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Abstract

Asparagus species are widely used for medicinal, horticultural, and culinary purposes. Com-

plete chloroplast DNA (cpDNA) genomes of three Asparagus specimens collected in Hong

Kong—A. aethiopicus, A. densiflorus ‘Myers’, and A. cochinchinensis—were de novo

assembled using Illumina sequencing. Their sizes ranged from 157,069 to 157,319 bp, with

a total guanine–cytosine content of 37.5%. Structurally, a large single copy (84,598–85,350

bp) and a small single copy (18,677–18,685 bp) were separated by a pair of inverted repeats

(26,518–26,573 bp). In total, 136 genes were annotated for A. aethiopicus and A. densi-

florus ‘Myers’; these included 90 mRNA, 38 tRNA, and 8 rRNA genes. Further, 132 genes,

including 87 mRNA, 37 tRNA, and 8 rRNA genes, were annotated for A. cochinchinensis.

For comparative and phylogenetic analysis, we included NCBI data for four congenerics, A.

setaceus, A. racemosus, A. schoberioides, and A. officinalis. The gene content, order, and

genome structure were relatively conserved among the genomes studied. There were simi-

larities in simple sequence repeats in terms of repeat type, sequence complementarity, and

cpDNA partition distribution. A. densiflorus ‘Myers’ had distinctive long sequence repeats in

terms of their quantity, type, and length-interval frequency. Divergence hotspots, with nucle-

otide diversity (Pi)� 0.015, were identified in five genomic regions: accD-psaI, ccsA, trnS-

trnG, ycf1, and ndhC-trnV. Here, we summarise the historical changes in the generic subdi-

vision of Asparagus. Our phylogenetic analysis, which also elucidates the nomenclatural

complexity of A. aethiopicus and A. densiflorus ‘Myers’, further supports their close phyloge-

netic relationship. The findings are consistent with prior generic subdivisions, except for the

placement of A. racemosus, which requires further study. These de novo assembled
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cpDNA genomes contribute valuable genomic resources and help to elucidate Asparagus

taxonomy.

Introduction

Asparagus, a genus with ca. 300 species [1–6], originated in southern Africa, particularly in the

Cape of Good Hope. Some members are now distributed throughout tropical Africa, Eurasia,

and Australia [4–11], mostly in arid and sub-arid regions [4–6]. Asparagus species have

evolved their characteristic morphology as an adaptation to drought and arid environments

[2, 4]. Their “true leaves” have been reduced to scales or spines, with the stem-derived organs

(“cladodes”) performing photosynthesis [2, 7, 8, 12, 13]. Cladode shape is variable, ranging

from acicular, filiform, linear to cordate [2–4, 6, 11, 14–17]. Most species store nutrients and

water in rhizomes or root tubers [2, 15–17].

Asparagus species are commercially important worldwide [2, 7, 9, 10, 15, 18, 19], and many

are widely used, particularly in medicinal, culinary, and horticultural applications. Here, we

first summarise the anthropocentric uses and environmental impacts of some Asparagus spe-

cies and then elucidate the complexity on generic subdivisions and nomenclature of the stud-

ied Asparagus species.

Medicinal application

Many Asparagus species have medicinal value [19–29]. The root tubers of A. cochinchinensis
(Lour.) Merr., ‘Tiandong’ in Traditional Chinese Medicine, are renowned for their therapeuti-

cal functions in nourishing yin, moistening dryness, clearing the heat and engendering fluid

[30, 31]. A. officinalis L. [20–22, 24–27], A. setaceus (Kunth) Jessop [20], A. filicinus Buch.-

Ham. ex D. Don [24, 28], A. racemosus Willd. [19, 21, 25, 27, 29], and A. schoberioides Kunth

[29] have been used as herbal drugs in different regions for various functions. Root tubers of

A. filicinus are used as adulterants of Stemonae Radix to cure tracheitis, pneumonia, coughing,

and whooping cough [32–36]. In South African, several Asparagus species have been used to

treat pulmonary tuberculosis, gonorrhoea, and infertility, while some Asparagus species have

been used as charm to increase fertility, ensure victory, or fight against witchcraft [21].

Culinary application

Asparagus species are an important culinary resource. Although young shoots of A. officinalis
L., garden asparagus, are widely sold as a vegetable [1–4, 10, 27, 37], its gene pool is relatively

limited [38–40]. It is susceptible to multiple biotic and abiotic stresses, including Fusarium rot

[41, 42], Puccinia asparagi rust [43, 44], purple spot caused by Stemphylium [45–47], and stem

blight caused by Phomopsis asparagi [48], negatively affecting its production and economic

value. Attempts to cross A. officinalis with its wild relatives, to enhance tolerance to drought,

disease, salinity, and acidity [49], have revealed that dioecious, but not monoecious, species

could hybridize with it [44, 46, 50–54].

Young shoots of A. acutifolius L., A. aphyllus L., and A. albus L. are also eaten as vegetables

[55]. The fruits of A. racemosus are edible [56].

Horticultural application

Owing to their distinct morphology, Asparagus species, including A. setaceus, A. aethiopicus
L., and A. densiflorus (Kunth) Jessop ‘Myers’, have been widely used as ornamental plants [1,
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3, 57]. The European Garden Flora [57], published in 1986, mentions 24 Asparagus species,

including A. setaceus, A. aethiopicus, A. officinalis, A. densiflorus, A. filicinus, A. asparagoides
(L.) Druce, A. falcatus L., and A. racemosus. The New Royal Horticultural Society Dictionary of
Gardening [3], published in 1992, reports the same number of species.

The xeromorphic adaptations of Asparagus species are beneficial to the establishment of

“Xeroscaping” [58–60], a kind of landscaping that minimises the need for irrigation. The Picto-
rial Guide to Plant Resources for Skyrise Greenery in Hong Kong (Developmental Bureau of the

Hong Kong Special Administrative Region Government) [61–63] recommends three Aspara-
gus species—A. cochinchinensis, A. aethiopicus (recorded as A. densiflorus ‘Sprengeri’), and A.

densiflorus ‘Myers’—as skyrise greenery.

Environmental impacts

Global cultivation of Asparagus species has promoted the invasiveness of the species, particu-

larly of the horticultural species. The berries of Asparagus species are a food source for birds,

further promoting their seed dispersal [64]. The invasiveness of Asparagus species has been

widely recorded in, for instance, Australia [10, 65–67] and the USA [60, 64].

Genus-level taxonomical complexity

Linnaeus first described the genus Asparagus in 1753 [68]. Since the publication of the

genus Mysiphyllum by Willdenow in 1808 [14], generic circumscription of the genus

Asparagus have been disputed [67, 69, 70]. Based on morphological characters, taxono-

mists have divided the genus Asparagus sensu lato into three genera: genus Protasparagus
[16, 17, 72] (also known as Asparagopsis, an illegitimate homonym [71, 73]); genus Aspar-
agus sensu stricto [16, 17, 71–73]; and genus Myrsiphyllum [16, 17, 71–73]. The genus

Asparagus sensu lato has also been divided into three subgenera (subgenus Asparagopsis,
Euasparagus, and Myrsiphyllum) [7], or even multiple sections or races [7–9, 15] (S1 Fig).

The key morphological characteristics for generic subdivision include the sexual strategy

(monoecy or dioecy), perianth segments (free or connate), filaments (free or connate into

column), number of ovules per locule (2 or more), cladode shape and arrangement, and

presence or absence of spines.

Later evidences and analysis revealed that these subdivisions were not clear-cut. While Mal-

comber and Demissew [69] advocated to combine these subdivisions into two subgenera

under the genus Asparagus (subgenus Asparagus and subgenus Myrsiphyllum), Fellingham

and Meyer [70] suggested eliminating the generic subdivisions. It has been stated that “until

the phylogenetic relationships within Asparagus are investigated in more details, the recogni-

tion of any infrageneric groups is problematic” [4].

Norup et al. [6] utilised chloroplast and nuclear genome barcode regions (trnH-psbA, trnD-

trnT, 30 ndhF, and PHYC) in their classification: using 211 accessions representing 119 species,

they divided the genus Asparagus into six major clades and multiple subclades (S1 Fig).

Species and infraspecific taxonomical complexity

Only one Asparagus species, A. cochinchinensis, has been recorded as native to Hong

Kong. Exotic species that are common in Hong Kong include Sprenger’s asparagus (A.

aethiopicus), foxtail asparagus (A. densiflorus ‘Myers’), lace fern (A. setaceus), and garden

asparagus (A. officinalis). The nomenclature of Sprenger’s asparagus and foxtail asparagus

is controversial.
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Sprenger’s asparagus

The nomenclature of this species is unclear. In 1890, Regel published the name Asparagus
sprengeri based on cultivated plants growing in Natal, Africa [74, 75]. The epithet sprengeri is

after Mr. Sprenger, the co-owner of Dammann & Co., which produced this cultivated plant.

The name A. sprengeri Regel was adopted by Baker (1875) [7] and Geiner (1919) [9]. In 1966,

Jessop [15] synonymised A. sprengeri Regel under the new combination A. densiflorus (Kunth)

Jessop, based on morphology and geographical distribution. Since then, it has been commonly

recorded as A. densiflorus, based on Jessop [1, 3, 5, 10, 11, 57, 64, 70]. It has even been consid-

ered a cultivar (‘Sprengeri’) [1, 57, 64] or a group (the “Sprengeri group”) [3] of A. densiflorus.
The name A. aethiopicus dates from 1767 (S1 Table), when Linnaeus published it in Species

Plantarum [68]. Eighty-three years later, Kunth [71] transferred the species to the genus Aspar-
agopsis. It was later subdivided under the genus Asparagus by Baker (in 1875 and 1896) [7, 8]

and Jessop (in 1966) [15]. In 1983, Obermeyer [16] transferred it to a new genus Protaspara-
gus, because Asparagopsis is an illegitimate homonym. Malcomber and Demissew [69] com-

bined the genera Protasparagus and Asparagus into genus Asparagus subgenus Asparagus in

1992. Fellingham and Meyer [70], however, cancelled all generic subdivisions three years later,

moving it back to the genus Asparagus.
Aspararagopsis aethiopica (and later Asparagus aethiopicus) and Asparagopsis densiflora

were adopted in parallel for 116 years, from 1850 to 1965. In 1996, Jessop [15] classified both

species in the genus Asparagus (S1 Table). However, these species are considered highly vari-

able [4, 15]. According to Green (1989) [76], Jessop (1966) [15], Judd (2001) [4], and Straley

and Utech (2004) [77], the growth habit of A. aethiopicus is more variable, ranging from arch-

ing herbs of ca. 1 m in length to scrambling climbers of ca. 7 m in length. In 1986, Green [76]

disagreed with Jessop’s treatment [15] of A. sprengeri as A. densiflorus, which is a small-sized

species. Green ascribed Jessop’s treatment to the omission of A. densiflorus from Regel’s proto-

logue in Gartenflora [75] and to misidentification of cultivated materials, which rarely reach

their full potential size as potted plants. Following Judd in 2001 [4], Straley and Utech, in Flora
of North America North of Mexico (2004) [77], also adopted A. aethiopicus for Sprenger’s

asparagus, stating “Asparagus densiflorus (Kunth) Jessop has been misapplied to this species”.

They considered Sprenger’s asparagus to be a cultivar, suggesting the combination as A.

aethiopicus ‘Sprengeri’. On the contrary, Conran, in Horticultural Flora of South-eastern Aus-
tralia [78], treated it as “Sprengeri Group” of A. aethiopicus.

The voucher specimens of our research materials were authenticated based on the latest

Asparagus monograph, The Genus Asparagus in South Africa [15], and the Flora of Hong Kong
[79]. The voucher specimen of Sprenger’s asparagus (K. H. Wong 109), collected in Hong

Kong, fit the circumscription of A. aethiopicus L. in the monograph, based on their habitats,

growth habit, and reproductive characteristics. Therefore, we have adopted A. aethiopicus L.

for Sprenger’s asparagus in this study.

Foxtail asparagus

This cultivated plant was named for its foxtail-like branches, which are in narrow cones,

assembled by orderly branchlets, densely surrounding the main stem, and gradually elongating

from the stem apex [1, 3, 57, 64, 80]. Because of its popularity as an ornamental plant of good

performance, the cultivar was named A. densiflorus ‘Myersii’ in the Royal Horticultural

Society’s Award of Garden Merit list [81].

The first binomial name of foxtail asparagus, Asparagus myersii, was raised anonymously at

an unknown time, while Asparagopsis densiflora was validly published in 1850 by Kunth (S1

Table) [71]. The species epithet was named after Mr. Meyers, a nurseryman from East London,
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for the introduction of this plant [82]. In 1966, Jessop [15] mentioned that Asparagus myersii
Hort. “had never been validly published”, treating it as nomen nudum. At that time, he com-

bined Kunth’s Asparagopsis into Asparagus L., deeming this cultivated plant to be a form of A.

densiflorus. In 1976, this plant was recorded as A. densiflorus ‘Myers’ by L. H. Bailey Hortorium

in Hortus III, [1], treating it as a cultivar of A. densiflorus. Since then, this taxonomic treatment

has been widely accepted by many taxonomists, horticulturalists, and scientists [3–5, 11, 27,

57, 64, 83].

The spelling of this cultivar epithet occurs in several forms, including the Latin form ‘Myer-

sii’ [57, 80, 81] derived from the species epithet of its nomen nudum, the non-Latin form

‘Myers’ [1, 4, 5, 11, 51, 64, 76, 83] and ‘Meyers’ [82, 84, 85]. According to Article 21.6 of the

International Code of Nomenclature of Cultivated Plants (ICNCP), “the epithet of any name in
Latin form published before 1 January 1959, even if it is not validly published under the Interna-
tional Code of Nomenclature for Algae, Fungi and Plants (ICN), that meets the requirements for
establishment as a cultivar name under this Code (Art. 27.1), may be used as the cultivar epithet,
if the plants to which it was applied are now considered to represent a cultivar” [86]. Because

these spellings exhibited no ambiguous indication to the same Asparagus cultivar as foxtail

asparagus, we follow the treatment of some taxonomists and scientists [1, 4, 5, 11, 51, 64, 76,

83], adopting A. densiflorus (Kunth) Jessop ‘Myers’ for foxtail asparagus throughout this study.

Provocative molecular evidence: The complete chloroplast genome

Past technical limitations restricted the molecular evidence for classification to short genomic

fragments. Technological advancements have made the acquisition of complete genomes, and

especially chloroplast genomes, more practicable, affordable, and popular. The chloroplast

genome, described as a super-barcode [87–89], is important in studying phylogeny and resolv-

ing taxonomical problems [89–92].

Prior to the availability of complete chloroplast DNA (cpDNA) genomes, construction of

physical maps of Asparagus cpDNA was attempted via Southern hybridisation of total DNA

[93, 94]. Lee et al. [93] estimated the length of the A. officinalis ‘Mary Washington 500W’

cpDNA genome at ca. 155 kb, with two inverted repeats (IRs) of 23 kb each, separated by a 90

kb large single copy (LSC) and a 19 kb small single copy (SSC). The same group constructed

the physical maps of cpDNA for another seven Asparagus species, A. schoberioides, A.

cochinchinensis, A. plumosus, A. falcatus, A. aethiopicus (recorded as A sprengeri), A. virgatus,
and A. asparagoides [94]. Their results suggest close relationships between these eight species.

Despite the high similarity among these species, the cpDNA of A. falcatus, A. sprengeri, and A.

asparagoides showed gain of the HindIII restriction site and loss of the XhoI restriction sites.

Nucleotide deletion in rbcL was detected in A. cochinchinensis cpDNA [94].

The first Apsaragus cpDNA genome (NC_034777.1 = KY364194.1) was reported by Sheng

et al. in 2017 [95], who assembled and annotated the cpDNA genome of A. officinalis ‘Atlas’

(length 156,699 bp); this revealed a quadripartite structure, including a pair of IRs (26,531 bp

each), separated by an 84,999 bp LSC and 18,638 bp SSC, very similar to those reported by Lee

et al. [93]. In 2019, Li et al. [96] reported the cpDNA genome of A. setaceus
(NC_047458.1 = MK950153.1) of 156,978 bp, also quadripartite, and with a pair of IRs (26,513

bp each) separated by 85,311 bp LSC and 18,641 bp SSC. The cpDNA genome of A. setaceus is

similar to that of A. officinalis ‘Atlas’ in terms of structure, gene order, and GC content.

GenBank (National Center for Biotechnology Information; NCBI) currently contains the

cpDNA genomes of eight Asparagus species: A. officinalis (NC_034777.1 = KY364194.1,

MT712156.1, LN896355.1, LN896356.1, MT712153.1, MT712155.1, and MT712154.1), A. seta-
ceus (NC_047458.1 = MK950153.1 and MT712152.1), A. cochinchinensis (MW970105.1 and
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MW447164.1), A. densiflorus (MT740250.1), A. dauricus (MT712151.1), A. schoberioides
(NC_035969.1 = KX790361.1), A. racemosus (NC_047472.1 = MN736960.1), and A. filicinus
(NC_046783.1 = MK920078.1). This constitutes a small fraction of the genus, leaving a large

knowledge gap in the molecular study of Asparagus.
We therefore aimed to revisit the phylogenetic relationships between two nomenclaturally

confusing species A. aethiopicus and A. densiflorus ‘Myers’, using complete cpDNA genomes.

This information will be useful in crossbreeding programmes, environmental remediation,

and authentication of medicinal materials. Using Illumina sequencing, we de novo-assembled

the complete chloroplast genomes of A. aethiopicus, A. densiflorus ‘Myers’, and A. cochinchi-
nensis. We performed comparative and phylogenetic analysis, including congenerics, using

four cpDNA genomes from GenBank: A. officinalis (NC_034777), A. racemosus (NC_047472),

A. schoberioides (NC_035969), and A. setaceus (NC_047458). The intra-generic relationships

among these seven species were examined and compared to previous generic subdivision. Our

analysis helps to elucidate and resolve the taxonomic positions and nomenclature of A. aethio-
picus, A. densiflorus ‘Myers’, and other congenerics.

Materials and methods

Ethics statement

This study was conducted in accordance with Hong Kong Special Administrative Region legis-

lation. Sample collection did not negatively affect the environment in any way.

Plant material and DNA extraction

Individuals of the studied species were collected from the Chinese University of Hong Kong

(Table 1 and Fig 1). Fresh and healthy cladodes were stored at −80˚C in a freezer immediately

after collection. Voucher specimens were deposited at the Shiu-Ying Hu Herbarium (herbar-

ium code: CUHK).

Total genomic DNA was extracted from 0.2 g of frozen cladode using the DNeasy Plant Pro

Kit (Qiagen Co., Hilden, Germany) according to the manufacturer’s instructions. Prior to the

sequencing conducted by Novogene Bioinformatic Technology Co. Ltd. (http://en.novogene.

com/, Beijing, China), DNA quantity and quality were assessed using a NanoDrop Lite Spec-

trophotometer (Thermo Fisher Scientific, MA, USA) and 1% agarose gel electrophoresis,

respectively.

cpDNA genome sequencing, assembly, and annotation

A paired-end library with an insert-size of 150 bp was constructed and sequenced on a Nova-

Seq 6000 platform (Illumina Inc. San Diego, CA, USA). Raw reads were quality-trimmed

using CLC Assembly Cell 5.1.1 (CLC Inc., Denmark), with Phred < 33. The trimmed reads

were assembled into contigs using the CLC de novo assembler. Gaps were filled using Gapclo-

ser in SOAPdenovo 3.23 to form contigs, then retrieved and ordered using NUCmer 3.0 [97].

The ordered contigs were aligned against reference chloroplast genomes. Based on

Table 1. Information about the Asparagus specimens deposited at the Shiu-Ying Hu Herbarium.

Species Collector no. Inventory no. Sheet no. GPS location

Asparagus aethiopicus L. K. H. Wong 109 CUSLSH2801 CUHK05891 22.420786, 114.208312

Asparagus densiflorus (Kunth) Jessop ‘Myers’ K. H. Wong 092 CUSLSH2773 CUHK05890 22.419994, 114.207354

Asparagus cochinchinensis (Lour.) Merr. K. H. Wong 107 CUSLSH2799 CUHK05892 22.421524, 114.207135

https://doi.org/10.1371/journal.pone.0266376.t001
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phylogenetic proximity, A. setaceus (NC_047458) was selected as the reference genome for A.

aethiopicus and A. densiflorus ‘Myers’, whereas A. schoberioides (NC_035969) was used for A.

cochinchinensis. The aligned contigs were assembled into a complete cpDNA genome for each

species.

Gene annotation of cpDNA was performed on the GeSeq platform (https://chlorobox.

mpimp-golm.mpg.de/geseq.html) [98] based on the GenBank chloroplast genomes. A. aethio-
picus and A. densiflorus ‘Myers’ were annotated in reference to A. setaceus (NC_047458) and

A. racemosus (NC_047472), while A. cochinchinensis was annotated in reference to A. schober-
ioides Kunth (NC_035969) and A. officinalis L. (NC_034777). Manual adjustments, including

editing the start and stop positions of genes and introns, were made where necessary. The cir-

cular genomic map was visualised by OrganellarGenomeDRAW (OGDRAW, https://

chlorobox.mpimp-golm.mpg.de/OGDraw.html) [99]. The assembled and annotated chloro-

plast genomes of A. aethiopicus, A. densiflorus ‘Myers’, and A. cochinchinensis were submitted

to GenBank (accession numbers MZ337394, MZ337395, and MZ424304, respectively).

Repeat-sequence analysis

To compare the three newly assembled cpDNA genomes with chloroplast genomes of other

Asparagus species, four cpDNA genomes (NC_034777, NC_047472, NC_035969, and

NC_047458) were downloaded from GenBank. Repeat motifs, including simple sequence

repeats (SSRs) and long sequence repeats (LSRs), were sequentially identified using the MIcro-

SAtellite identification tool (MISA, https://webblast.ipk-gatersleben.de/misa/index.php?

action=1) [100] and REPuter (https://bibiserv.cebitec.uni-bielefeld.de/reputer) [101]. We

Fig 1. Photos of three Asparagus plants collected at the Chinese University of Hong Kong. A,B: A. aethiopicus. A. Plant climbing under Ficus microcarpa L.

f. and twining with Passiflora suberosa L. B. Flowers and cladodes. C,D: A. cochinchinensis. C. Plant straggling on ground. D. Cladodes. E,F,G: A. densiflorus
‘Myers’. E. Plant growing in a concrete pot. F. Flowers and cladodes. G. Fruits and branch apices.

https://doi.org/10.1371/journal.pone.0266376.g001
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screened for SSRs with at least 10, 5, 4, 3, 3, and 3 repeats, respectively, for mono-, di-, tri-,

tetra-, penta-, and hexa-nucleotides. LSRs, including forward, reverse, complement, and palin-

dromic sequences, were detected with a maximum computed repeat size of 50 bp and minimal

repeat size of 30 bp.

Comparative genome analysis

For structural comparison of the seven cpDNA genomes, we used mVISTA software (https://

genome.lbl.gov/vista/mvista/submit.shtml) [102] to visualise the full alignment with annota-

tion, using the A. aethiopicus cpDNA genome as the reference. The shuffle-LAGAN alignment

programme [103] was used.

To compare the size and type of IR border genes, IRScope (https://irscope.shinyapps.io/

irapp/) [104] was used to visualise the junction sites of the seven cpDNA genomes. Junction

gene positions and sizes were verified, and the diagram was redrawn manually.

To investigate divergence hotspots, the seven studied cpDNA genomes were first aligned

using MAFFT 7 (https://mafft.cbrc.jp/alignment/server/) [105]. Sliding window analysis was

conducted using DNA Sequence Polymorphism (DnaSP) 6.12.03 [106], which calculates the

nucleotide diversity value (Pi) of the aligned cpDNA. The window length and step size were

set to 600 and 200 bp, respectively.

Phylogenetic analysis

The complete cpDNA genomes of the seven Asparagus species, with one outgroup species,

Hyacinthoides non-scripta (L.) Chouard ex Rothm. (NC_046498), were used to construct maxi-

mum likelihood (ML) phylogenetic trees using the MEGA-X software [107], with 1000 boot-

strap replicates for each tree. The best-fit model of nucleotide substitution, with the lowest

Bayesian Information Criterion (BIC) scores, was calculated via ML model selection in

MEGA-X. Respective trees were constructed from the aligned sequences of (i) complete

cpDNA genome, (ii) protein coding (CDS) regions (excluding introns), (iii) LSC, (iv) SSC, and

(v) IRs.

Results

Asparagus cpDNA genomes features

Illumina NovaSeq 6000 sequencing generated 3.2 Gb, 3.1 Gb, and 2.8 Gb raw data for A.

aethiopicus, A. densiflorus ‘Myers’, and A. cochinchinensis, respectively. The cpDNA genomes

were assembled with a coverage of 173x for A. aethiopicus, 164x for A. densiflorus ‘Myers’, and

381x for A. cochinchinensis.
The three newly assembled cpDNA genomes were relatively conserved in terms of length,

gene order, gene content, and structure. The cpDNA genome of A. densiflorus ‘Myers’ was the

largest (157,139 bp), followed by A. aethiopicus (157,069 bp), and A. cochinchinensis (156,319

bp; Table 2 and Fig 2). The cpDNA genomes exhibited the quadripartite structure typical of

angiosperms. Their LSCs ranged from 84,598 to 85,350 bp in length and their IRs from 26,518

to 26,573 bp. The SSC was 18,677 bp for both A. aethiopicus and A. densiflorus ‘Myers’, and

18,685 bp for A. cochinchinensis.
Identical numbers and types of genes were annotated in A. aethiopicus and A. densiflorus

‘Myers’. One hundred and thirty-six genes were successfully annotated, including 90 protein-

coding (mRNA) genes, 38 transcription- and translation-related RNA (tRNA) genes, and 8

ribosomal RNA (rRNA) genes. For A. cochinchinensis, 132 genes were annotated, including 87
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mRNA genes, 37 tRNA genes, and 8 rRNA genes. The genes were classified into three catego-

ries and 18 functions (Table 3).

The pseudogene ycf1 occurred in A. aethiopicus and A. densiflorus ‘Myers’ but was not

detected in A. cochinchinensis. A. densiflorus ‘Myers’ and A. cochinchinensis had 21 intron-con-

taining genes, whereas A. aethiopicus had 20. All three cpDNA genomes had two genes com-

prising two introns (Table 4). For A. aethiopicus and A. densiflorus ‘Myers’, 20 genes were

duplicated in IRs. In contrast, only 19 genes were duplicated in the IRs for A. cochinchinensis,
because ycf68 was absent from this genome.

The cpDNA genomes of the three species were comparable in terms of GC content

(Table 2). In total, 37.5% of the GC bases were detected in all three cpDNA genomes; 35.4–

35.5%, 31.3–31.4%, and 42.9% of the GC content was detected in LSCs, SSCs, and IRs, respec-

tively. Among the three cpDNA genomes, A. cochinchinensis had the highest GC content

(37.54%), with 35.54% in LSCs and 31.38% in SSCs, whereas A. aethiopicus had the highest IR

GC content (42.94%).

Simple sequence repeat analysis

The SSR number, type, content, and distribution were similar in the seven cpDNA genomes.

The number of SSRs ranged from 80 (A. schoberioides) to 88 (A. aethiopicus and A. officinalis)
(Fig 3).

Each cpDNA sample contained mono-, di-, tri-, or tetra-nucleotides. Three of the seven

cpDNA genomes contained pentanucleotides, whereas the other four contained hexanucleo-

tides. The most common class of SSRs was mononucleotides, ranging from 47 in A. densiflorus
‘Myers’ to 57 in A. officinalis. Dinucleotides were the second most common, ranging from 12

in A. racemosus to 15 in A. aethiopicus and A. densiflorus ‘Myers’. Tetranucleotides were the

third most common, ranging from 10 in A. schoberioides to 13 in A. aethiopicus and A. densi-
florus ‘Myers’. Trinucleotides repeats were the least common, with five each in A.

Table 2. Summary on the cpDNA genome structure of the seven Asparagus species.

A. aethiopicus A. densiflorus ‘Myers’ A. cochinchinensis A. officinalis A. racemosus A. schoberioides A. setaceus
Accession no. MZ337394 MZ337395 MZ424304 NC_034777 NC_047472 NC_035969 NC_047458

Total length (bp) 157,069 157,139 156,319 156,699 156,742 156,875 156,978

LSC (bp) 85,246 85,350 84,598 84,999 84,989 84,928 85,311

SSC (bp) 18,677 18,677 18,685 18,638 18,619 18,685 18,641

IR (bp) 26,573 26,556 26,518 26,531 26,567 26,631 26,513

Total number of genes 136 136 132 133 130 132 135

mRNA 90 90 87 88 86 88 90

tRNA 38 38 37 37 36 36 37

rRNA 8 8 8 8 8 8 8

Pseudogene (C) 1a 1a 0 7b 1a 1a 1a

1-intron gene 20 21 21 21 21 20 19

2-introns gene 2 2 2 2 2 2 2

Total GC content (%) 37.49 37.49 37.54 37.59 37.55 37.57 37.48

GC content in LSC (%) 35.44 35.43 35.54 35.60 35.53 35.55 35.46

GC content in SSC (%) 31.30 31.31 31.38 31.50 31.43 31.51 31.45

GC content in IR (%) 42.94 42.93 42.90 42.92 42.92 42.93 42.85

a ycf1
b ycf1, ycf15 (x2), ycf68 (x2), infA, rps19.

https://doi.org/10.1371/journal.pone.0266376.t002
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cochinchinensis, A. officinalis, A. racemosus, and A. schoberioides, and seven each in the other

species. One or two pentanucleotide or hexanucleotide repeats were found in each of the seven

genomes.

Considering sequence complementarity, most of the SSRs were A/T (adenosine/thymine)

repeats. ranging from 46 in A. densiflorus ‘Myers’ to 55 in A. officinalis (Fig 4). AT/AT repeats

were the second most common, from 9 in A. racemosus to 12 in A. aethiopicus and A. densi-
florus ‘Myers’. AAAT/ATTT repeats were the third most common, at 4 in A. officinalis, 6 in A.

schoberioides, and 7 in the other cpDNA genomes.

For the seven genomes, 87.59% of the SSRs comprised entirely adenosine and thymine,

with at most 2 bp of guanine and cytosine in the GC-containing SSRs. The dominance of A/T

base pairs and low frequency of G/C base pairs in SSRs are consistent with the observations

made by Sheng et al. [95].

Fig 2. Chloroplast genome map of A. aethiopicus L., A. densiflorus (Kunth) Jessop ‘Myers’, and A. cochinchinensis (Lour.) Merr. Genes are colour-coded

based on their functions shown in the key. Genes located outside of the outer circle are transcribed anticlockwise, while those inside are transcribed clockwise.

In the inner circle, the gradient in dark grey represents GC content, whereas light grey represents AT content.

https://doi.org/10.1371/journal.pone.0266376.g002

PLOS ONE Complete chloroplast genomes of three Asparagus species in Hong Kong

PLOS ONE | https://doi.org/10.1371/journal.pone.0266376 April 25, 2022 10 / 25

https://doi.org/10.1371/journal.pone.0266376.g002
https://doi.org/10.1371/journal.pone.0266376


The cpDNA genomes demonstrated similar proportional distributions of SSRs within the

quadripartite structure (Fig 5), with most (ca. two-thirds) found in LSC regions and one-fifth

and one-tenth, respectively, found in SSC and IR regions.

Long sequence repeat analysis

The species differed significantly in the LSR analysis, particularly for A. densiflorus ‘Myers’

(Figs 6 and 7): for the other six genomes, there were 2 LSRs (A. officinalis and A. schoberioides)
to 5 LSRs (A. cochinchinensis), whereas A. densiflorus ‘Myers’ had 34 LSRs, almost 10-fold the

average in the others.

All four types of LSRs (forward, reverse, palindromic, and complement repeat) were detected.

Notably, the genomes contained from 1 (A. officinalis) to 3 (A. densiflorus ‘Myers’) types of LSRs.

Palindromic repeats were the most common LSR type: of the 29 palindromic repeats, A. densi-
florus ‘Myers’ had 17. Forward repeats were second, occurring in five of the species, excluding A.

officinalis and A. racemosus. Of the 22 forward repeats, A. densiflorus ‘Myers’ had 16. A. densi-
florus ‘Myers’ and A. racemosus had 1 reverse repeat and 1 complement repeat, respectively.

The minimum repeat size was set to 30 bp. The longest LSR detected by REPuter was 56 bp.

LSRs were detected at lengths of 30, 31, 32, 33, 34, 35, 36, 38, 39, 46, 47, 49, 52, 54, and 56 bp.

Table 3. Genes annotated in the complete cpDNA genomes of A. aethiopicus L., A. densiflorus (Kunth) Jessop ‘Myers’, and A. cochinchinensis (Lour.) Merr.

Gene category Gene functions Gene names

Photosynthesis-related genes Rubisco rbcL
Photosystem I psaA, psaB, psaC, psaI, psaJ
Assembly/ stability of

photosystem I

pafI, pafII, pbf1

Photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbT, psbZ
ATP synthase atpA, atpB, atpE, atpF, atpH, atpI
Cytochrome b/f complex petA, petB, petD, petG, petL, petN
Cytochrome c synthesis ccsA
NADPH dehydrogenase ndhA, ndhB%, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK

Transcription- and translation-

related genes

Transcription rpoA, rpoB, rpoC1, rpoC2
Ribosomal protein rpl2%, rpl14, rpl16, rpl20, rpl22, rpl23%, rpl32, rpl33, rpl36, rps2, rps3, rps4, rps7%, rps8, rps11, rps12%,

rps14, rps15, rps16, rps18, rps19%

Translation initiation

factor

infA

RNA genes Ribosomal RNA rrn16%, rrn23%, rrn4.5%, rrn5%

Transfer RNA trnA-UGC%, trnC-GCA, trnE-UUC, trnF-GAA, trnG-GCC, trnG-UCC�, trnH-GUG%, trnI-CAU%,

trnI-GAU%, trnK-UUU, trnL-CAA%, trnL-UAA, trnL-UAG, trnM-CAU$, trnN-GUU%, trnN-GUC,

trnP-UGG, trnQ-UUG, trnR-ACG%, trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU,

trnT-UGU, trnV-GAC%, trnV-UAC, trnW-CCA, trnY-GUA
Miscellaneous group Maturase matK

Inner membrane protein cemA
ATP-dependent protease clpP1
Acetyl-CoA carboxylase accD
Unknown functions ycf1@, ycf2%, ycf68#

% Duplicated in inverted repeat regions

� Duplicated in large single copies of A. densiflorus ‘Myers’ and A. cochinchinensis; appeared once in A. aethiopicus
$ Duplicated in large single copies of A. aethiopicus and A. densiflorus ‘Myers’; appeared once in A. cochinchinensis
@ ycf1 was functional in all three species, but the ycf1 pseudogene was absent from A. cochinchinensis
# Duplicated in inverted repeat regions of A. aethiopicus and A. densiflorus ‘Myers’; absent from A. cochinchinensis.

https://doi.org/10.1371/journal.pone.0266376.t003

PLOS ONE Complete chloroplast genomes of three Asparagus species in Hong Kong

PLOS ONE | https://doi.org/10.1371/journal.pone.0266376 April 25, 2022 11 / 25

https://doi.org/10.1371/journal.pone.0266376.t003
https://doi.org/10.1371/journal.pone.0266376


Table 4. Intron-containing genes in the chloroplast genomes of seven Asparagus species.

A. aethiopicus A. densiflorus ‘Myers’ A. cochinchinensis A. officinalis A. racemosus A. schoberioides A. setaceus Location

Accession no. MZ337394 MZ337395 MZ424304 NC_034777 NC_047472 NC_035969 NC_047458 /

trnK-UUU 0 1 1 1 1 1 0 LSC

rps16 1 1 1 1 1 1 1 LSC

trnG-UCC B 1 1 1 1 1 1 ABS LSC

atpF 1 1 1 1 1 1 1 LSC

rpoC1 1 1 1 1 1 1 1 LSC

ycf3/ pafI C 2 2 2 2 2 2 2 LSC

trnL-UAA 1 1 1 1 1 ABS 1 LSC

trnV-UAC 1 1 1 1 1 1 1 LSC

clpP 2A 2A 2A 2 2 2 2 LSC

petB 1 1 1 1 1 1 1 LSC

petD 1 1 1 1 1 1 1 LSC

rpl16 1 1 1 1 1 1 1 LSC

rpl2 �2 1 1 1 1 1 1 1 IRA + IRB

ndhB �2 1 1 1 1 1 1 1 IRA + IRB

rps12 �2 1 1 1 1 1 1 1 IRA + IRB + LSC

trnI-GAU �2 1 1 1 1 1 1 1 IRA + IRB

trnA-UGC �2 1 1 1 1 1 1 1 IRA + IRB

ndhA 1 1 1 1 1 1 1 SSC

0—No intron; 1–1 intron; 2–2 introns; ABS—Gene absent.
A Annotated as clpP1.
B Located in the region 9167–9994 bp; for NC 047458, trnG-UCC, at 36924–36994 bp, had no intron.
C pafI was annotated in A. aethiopicus, A. densiflorus ‘Myers’, and A. cochinchinensis.

https://doi.org/10.1371/journal.pone.0266376.t004

Fig 3. Simple sequence repeat class distribution.

https://doi.org/10.1371/journal.pone.0266376.g003
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Fig 7 represents their frequencies in three intervals: (i) 30–39 bp, (ii) 40–49 bp, and (iii) 50–56

bp. LSRs of 30–39 bp and 50–56 bp occurred in all three species, whereas only A. densiflorus
‘Myers’ has LSRs of 40–49 bp (six, in total). LSRs of 30–39 bp were the most common, with 39

Fig 4. Simple sequence repeat frequency related to sequence complementarity.

https://doi.org/10.1371/journal.pone.0266376.g004

Fig 5. Simple sequence repeat distribution in the quadripartite cpDNA structure. The percentages for each region are shown in the middle of each bar. The

numbers in brackets are the actual numbers of SSRs distributed in the indicated cpDNA regions.

https://doi.org/10.1371/journal.pone.0266376.g005
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Fig 6. Types of long sequence repeats.

https://doi.org/10.1371/journal.pone.0266376.g006

Fig 7. Frequency of long sequence repeats in specified length intervals.

https://doi.org/10.1371/journal.pone.0266376.g007
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detected. A. densiflorus ‘Myers’ had the most in this class, at 26. Each of the three species had at

least one 50–56 bp LSR, while A. densiflorus ‘Myers’ had two.

Comparative genome analysis

The IR boundaries of the seven genomes were relatively conserved, with some minor varia-

tions (contractions and deletions) (Fig 8).

In the LSC/IRB border, rpl22 extended into the LSC by 2–5 bp from the junction, for all spe-

cies except A. cochinchinensis, in which it extended it by 24 bp. For A. officinalis, rpl22 was 360

bp long, 3 bp shorter than in the others. rps19 in the IRB also exhibited variation, with lengths

of 210 bp for A. aethiopicus, A. densiflorus ‘Myers’, and A. racemosus, and 279 bp for the other

four species; it extended by 263–332 bp from the LSC/IRB junction into the IRB.

The ycf1 pseudogenes was retained in the border IRB/SSC for all species, except A. cochinch-
inensis and A. officinalis; its length was 912 bp for all species except A. schoberioides, in which a

110 bp fragment of the SSC was deleted. ndhF in the SSC was 2229 bp long for A. aethiopicus
and A. densiflorus ‘Myers’, and 2223 bp long for the other species; it extended from IRB/SSC

junction by 3 bp for A. aethiopicus and A. densiflorus ‘Myers’, 7 bp for A. cochinchinensis, and

9 bp for the others.

Functional ycf1 genes (5624–5460 bp long) were located at the SSC/IRA border for all spe-

cies except A. officinalis, in which an IRA portion was lost to the SSC, leaving a contracted

pseudogene of 3824 bp in length. Further, in A. setaceus, the functional ycf1 extended into the

SSC by 307 bp from the SSC/IRA junction, unlike in the other species.

Fig 8. Large single copy (LSC), small single copy (SSC), and inverted repeat (IR) boundary comparison for the seven Asparagus cpDNA genomes.

Numbers in bold indicate the size of the gene (or gene section) within the specified regions. The numbers next to the dashed arrows indicate distances from the

specified junctions. Numbers within the coloured bands indicate the lengths of the respective regions. The direction of gene transcription is presented by the

obtuse angles of the pentagons.C, pseudogene. Not to scale.

https://doi.org/10.1371/journal.pone.0266376.g008
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At the IRA/LSC border, rps19 (137–279 bp long) in IRA extended by 32–196 bp from the

junction, with A. offcinalis having the shortest extension as a contracted pseudogene.

In the sliding-window analysis, five regions—trnS-trnG, ndhC-trnV, accD-psaI, ccsA, and

ycf1—were identified as divergence hotspots with Pi� 0.015 (Fig 9). accD-psaI was the most

variable (Pi = 0.023), followed by ccsA (Pi = 0.020), and trnS-trnG (Pi = 0.17). These regions

represent potential molecular markers for the phylogenetic and population genetics studies of

Asparagus species. The sequence identity plot, using A. aethiopicus as a reference (S2 Fig),

revealed different identity level (of <50%) among these five regions between the seven species,

with “cracks” among the bars.

Gene order and gene content were highly conserved among the seven species. The sequence

identity plot (S2 Fig) revealed highly similar exon (purple) and intron (blue) regions. UTRs

(red) in the non-coding regions clearly illustrate the diversity. The average Pi of 0.004 indicates

that the sequence diversity of these species is relatively low.

No structural rearrangement was observed. IRs were more conserved than LSCs or SSCs, as

illustrated by the high IR similarity in the sequence identity plot and supported by the sliding

window analysis. The LSC and SSC regions contained most of the Pi peaks. In contrast, IRs

had low nucleotide diversity (Pi < 0.01), except for the ycf1 divergence hotspot at the SSC/IR

border. The other four divergence hotspots were within LSCs (trnS-trnG, ndhC-trnV, and

accD-psaI) and SSC (ccsA).

Phylogenetic analysis

Congeneric relationships in the genus Asparagus were examined using three newly assembled

cpDNA genomes and four cpDNA genomes from GenBank. ML trees derived from the com-

plete cpDNA genomes, LSC, SSC, and CDS sequences shared the same topology (Fig 10) but

different node bootstrap values. A. setaceus was sister to the other six Asparagus species. The

branch containing A. aethiopicus and A. densiflorus ‘Myers’ had the highest bootstrap value

Fig 9. Complete cpDNA genome nucleotide diversity for the seven Asparagus species. X-axis: window midpoint; Y-axis: nucleotide diversity value (Pi) for

each window. Divergence hotspots (Pi> 0.015) are labelled in red above the corresponding position.

https://doi.org/10.1371/journal.pone.0266376.g009
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(100) in all four ML trees, supporting the close relationship between these two species. A.

cochinchinensis and A. racemosus formed a sister clade to A. officinalis and A. schoberioides
(bootstrap values of 100 for complete cpDNA genomes, LSC, and SSC, and 84 for CDS). The

close relationship between A. cochinchinensis and A. racemosus was well supported (bootstrap

values of 100 for complete cpDNA genomes and LSC, and 99 for SSC and CDS). This new

grouping differs from both traditional taxonomical classifications and molecular phylogenies

[5, 6, 11]. We expected A. racemosus, a monoecious species, to group with the three other

monoecious species from South Africa. Instead, it was nested within the group of dioecious

and Eurasian species in the ML trees, with high bootstrap values.

The ML tree based on IR sequences also exhibited unexpected grouping (Fig 11): A. race-
mosus was still nested with the dioecious species, which were sister to A. officinalis and A. scho-
berioides, with moderate support (bootstrap value = 71).

The close relationship between A. aethiopicus and A. densiflorus ‘Myers’ was supported by

the ML trees based on complete cpDNA genomes, LSC, SSC, and CDS sequences (Fig 10) and

was further validated by the IR-based tree, with bootstrap values of 100.

Discussion

Molecular insights for nomenclatural confusion

A. aethiopicus and A. densiflorus ‘Myers’ are nomenclaturally controversial. Batchelor and

Scott (2006) [67] questioned the taxonomic identity of the cultivar ‘Myers’ (foxtail asparagus),

Fig 10. Maximum likelihood (ML) trees based on Asparagus cpDNA genomes. Numbers next to the nodes: bootstrap values based on complete cpDNA

genomes/LSC/SSC/CDS sequences. The topologies are identical. Bold taxa: the three newly assembled cpDNA genomes.

https://doi.org/10.1371/journal.pone.0266376.g010

Fig 11. Maximum likelihood (ML) trees based on inverted repeats (IRs) for Asparagus. Numbers next to the nodes: bootstrap values on IRA and IRB. Bold

taxa: the three newly assembled cpDNA genomes.

https://doi.org/10.1371/journal.pone.0266376.g011
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which is often recorded as a cultivar of A. densiflorus [1, 3, 5, 11, 15, 51, 57, 64, 67, 80, 83]. In

contrast, some have suggested placing the Asparagus cultivars ‘Sprengeri’ and ‘Myers’ under A.

aethiopicus [4, 67, 76, 77]. The Royal Botanic Gardens Victoria [78, 108] has adopted the name

A. aethiopicus ‘Myersii’ for foxtail asparagus.

A. densiflorus and A. aethiopicus differ primarily in their growth habit, with the former not

a climber and rarely over 1 m tall and the latter an erect herb of 1 m or more and climbing up

to 7 m [4, 76]. From our observations, the Asparagus cultivar ‘Myers’ never climbs, even when

it is not pot-bound. This growth habit does not correspond with the circumscription of A.

aethiopicus emphasised by Green (1986) [76] and Judd (2001) [4]. We agree with Batchelor

and Scott (2006) that foxtail asparagus should be considered a cultivar of A. densiflorus [67],

and hence the legitimate name should be Asparagus densiflorus (Kunth) Jessop ‘Myers’.

Our findings show that A. aethiopicus and A. densiflorus ‘Myers’ are phylogenetically close,

despite their morphological and growth habit differences, with bootstrap values of up to 100

for ML trees based on complete cpDNA genomes, LSC, SSC, IR, or CDS (Figs 10 and 11).

Their gene numbers, GC content (Table 2), genome structure (Fig 2), and IR border (Fig 8)

are similar. This supports the traditional classifications, which consistently place them under

the same generic circumscription: genus Asparagopsis [71], genus Asparagus section Falcati
[8], genus Asparagus section Racemosi [15], or genus Protasparagus [16] (S1 Fig and S1 Table).

Using short-length DNA regions, Norup et al. [6] suggested placing the two species in an

Asparagus–Racemose clade–Racemose 1 clade. Our phylogenetic results, which group the

cpDNA genomes of A. aethiopicus and A. densiflorus ‘Myers’, are consistent with this.

The two species showed minor differences. In terms of LSR number and type, A. densiflorus
‘Myers’ differed significantly from A. aethiopicus and the other species. The cpDNA genome

of A. densiflorus ‘Myers’ had the most LSRs, and this was the only species with reverse repeats

and 40–49 bp LSRs (Figs 6 and 7). SSRs have been used to identify cultivars of potatoes [109,

110], apples [111], and sunflowers [112]. However, these Asparagus species did not differ sig-

nificantly in SSRs. Nonetheless, the distinctive LSR patterns of A. densiflorus ‘Myers’ could

provide a molecular authentication marker.

Our phylogenetic analysis revealed the close relationship between A. aethiopicus and A.

densiflorus ‘Myers’ but did not elucidate the species origin of the cultivar. According to Article

21.1 of ICNCP, “The name of a cultivar is a combination of the correct name of the genus or
lower taxon to which it is assigned under the ICN, or its unambiguous common name, with a cul-
tivar epithet” [86]. We suggest two treatments to clarify A. densiflorus ‘Myers’ nomenclature:

first, to combine only the genus name with the cultivar epithet, as Asparagus ‘Myers’, since this

cultivar epithet has not been used for other cultivars being assigned to other Asparagus species;

second, to combine the common name and the cultivar epithet, as asparagus ‘Myers’, since the

common name of the genus Asparagus is unambiguous and is identical to the genus name.

Unexpected placement of A. racemosus
Taxonomists have attempted to divide the genus Asparagus into three major groups. The first,

characterised by flattened and leaf-like cladodes, basally connate perianth segments, and fila-

ments connated into tubes, was classified as the genus Myrsiphyllum by Willdenow (1808)

[14], Kunth (1850) [71], and Obermeyer (1984) [17], and as the genus Asparagus subgenus

Myrsiphyllum by Baker (1875) [7]. The second and third groups comprise the species with fili-

form to linear cladodes: the second, comprising monoecious and African species with free

perianth segments and filaments, was classified as the genus Asparagopsis by Kunth (1850)

[71], the genus Asparagus subgenus Asparagopsis by Baker (1875) [7], and the genus Protaspar-
agus by Obermeyer (1983) [17]; the third, comprising dioecious and Eurasian species with
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basally connate perianth segments, was classified as the genus Asparagus by Kunth (1850) [71]

and the genus Asparagus subgenus Euasparagus by Baker (1875) [7].

A. racemosus, a monoecious species widespread throughout Africa, Asia, and Australia [10,

113], has traditionally been classified into the second group. Fukuda et al. [5] and Kubota et al.
[11] placed A. racemosus in genus Asparagus subgenus Protasparagus, whereas Norup et al. [6]

placed it in the Asparagus–Racemose clade–Racemose 2 clade.

We expected A. racemosus to cluster with its relatives in the same group, i.e. A. aethiopicus,
A. densiflorus ‘Myers’, and A. setaceus. However, one A. racemosus specimens (NC_047472)

unexpectedly clustered with the dioecious species A. cochinchinensis, A. officinalis, and A. scho-
berioides in the ML trees (Figs 9 and 10), using both complete cpDNA genomes and sequence

portions. This is contrary to Lee et al. (1997) [114] who, using restriction fragment length poly-

morphism cpDNA analysis, showed that no monoecious species were clustered within the

monophyletic group of dioecious species (A. officinalis, A. schoberiodes, or A. cochinchinensis)
[114].

Short cpDNA regions of A. racemosus (ca. 300–1000 bp) were reported by Fukuda et al.
(petB intron and petD-rpoA) [5], Kubota et al. (rpl32-trnL, trnQ-50rps16, ndhF-rpl32, psbD-

trnT, 30rps16-50trnK) [11], and Norup et al. (30 ndhF, psbA-trnH, trnD-trnT) [6]. We attempted

to determine the start and stop positions of these regions in NC_047472. Ten extracted

sequences of the corresponding length (S2 Table) were screened using the NCBI Basic Local

Alignment Search Tool, and only trnQ-rps16 (sequence identity 98.70%), psbA-trnH (97.11%

and 96.84%), rpl32-trnL (96.49%), petD-rpoA (96.86%), and trnD-trnT (97.71%) matched the

respective regions of A. racemosus. GenBank did not contain any voucher information for

NC_047472. Because of this lack of voucher information, we are unable to further verify this

unanticipated and unlikely grouping. Our intra-generic analyses were constrained by the lim-

ited sample size. Further studies on A. racemosus phylogeny are recommended.

Conclusion

Complete cpDNA genomes of three Asparagus specimens collected in Hong Kong were de
novo assembled, annotated, and compared with those of congenerics. The seven genomes were

relatively conserved in terms of gene content, gene order, and genome structure. A. densiflorus
‘Myers’ differed significantly from the others in LSR number and type. Five divergence hot-

spots were identified in the sliding-window analysis (Pi� 0.015). Our phylogenetic analysis

elucidates the generic subdivision and the nomenclatural complexity of A. aethiopicus and A.

densiflorus ‘Myers’. The novel placement of A. racemosus, contrary to previous morphological

and molecular classifications, requires further verification. We suggest two ICNCP-compliant

names for A. densiflorus ‘Myers’, namely Asparagus ‘Myers’ and asparagus ‘Myers’. These de
novo assembled cpDNA genomes provide potential genomic resources, elucidating Asparagus
taxonomy, application, and conservation.
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