competitor, reducing luciferase recovery to
near background levels (fig. 6C; supplementary table S2,
Supplementary Material online). On the other hand, when
each site was provided on separate DNA molecules, or when
both sites are on the same molecule but the spacing between
the sites was increased by 5 bp, the competition was much
less than with the wild type sequence, similar to the level seen
with a single site. More detailed analysis revealed that an
increase or decrease of 1 bp between the sites partly reduced
binding while a change of 3 bp decreased binding to levels
similar to that seen with a 5 bp change or a single site. From
this result, we concluded that the CAD sites must be properly
spaced for cooperative binding.

Negative Controls
We claim above that the GEMSTAT model of CRM function,
with self-cooperativity for BCD, KNI, and CAD, provides the
best fitness function to use with PEBCRES simulations to

FIG. 5. (A) Real and simulation-based site loss rates (crosses) and their sampling variations (sides of rectangles), where simulations were performed with
TF expression patterns randomly shuffled. (B) Total error, as defined above, for simulations performed with different configurations of the GEMSTAT
model—self-cooperative DNA binding by each of BCD, CAD, and KNI (Coop BCD CAD KNI; the model of fig. 4D), by BCD and CAD only (Coop BCD
CAD), by BCD and KNI only (Coop BCD KNI; the model of fig. 4D), by BCD only (Coop BCD), CAD only (Coop CAD), by HB only (Coop HB), by KNI
only (Coop KNI), and by KR only (Coop KR)—and for different types of negative controls—with randomly reassigned TF parameters (Shuffled Params
1–10) and with randomly reassigned TF expression profiles (Shuffled Expr 1–10).
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explain site loss profiles in the 12 Drosophila species. The total
error (see legend of fig. 4) of loss rate predictions from this
model is 0.17. We next performed two different types of
negative control experiments where we did not expect the
simulation-based loss rates to agree with data. These controls
were intended to provide us a characterization of the total
error values expected by chance. The effect of a TF on the
expression of a CRM depends, among other things, on the
thermodynamic parameters in the GEMSTAT model and the
TF’s concentration profile. In each set of controls, we ran-
domized one of these factors while keeping the other factor
unaltered. These are strong controls because most of the
information contained in the original model is also present
in the negative control.

In the first set of controls, we reassigned the thermody-
namic parameters representing activation/repression
strengths of TFs in the GEMSTAT model, in a random
manner. For instance, if BCD (an activator) and KR (a repres-
sor) have parameter values of + 4 and �3 in the original
model (positive and negative values signifying activation
and repression, respectively), the reassignment may assign a
parameter value of�3 (repressive role) to BCD and a value of

+ 4 (activating role) to KR. The reassignment is not necessary
a simple swap between two TFs. For example, BCD might be
assigned the parameters from KR, which receives KNI’s pa-
rameters, whereas KNI is assigned the parameters from BCD.
We performed 10 independent negative controls of this type,
each with its own random reassignment of parameter values
among TFs, ran PEBCRES simulations of CRM evolution with
the randomized GEMSTAT model, and recorded the total
error of loss rate predictions. We found the best total error
in these control experiments to be 0.24, with an average of
0.35 (fig. 5B; Shuffled Params 1–10).

In the second set of negative controls, we randomly shuf-
fled the mapping between TFs and their expression profiles.
For example, in the original model of anterior–posterior pat-
terning in the embryo, BCD expression peaks in the anterior
end and decays toward the middle of the embryo, whereas
CAD expression peaks at the posterior end of the embryo and
is weakest in the anterior end. A shuffled control might reas-
sign these profiles so that BCD is active in the posterior end
while CAD becomes active in the anterior. We repeated
PEBCRES simulations ten times with this type of a random-
ized GEMSTAT model. Results from one such control are

FIG. 6. (A) Logarithm (base 10) of P value of CAD intersite spacing bias at different values of the spacing (x axis). (B) A schematic representation of
competitor DNA used to experimentally assess cooperative DNA binding by CAD in vitro. The competitor DNA might include mutations that disrupt
one (�A, �B) or both (�AB) of the CAD-binding sites as well as deletions (�1,�3,�5) or insertions ( + 1, + 3, + 5) that change the spacing between
the two sites. �A + �B indicates the inclusion of both DNA with mutations to the first site (�A) and DNA with mutations to the second site (�B).
(C) DNA-binding site measurements for CAD homotypic interaction. In experiments, the biotinylated DNA sequence is either wild type or not included
(no probe). The competitor DNA used is indicated on the x axis. The luciferase activity recovered using a competitor in which both CAD binding sites
are mutated is set to a value of one and used as a nonspecific DNA-binding control to normalize the remaining samples. Addition of a wild-type DNA
sequences effectively competes for binding to the probe and reduces the recovery of Luc-CAD. Changes in either the individual CAD-binding sites or in
the spacing between the binding sites results in reduced binding to the competitor DNA compared with wild type and an increased recovery of Luc-TF
with the biotin-labeled DNA. Error bars indicate the standard deviation (see supplementary table S2 [Supplementary Material online] for individual
measurements and more detailed sequence information).
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shown in detail in figure 5A, with a total error of 0.34. The best
total error in these experiments is 0.24 and the average is 0.29
(fig. 5B; Shuffled Expr 1–10). In summary, our negative control
experiments confirm that the GEMSTAT model with self-
cooperativity for BCD, KNI, and CAD (total error = 0.17) pro-
vides an accurate explanation of site loss rates in 12
Drosophila species.

Discussion and Conclusion
We described here a principled approach to understand bind-
ing site evolution at a higher resolution than previous studies.
A seemingly surprising finding of comparative genomics is the
unexpected degree of evolutionary flux in regulatory se-
quences (Dermitzakis and Clark 2002; Balhoff and Wray
2005; Moses et al. 2006). For instance, Emberly et al. (2003)
noted that known binding sites in functional CRMs are not
much more conserved (between two Drosophila species)
than in sequences randomly sampled from the genome. A
similar exercise of recording the extent to which TF-binding
sites are conserved at varying evolutionary distances was con-
ducted more comprehensively by Kim et al. (2009). The con-
clusion from that study was that sites are lost at a roughly
constant rate, that is, the number of site losses is proportional
to evolutionary divergence, as might be expected in the ab-
sence of lineage-specific selection. (“Site loss” was defined
relative to one reference species rather than the common
ancestor and, for technical reasons, the study examined
losses only.) However, cataloging of site-level evolutionary
changes does not address the more fundamental questions:
Is the observed rate of site loss lower or greater than
expected? What is the expected rate? Is there a better way
to define this expectation than to base it on random genomic
segments (one extreme) or to presume that a functional
binding site must remain a binding site, that is, match the
TF motif (other extreme)? Why is the site-loss rate for one TF
different from another TF? These are the questions that we
hope to begin answering with our work. We link the expected
evolutionary flux on a TF’s binding site to our understanding
of that site’s function. For this purpose, we take recourse to
the regulatory system where current understanding of cis-
regulatory logic, that is, the roles of various binding sites, is
among the most advanced—the A/P patterning system in
the fruitfly embryo (Segal et al. 2008; He et al. 2010). A state-
of-the-art computational model of a CRM’s regulatory func-
tion is coupled with evolutionary simulations under mutation
and selection, and the evolutionary histories of a binding site
under repeated simulations are used to define the expected
rates of site loss and conservation. These expectations agree
by and large with the observed rates. Moreover, to a first
approximation this approach also explains why sites of one
TF evolve at a different rate from those of another TF, al-
though there is room for improvement in this regard. An
important aspect of our approach is to assert, in the evolu-
tionary simulations, that the fitness effect of an in-site muta-
tion is context dependent; put simply, what a mutation does
to a site depends on what other sites are nearby. We dem-
onstrate that explicitly modeling this reasonable assertion

leads to a better quantitative explanation of binding site
evolution.

Simulation frameworks for CRM evolution have recently
been proposed in at least two different studies—Lusk and
Eisen (2010) and He et al. (2012). In both of these studies,
the goal was to explain features of CRM architecture (e.g.,
proximity constraints on pairs of sites [Lusk and Eisen 2010]
or homotypic clustering of sites [He et al. 2012]) by using a
model of CRM function with evolutionary simulations. Our
methodology is similar in spirit to Lusk and Eisen (2010),
though our goal is to explain features of CRM evolution
under purifying selection, a fundamentally different goal.

Other frameworks to model the evolution of the regula-
tory machinery using simulations include (Francois et al. 2007;
Cooper et al. 2009; Pujato et al. 2013), all of which study
evolution at the gene-regulatory network level. Also notewor-
thy is the study in Stewart et al. (2012), where a population
genetics framework is used to explain the emergence of co-
operative binding in regulatory systems, and in Josephides
and Moses (2011), where a maximum parsimony approach
is used to enumerate all maximally parsimonious evolutionary
paths from an inferred ancestral to the current known
sequence in Saccharomyces cerevisiae. However, our model
is fundamentally different from those models in its resolution:
We model evolution at the sequence level, whereas the afore-
mentioned studies model evolution at a higher level, with the
exception of Stewart et al. (2012), where a sequence simula-
tion was used mainly to validate the population genetics
model. At the same time, our model may be used in conjunc-
tion with some of the above approaches in future studies.

We attempted to model patterns of binding site conser-
vation and turnover under purifying selection on the CRM’s
expression readout. This is in contrast to studies that consid-
ered a collection of binding sites as evolving under an energy-
dependent fitness model (Mustonen and Lässig 2005; Doniger
and Fay 2007; Kim et al. 2009) and were concerned primarily
with quantifying the average strength of purifying selection
on the collection of sites. A similar approach to testing for
purifying selection was utilized by Moses (2009). He et al.
(2011) recently noted that these approaches are not ideal
for detecting positive selection on binding sites, and they
examined patterns of polymorphism and divergence in two
closely related species (D. melanogaster and D. simulans) to
test for signatures of selection. They found functional site
evolution to be primarily under purifying selection. Our
study is consistent with this—we found patterns of site con-
servation (figs. 2 and 3) in closely related species to be well
explained by our simulations, which only implement purifying
selection. They also presented evidence for positive selection
for both gains and losses of binding sites. We find patterns of
site loss (fig. 4) across larger evolutionary spans to be roughly
consistent with predictions from a model that ignores posi-
tive selection, but there is much room for improvement in
the goodness of fit. As such, we do not claim that site loss is
adequately explained by purifying selection alone; in fact,
some of the missing accuracy may be due to ignoring positive
selection. PEBCRES simulations are not meant to be a test for
positive selection, especially because the signal is mixed with
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the dominant signals of purifying selection acting on each
CRM’s output.

In trying to explain evolutionary data using our under-
standing of regulatory function, we also realized that the
exact same framework may be used to test and improve
our understanding of regulatory function using evolutionary
data. We observed that the default configuration of the
GEMSTAT model of regulatory function (used in the fitness
function) led to evolutionary simulations that by and large
agreed with real data on site evolution, but revealed one
glaring disagreement—that is for CAD sites. We took this
as a cue that the GEMSTAT model of cis-regulatory logic
may be flawed in some respect, and altered the model to
include self-cooperative DNA binding by CAD. This led to
much improved fits to evolutionary data, and subsequently
the hypothesis of CAD self-cooperativity was experimentally
confirmed both through PPI assays and DNA competition
assays. Interestingly, two essential pairs of CAD-binding sites
have been previously described in the fushi tarazu (FTZ) pro-
moter (Dearolf et al. 1989), and a recent study (Bakkali 2011)
of population variation in this promoter reported evidence of
purifying selection, but the role of cooperative CAD binding
and binding site spacing was not examined. Furthermore, one
of the mammalian proteins related to CAD has been dem-
onstrated to bind DNA as a dimer (Suh et al. 1994), indicating
that dimer formation by members of this homeodomain
family is conserved across species.

It is worth noting that a recent study by Kaplan et al.
(2011) reported that protein interactions, including coopera-
tive DNA binding, play an insignificant role in determining TF
occupancy at accessible regions of chromatin. We do not
interpret their results as contradictory to our finding of self-
cooperative DNA binding by CAD. The data type examined
and modeled by Kaplan et al. are ChIP data on genomewide
TF-DNA binding levels, whereas we identified CAD self-coop-
erativity by modeling evolutionary data on CRMs and CAD
binding sites within them. Moreover, our finding is not meant
to be a broader statement on the prevalence of protein in-
teractions in regulatory systems; it is only a demonstration of
the possibility of hypothesizing such interactions through
evolutionary analysis. The significance of this strategy for
mechanistic investigation becomes clearer upon noting that
the hypothesis of self-cooperative binding by CAD was also
tested by He et al. (2010), in exactly the same expression-
modeling framework (GEMSTAT) but on D. melanogaster
CRMs alone, and not found to have significant support. It
was only when we tried to explain CAD site evolution that an
expression-model with CAD self-cooperativity appeared a
much better alternative to a model without such cooperativ-
ity. We anticipate that there may be many more mechanistic
insights about cis-regulatory logic that are not captured when
we simply try to model expression from sequence, as in
GEMSTAT and will emerge only when we attempt to explain
evolutionary data from such models. In this sense, our work
may be a proof-of-concept of an entirely new strategy for
modeling gene expression.

There are various technical issues involved in studying
binding site evolutionary patterns that were addressed

carefully by Kim et al. (2009), and we adopt their methodol-
ogy throughout this work. One such issue is that of alignment
errors. We performed all alignments using the PECAN pro-
gram (Paten et al. 2009), which was shown by Kim et al.
(2009) to lead to the same conclusions as those based on
alignments from another program used there, called
ProbConsMorph. A separate benchmarking study of align-
ment programs also found PECAN to be superior for aligning
noncoding sequences (Kim and Sinha 2010). A second tech-
nical issue is that of binding site predictions, which, being
based on motif matches alone, are prone to false positives.
Again, this issue was addressed by Kim et al. (2009), who
assessed the false positive rate for each of the TFs studied
there. We excluded the TF Giant (GT) from our analysis as the
estimated false positive prediction rate of its sites was high. In
light of the same technical problem, we limited our study of
site evolution on longer time scales to site loss events only, as
gain events are more prone to being confounded with spur-
iously predicted sites.

We presented two closely related evolutionary simulators,
called PEBSES and PEBCRES, with the only difference being
that PEBSES allows mutations only within a predesignated-
binding site in the CRM and PEBCRES allows mutations any-
where in the CRM. Although PEBCRES is a more realistic
simulator, we do not dismiss the utility of PEBSES because
of the following: 1) It was designed to match the SS and
Halpern–Bruno models closely and therefore represents a
fair comparison with these models; 2) it is computationally
efficient for typical TFBS lengths (up to 20 bp long); and 3) it
isolates the evolution of a site from the evolution of the
nearby sites, allowing for the testing of different hypotheses.

The main caveats to note in this work are that both
GEMSTAT and PEBCRES are imperfect models. There are as-
pects of gene expression, some known and perhaps several
unknown, that are not encoded in the GEMSTAT model. The
parameter learning procedure will, to a certain degree, com-
pensate for mechanisms missing in the model by attributing
their effects to other mechanisms. For instance, chromatin
remodeling effects of pioneer factors (Harrison et al. 2011;
Nien et al. 2011) that potentially make the local chromatin
more accessible to other TFs may be inaccurately modeled as
being distance-dependent cooperative binding between two
TFs. Likewise, there are many deficiencies in the evolutionary
simulation framework adopted here, some of which are well
known (e.g., not modeling several phenomena such as recom-
bination, varying population size, and potential errors in evo-
lutionary parameters used) but were not addressed by us for
simplicity and efficiency. Additionally, our simulation frame-
work relies on the assumption that the expression patterns
do not change in any of the 12 Drosophila species. This is one
of the reasons why we conducted this study on the segmen-
tation network in the early Drosophila embryo, for which
there is evidence of deep conservation at the gene expression
level (Hare et al. 2008; Weirauch and Hughes 2010; Swanson
et al. 2011). However, the assumption may not be valid for
other systems of interest. Therefore, if evolutionary data does
not agree with simulation results or agrees more with one
model of regulatory function than another, one should treat
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this as merely suggestive of mechanistic hypotheses and as a
starting point for further exploration.

In conclusion, we have presented here a new quantitative
framework for exploring binding site evolution and cis-regu-
latory logic in an integrated manner. We show that this
framework can offer a reasonable quantitative explanation
of conservation and loss of individual TF-binding sites, and
can also provide useful insights into biochemical mechanisms
of gene regulation. This approach also has the potential to
provide a theoretical framework for examining the outstand-
ing issues of the day related to CRM architecture and evolu-
tion, such as homotypic clustering of binding sites (He et al.
2012), enhancer synergy (Yao et al. 2008), and shadow
enhancers (Perry et al. 2010; Barolo 2012). Our future work
will attempt to explain such phenomena using the general
strategy presented here.

Materials and Methods

Overview of Models

The PEBSES and PEBCRES models of CRM evolution have
three main components: 1) a sequence-to-expression
model; 2) a fitness function based on the CRM’s predicted
expression readout; and 3) an evolutionary simulation model.
The evolutionary model is responsible for generating muta-
tions and simulating the evolutionary fate of those mutations.
The fitness function influences the evolutionary fate of a mu-
tation and is based on a comparison between the predicted
expression pattern for a CRM and an ideal expression pattern.
The sequence-to-expression model is used to predict the
expression pattern driven by a CRM. The evolutionary
model is the difference between PEBSES and PEBCRES
(both described in later sections), whereas the sequence-to-
expression model and the fitness function are identical be-
tween them.

Sequence-to-Expression Model

PEBSES and PEBCRES rely on a sequence-to-expression model
to compute the fitness of a CRM. We used the GEMSTAT
model of He et al. (2010) to predict the expression profile
driven by any CRM sequence. Here, expression profile refers
to the gene expression levels, due to the regulatory effect of
the sequence, in a series of cell types (fig. 1A). A set of TFs
relevant to the CRM is defined as input and each cell type is
described by the concentration of each TF in that cell type.
For instance, in the case of the CRMs studied here, the cell
types correspond to different positions along the anterior–
posterior (A/P) axis in the Drosophila embryo at the blasto-
derm stage (discussed in detail later). Additionally, the
GEMSTAT model requires for each TF the binding specificity
(modeled as a PWM) of the TF, as well as a pair of parameters
related to the Kd of TF-DNA binding and the TF’s activating or
repressive potency. The model offers the option of modeling
self-cooperative DNA binding by any of the relevant TFs, in
which case an additional parameter reflecting the strength of
homodimeric interaction is required.

CRMs studied in this work were previously shown to drive
patterned expression along the A/P axis in the blastoderm

stage D. melanogaster embryo. The expression pattern of each
of these CRMs, as determined experimentally, is represented
as a 60-dimensional vector of values in the range [0,1], with
the dimensions of the vector corresponding to uniformly
spaced positions along the A/P axis from 20% egg length to
80% egg length. CRM sequences and their experimental ex-
pression profiles were as collected by He et al. (2010). The
relevant TFs used to model CRM function were BCD, CAD,
KR, KNI, GT, and HB. TF motifs were taken from the Fly Factor
Survey database. Values of TF-specific free parameters were
learned by simultaneous fits of the model to the 37 D. mel-
anogaster CRMs. We used the same 37 D. melanogaster CRMs
for our evolutionary simulations; however, the model fitting
and evolutionary simulation steps were run independently,
and therefore the parameter values were unaffected by the
evolutionary simulations. By default, we configured the
GEMSTAT model to use self-cooperativity for BCD and
KNI, as this model had been found to be the optimal
model by He et al. (2010). When performing simulations
with different configurations of GEMSTAT, for example,
self-cooperativity for a different subset of TFs, the free param-
eters of the model were retrained on the same data set.

Fitness Function

An important component of PEBSES and PEBCRES is the
fitness function that compares the predicted expression pat-
tern for a CRM sequence with the ideal expression pattern. A
desirable fitness function has three properties: 1) the value of
the fitness function is maximum when the predicted expres-
sion pattern is a perfect match to the ideal expression pattern;
2) any deviation from the ideal expression pattern is penalized
by decreasing the fitness function; and 3) the penalty value is
monotonically increasing with the amount of deviation.

With these considerations in mind, we used the weighted
pattern generating potential (wPGP) score of Samee and
Sinha (2013) to compare the ideal expression with a predicted
expression. Let u be the predetermined ideal expression pro-
file for the CRM. Let v represent the expression profile pre-
dicted by GEMSTAT for a given genotype g, and let ui and vi

represent the ideal expression and predicted expression, re-
spectively, in cell type i. The fitness of genotype g is defined
from the wPGP score between u and v, as follows:

1. Compute “reward” as

P
ui �minðui, viÞP

u2
i

2. Compute “penalty” as

P
umax � uið Þ �maxð0, vi � uiÞP

ðumax � uiÞ
2

3. Compute “wPGP” as wPGP(u) = reward� penalty

4. Compute “fitness functional” as f(g)=[max(0, wPGP(u))]2

5. Compute “fitness” as F(g)=1+Kf(g)

where umax ¼ Maxi½ui� and K is a free parameter represent-
ing a scaling constant. The fitness function FðgÞ was used in
He et al. (2012). Note that wPGP, and therefore F gð Þ, is max-
imized when the reward is maximum and the penalty is min-
imum. The reward is maximized when vi � ui for every cell
type i; in other words, a sequence is rewarded for driving
higher expression in cell type i. On the other hand, penalty

196

Duque et al. . doi:10.1093/molbev/mst170 MBE

(
(
(
,
 below
while 
.
-
see details below
-
-
anterior-posterior (
)
e.g.
-
(
(
(
``
''
-
-
-


is minimized when vi � ui, or, in other words, overexpression
in any cell type i is penalized. Putting reward and penalty
together, we have that fitness F gð Þ is maximized when
vi � ui and vi � ui, which only happens when vi ¼ ui.
Having vi > ui for any cell type i increases penalty while
reward remains the same and having vi < ui decreases
reward with penalty remaining the same. The wPGP score,
and thus also the fitness function has all the aforementioned
properties. Additionally, overexpression and underexpression
are penalized differently, and overexpression is penalized only
up to a saturation point. The advantages of the wPGP score
over either the sum of squared errors or a correlation coeffi-
cient are discussed in Samee and Sinha (2013). The fitness
functional f ðgÞ is a number between 0 and 1, with a value of 1
representing perfect match between u and v. The parameter
K can be interpreted as the selection coefficient when the two
competing genotypes have f ðgÞ equal 0 and 1, respectively.

PEBSES

PEBSES is a continuous-time Markov chain simulator that
follows the theory of Kimura and Ohta (Kimura and Ohta
1969; Mustonen and Lässig 2005; Kim et al. 2009). It simulates
the evolution of a single binding site located within a CRM,
using the function FðgÞ described earlier to estimate the fit-
ness effect of any mutation. The inputs to PEBSES include 1) a
complete GEMSTAT model, 2) a CRM sequence, and 3) the
coordinates of a binding site within the CRM. The simulation
proceeds as a continuous-time Markov process of evolution-
ary changes in the binding site. The rate of substitution from a
site a to a site b, denoted by uða,bÞ, is calculated as per the
following formula:

u a,bð Þ ¼ 2N� a,bð Þ
1� exp �2 F bð Þ � F að Þð Þ½ �

1� exp �4N F bð Þ � F að Þð Þ½ �

where N represents the effective population size,� a,bð Þ is the
background rate of mutation from site a to site b andFðxÞ is
the fitness of a site x relative to the current site. We setFðaÞ
in this formula to be 1, and F xð Þ ¼ FðxÞ=FðaÞ. This leads to

F bð Þ � F að Þ ¼ Kðf bð Þ�f að ÞÞ
1 + Kf ðaÞ , which we approximate as

F bð Þ � F að Þ � Kðf bð Þ � f að ÞÞ, because Kf að Þ � 1 as ex-
plained below.

In each step of the simulation, PEBSES enumerates every
site b that differs from the current site (a) by exactly one
nucleotide and calculates uða,bÞ. One of the enumerated sites
will be randomly selected with probability proportional to
uða,bÞ. After each step, the simulation time is incremented
by sampling from an exponential distribution with rate
U ¼

P
b uða,bÞ, where the sum is over every site b that dif-

fers from a by at most one nucleotide. The simulation stops
when the simulation time is larger than or equal to a pre-
determined value. In our experiments, this predetermined
value was the evolutionary distance between D. melanogaster
and D. yakuba. We note that this simulation procedure is an
extension of the SS model of Kim et al. (2009) to a nonbinary
fitness function for binding sites.

Parameter Fitting
PEBSES has one free parameter, 4NK (see supplementary text,
Supplementary Material online), which can be used to adjust
the predicted binding site conservation level. In general, in-
creasing the value of 4NK will increase the predicted conser-
vation for each of the TFs. To find the value of 4NK that best
matches the observed data, we ran PEBSES with different
values of 4NK to simulate the evolution of binding sites
from D. melanogaster. For each value of 4NK, we run 5,000
simulations per TF, with binding sites chosen randomly
among high affinity binding sites in D. melanogaster that
are well conserved in the other 11 species. The value of
4NK that results in the best fit to data for all TFs is chosen
for reporting. We avoid overfitting by using a single 4NK for all
TFs.

Limit on Site Length
PEBSES makes an implicit assumption that at any point
during the evolutionary simulation a maximum of two ver-
sions of a site are competing. This assumption is only valid if
the expected time for a mutation to arise in a site is larger
than the expected time for a mutation to fix in the popula-
tion (or to be eliminated from the population). Because the
rate of mutations in a site grows with the site length, this
assumption is only valid for short (e.g., binding site length)
sequences. Therefore, PEBSES is not appropriate to simulate
the evolution of an entire CRM.

Computational Complexity
At every generation, PEBSES enumerates every possible single
nucleotide mutation to a binding site sequence and uses
GEMSTAT to predict the expression of the mutated se-
quence. This requires a linear number of GEMSTAT calls
and is efficient for typical binding site lengths (up to 20 bp).

Comparison with the SS Model
One of our goals was to compare the results of PEBSES sim-
ulations with those of the SS model of Kim et al. (2009). We
therefore implemented the SS model within the PEBSES
framework by redefining FðxÞ as

FðxÞ ¼
1 + s
1

iff LLR xð Þ > �
otherwise

�

where � is a threshold on site strength as used by the SS
model and s> 0. Thus, the PEBSES and SS models use an
identical evolutionary framework and differ only in the fitness
function.

PEBCRES

PEBCRES is the simulation framework from He et al. (2012),
used here to study and explain real evolutionary data. In the
original application, the framework was used to simulate the
evolution of an artificial expression pattern under positive
selection for a fixed number of generations and the
number of binding sites was counted in the final population.
Our application, on the other hand, simulates the evolution
of 37 real expression patterns from the A/P patterning system
in Drosophila, under negative selection. We stop our simula-
tions at a time determined by the evolutionary distance
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between two Drosophila species (in our experiments either
D. melanogaster and D. yakuba or D. melanogaster and
D. willistoni). To evaluate how well our simulations match
real data, we use two summary statistics from Kim et al.
(2009) that reflect evolutionary changes in binding sites be-
tween the initial and final population.

PEBCRES simulates the evolution of an entire CRM using
discrete-time Wright–Fisher simulation with a fixed-sized
population size. Similarly to PEBSES, it uses the wPGP score
of Samee and Sinha (2013) to assign a realistic fitness value
FðgÞ to genotypes. The inputs to PEBCRES are 1) a complete
GEMSTAT model and 2) a CRM sequence. A population of
2N = 100 copies of the original CRM sequence is created at
the start of the simulation and in each generation, random
mutations are introduced in the population with a fixed rate
(� ¼ 10�5) per generation, per individual, per base pair. After
each generation, 2N new individuals are sampled, with re-
placement, from the previous generation. The probability of
sampling individual g is proportional to its fitness
FðgÞ ¼ 1 + Kf gð Þ, as defined earlier, where f gð Þ is calculated
from the wPGP score and K is a free parameter.

Parameter Fitting
The only free parameter (K) is determined by fitting evolu-
tionary data, in a procedure similar to the one used in PEBSES:
We run several experiments with different values of K, each
experiment consisting of 1,000 simulations of randomly
selected CRMs, and choose the K that most closely matches
the evolutionary data. As with PEBSES, we use a single param-
eter for all TFs to minimize overfitting. Other parameters of
PEBCRES, such as population size and mutation rate, were set
as in our previous work (He et al. 2012), on which PEBCRES is
based.

Time Rescaling
The parameters used in PEBCRES, especially population size
(N) and mutation rate m, are set using time rescaling (Hoggart
et al. 2007) to speed up simulation time following He et al.
(2012). We note that standard values in the literature are in
the range of 105�106 for population size (2N) (Thornton and
Andolfatto 2006) and 10�9�10�8 for mutation rate (�)
(Drake et al. 1998), resulting in 2N� in the range of
10�2�10�4, with our value of 2N� ¼ 10�3 within that
range.

Estimating Evolutionary Distances
PEBCRES simulation proceeds generation by generation until
the average number of substitutions in individuals in the
current population is greater than the evolutionary distance
between D. melanogaster and the target species. We used the
average number of substitutions per aligned base pair as a
measure of evolutionary distance, We estimated this distance
between D. melanogaster and each of the 11 other species
by 1) generating a pairwise alignment of CRM sequences from
the two species using the Pecan tool Paten et al. (2009) with
default parameters and 2) counting the number of substitu-
tions in aligned positions. The resulting evolutionary distances
are consistent with those reported by Sinha and Siggia (2005)
and our model can tolerate small deviations in the distance

estimation due to the free parameter K. When calculating the
loss rates across multiple species, we run the evolutionary
simulation for the distance of farthest species and record
intermediary populations at time points representing each
of the other species.

Reporting Results in Population-Based Simulation
PEBCRES is a population-level simulation program and each
simulation yields 2N sequences in the final population. We
treat each of these sequences as an independent result when
plotting the histograms for figure 3 and calculating the con-
servation reported in figure 4.

Spacing Bias Analysis

We extracted the top 500 segments of size 500 bp each that
are predicted to bind by CAD using STUBB program and are
within the top 10% accessible region of the genome revealed
by DNase I hypersensitivity data (Li et al. 2011). We then
searched these segments for biases in the intersite spacing
between adjacent pairs of CAD binding sites using the iTFs
program (http://veda.cs.uiuc.edu/iTFs, last accessed October
11, 2013; [Kazemian et al. 2013]). The adjacent CAD-binding
sites at optimal intersite distance of 6 bp were selected from a
putative A/P transcriptional enhancer, gt_-10_construct.

Experimental Validation

Details of the experimental procedure are as described in
Cheng et al. (2013). In brief, a full length coding region for
CAD was transferred from pDNR clone BS01123 (from the
Berkeley Drosophila Genome Project) to vectors for in vitro
expression of the protein as a fusion to MBP or luciferase
(Luc). Protein–protein interactions were measured by exam-
ining the percentage of Luc-tagged CAD recovered following
pull down of MBP compared with a luciferase only control.
Additional controls were performed using Luc-CAD with
MBP only or substituting MBP-CLK or Luc-CLK proteins
that were previously shown to form heterodimers with the
protein CYC (Cheng et al. 2013). Protein–DNA interactions
were measured by examining the percentage of Luc-tagged
CAD recovered following pull down of a biotin-labeled double
stranded DNA fragment in the presence of a 60-fold molar
excess of unlabeled competitor DNA. In the sample labeled
�A + �B, two DNA fragments, each at a 60-fold molar
excess, were added, resulting in a 60-fold excess of specific
binding sites and a 120-fold total excess of unlabeled com-
petitor DNAs. The oligonucleotide sequences used and their
alignment to the wild type sequence is shown in supplemen-
tary table S2 (Supplementary Material online), which also
includes all raw and processed luciferase data.

Supplementary Material
Supplementary methods, text, tables S1 and S2, and figures
S1–S4 are available at Molecular Biology and Evolution online
(http://www.mbe.oxfordjournals.org/).
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