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Abstract. Normocytic normochromic anemia is a common 
complication of chronic kidney disease (CKD) and is associ-
ated with numerous adverse consequences. Certain symptoms 
previously attributed to CKD are now known to be a conse-
quence of anemia. Anemia contributes to an increased cardiac 
output, and the development of left ventricular hypertrophy, 
angina and congestive heart failure, leading to high morbidity 
and mortality in patients with CKD. The multifunctional 
α-klotho (KL) protein, which is predominantly expressed 
in the kidneys, is associated with the occurrence of anemia 
in patients with CKD. The present review presents current 
evidence on the potential role of α-KL in renal anemia. Low 
expression of α-KL appears to improve anemia in patients 
with CKD, and has been hypothesized to be a compensatory 
mechanism to attenuate the effects of anemia in patients with 
CKD. Further understanding of the role of α-KL in renal 
anemia may offer novel insights into the treatment of patients 
with CKD complicated with anemia.
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1. Introduction

Normocytic normochromic anemia is one of the hallmarks 
of progressive chronic kidney disease (CKD). Normocytic 
normochromic anemia is defined by a decrease in hemo-
globin (Hb) to <130 g/l in men and <120 g/l in women (1). 
Relatively little is known about the development and progres-
sion of anemia in patients with CKD. As kidney function 
declines in patients with advanced CKD, the incidence of 
anemia increases (2). The occurrence of anemia in patients 
with CKD (renal anemia) is primarily due to an absolute or 
relative decrease in erythropoietin (EPO) production by the 
failing kidney (1). However, other factors, including iron and 
vitamin deficiency, in addition to inflammation, contribute to 
the development of anemia and reduced response to treatment 
in patients with CKD (2).

Erythropoiesis-stimulating agents (ESAs) and adjuvant 
iron therapy are the primary methods for treating anemia 
associated with CKD. ESAs potent and can increase HGB 
levels significantly. However, recombinant ESAs are expensive, 
require cold storage and are administered by the parenteral 
route. In addition, with frequent subcutaneous administra-
tions, ESA therapy is cumbersome for the long-term treatment 
of dialysis-independent patients with CKD. Furthermore, in 
patients with CKD undergoing hemodialysis, intravenous 
administration of ESAs increases the hospital's workload. 
Recent clinical trials have demonstrated that higher Hb targets 
(≥11.3 g/dl) and/or the application of high doses of ESAs may 
increase cardiovascular risk (3‑5). Therefore, the identification 
of novel drugs to treat CKD-associated anemia is an important 
issue.

Klotho (KL) was originally identified as an anti‑aging gene, 
which when overexpressed extended the lifespan of mice (6). 
The KL gene encodes a single-pass transmembrane protein, 
and is expressed in the kidney and parathyroid gland (7). 
Furthermore, the KL protein functions as an obligate subunit 
of the receptor for fibroblast growth factor 23 (FGF23) (8). 
FGF23 is a hormone secreted by osteocytes and osteoblasts, 
which acts on renal tubular cells to promote phosphate excre-
tion into the urine and suppress the synthesis of the active form 
of vitamin D [1,25-dihydroxyvitamin D3; 1,25(OH)2D3] (9). 
Growing evidence suggests that α‑KL is a significant marker 
for CKD (10,11) and a pathogenic factor in the progression 
of CKD progression (12,13). A recent study has reported that 
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decreasing α-KL levels are associated with the occurrence of 
anemia in patients with CKD (14). The present study reviews 
the recent advances in understanding of the role served by 
α-KL in the development of anemia in patients with CKD, 
and summarizes novel approaches for the clinical treatment 
of anemia in CKD.

2. Generation and function of KL

The α-KL protein is encoded by the KL gene, which was identi-
fied in 1997 (7). To date, three types of α-KL protein have been 
identified: Full‑length transmembrane, soluble and secreted 
α-KL (15). The full-length α-KL protein is a transmembrane 
protein that contains two separate glycosyl hydrolase domains, 
KL1 and KL2. The truncated α-KL protein, also known as 
soluble α-KL, is released from the cell membrane and may 
contain KL1 or KL1 and KL2 (16). Soluble α-KL is gener-
ated from the cleavage of the membrane form of KL by α- and 
β-secretases (α-cut, KL1 and KL2 domains, ~130 kDa; β-cut, 
KL1 domain only, ~65 kDa) and by insulin stimulation (16). 
The cleaving process is inhibited by a phosphoinositide 
3-kinase (PI3K) inhibitor, which suggests that PI3K serves a 
role in the cleavage process (17). Secreted α-KL (~65 kDa), 
generated by alternative RNA splicing, is the primary form 
of circulating KL and contains only the KL1 domain, in 
which the acid/base site is mutated and the nucleophile site 
is conserved (16). Total circulating α-KL may include soluble 
and secreted α-KL. Circulating α-KL is able to function as a 
hormone to regulate the functions of cells or tissues that do 
not express α-KL (16). Secreted α-KL and the shorter form of 
soluble α-KL contain the KL1 domain and have approximately 
the same molecular weight (~65 kDa) (16).

α-KL is a multifunctional protein that regulates essential 
cellular processes and is predominantly expressed in the 
kidneys (18). In addition to its anti‑aging function, α-KL serves 
an essential role in the phosphatonin FGF23 signaling pathway 
and secreted KL functions as an endocrine hormone (19). 
Previous studies have identified that α-KL is associated with a 
range of diseases, including periodontitis (20), cardiovascular 
disease (21) and kidney disease (18). However, the role of α-KL 
in hemopathies, including anemia, remains unclear.

3. Association between α‑KL and anemia in CKD

Erythropoietin (EPO) and α‑KL. The release of EPO by the 
kidneys, a hormone that is important in the regulation of eryth-
ropoiesis, is triggered by tissue hypoxia (22). Under hypoxic 
conditions, EPO stimulates the differentiation of erythroid 
progenitor cells and normoblasts to increase the amount of red 
blood cell (RBCs) (22). Hypoxia-inducible factors (HIFs) are 
heterodimeric proteins that regulate the physiological response 
to hypoxia by altering the expression of downstream genes, 
including EPO, in interstitial cells in the renal cortex near the 
proximal tubule (23).

There may be a negative feedback between EPO and α-KL 
such that EPO promotes the expression of α-KL and increasing 
α-KL suppresses the production of EPO in CKD (22,24). KL 
deficiency is a characteristic feature of CKD with anemia (22). 
Hu et al (10) revealed that KL expression was reduced during 
the progression of kidney disease. In addition, the treatment 

of anemia with EPO has been demonstrated to enhance 
renal and extrarenal production of α-KL in patients with 
CKD (14,24). Furthermore, EPO has been demonstrated to 
inhibit uremia-induced nuclear factor-κB (NF-κB) production 
in endothelial cells and prevented a decrease in intracellular 
KL (24). However, a previous study reported that KL directly 
regulates hematopoietic stem cell differentiation, and erythroid 
cell generation and maturation (22). KL deficiency in mice 
resulted in increased erythropoiesis through activation of the 
HIF signaling pathway, and subsequent upregulation of renal 
EPO synthesis and secretion (22). Additionally, the expression 
of HIF-1α and HIF-2α was significantly upregulated in KL-/- 
bone tissue, resulting in localized overexpression of EPO (22). 
The molecular mechanism responsible for the KL-induced 
inhibition of the HIF signaling pathway and EPO expression 
may be associated with reduced osteoblast numbers and osteo-
penia (22). The effects of α-KL on EPO and the HIF signaling 
pathway are summarized in Fig. 1.

Kempe et al (25) demonstrated that a lack of KL expression 
leads to increased cytosolic Ca2+ activity, leading to enhanced 
scrambling of cell membrane phospholipids and cell shrinkage 
in erythrocytes. This suggests that KL deficiency accelerates 
eryptosis, the suicidal death of erythrocytes. Thus, the role of 
KL in hemopoiesis remains unclear and further studies into 
this area are warranted.

Iron metabolism and α‑KL. Iron-deficiency anemia (IDA) 
is responsible for ~50% of all anemia cases (26). It has been 
reported that 273,000 individuals succumb to IDA each 
year worldwide (26). ‘Absolute' iron deficiency is common 
in patients with CKD and anemia (27). Different conditions, 
including inflammation, liver disease and pregnancy, may 
induce iron-restricted erythropoiesis and aggravate renal 
anemia (1). The distinction between these conditions is clini-
cally relevant; however, peripheral iron indices are of little 
help in the differential diagnosis (28).

Iron deficiency may lead to high expression of KL in 
patients with CKD. A study of 70 patients with stages I-V 
CKD demonstrated that the FGF23 levels were elevated and 
KL levels were decreased, and the magnitude of these changes 
increased as the tumor stage increased (29). In addition, 
significant correlations were identified between serum KL 
levels and ferritin levels, and serum KL levels and transferrin 
saturation percentage, which suggest that KL serves a negative 
role in iron regulation (29). However, little is known about the 
underlying molecular mechanisms of these effects. A previous 
study demonstrated that serum iron overload decreased renal 
expression of KL at the mRNA and protein levels, and that iron 
chelation suppressed angiotensin II-induced downregulation 
of KL (30). These results indicate that the underlying mecha-
nism of the angiotensin II-induced downregulation of KL is 
the alteration of iron metabolism in the kidney. Therefore, the 
renin-angiotensin system may serve a role in the regulation of 
iron and α-KL.

HIFs affect the majority of aspects of iron metabolism (23). 
HIF-2 enhances iron absorption by small bowel enterocytes and 
augments iron export from duodenal cells (23). Additionally, 
HIFs serve a role in the utilization of iron from senescent 
RBCs via reticuloendothelial system macrophages (31). In 
this manner HIFs increases iron stores through absorption 
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from the duodenum and the recycling of senescent RBCs (31). 
The increased efflux of iron to the circulation is achieved via 
HIF-mediated increased expression of ferroportin in duodenal 
enterocytes and macrophages (31). KL deficiency in mice 
results in the activation of the HIF signaling pathway (22). 
The effects the HIF signaling pathway on iron supplies are 
summarized in Fig. 1.

Vitamin D and α‑KL. Accumulating evidence suggests 
that vitamin D deficiency increased the progression of 
CKD (32-34). Vitamin D is important in anemia, with low 
vitamin D levels being associated with an increased risk of 
anemia (35,36). Thus, vitamin D deficiency may be a factor in 
the development of anemia in patients with CKD.

Vitamin D and KL exert negative feedback towards one 
another in patients with renal anemia. A previous study 
suggested that the vitamin D/parathyroid hormone (PTH) 
signaling pathway regulates the KL/FGF23 signaling 
pathway, and vice versa (37). 1,25-dihydroxyvitamin D 
[1,25(OH)D2], the metabolically active form of vitamin D, 
was demonstrated to upregulate KL expression (37). PTH may 
indirectly upregulate KL via upregulating 1,25(OH)D2 (38). 
In addition, several recent studies have demonstrated that 
vitamin D stimulates the expression of FGF23 and KL, and 
that vitamin D formation is limited by a negative feedback 
regulation (39-41). This negative feedback is lost in kl-/kl- 
mice and in these mice the formation of 1,25(OH)2D3 is a 
function of dietary vitamin D even at excessive 1,25(OH)2D3 
concentrations (42). The mechanism by which KL inhibits 
the production of 1,25(OH)2D3 may be via inhibiting 
25-hydroxyvitamin D 1α-hydroxylase (39). A summary of the 
current knowledge of the association between vitamin D and 
α-KL is presented in Fig. 2.

Inflammation and α‑KL. Inf lammation is an essential 
component to the body's defense system; however, exces-
sive inflammation is considered to be the cause of anemia 
in patients with CKD (43). Inflammatory cells release large 
amounts of chemokines and vasoactive factors, including 
monocyte chemotactic protein-1 (MCP-1) and NF-κB, which 
induce the production of profibrotic cytokines following 
kidney injury (44). At the site of injury, proinflammatory 
factors, including interleukin (IL)-12, MCP-1 and NF-κB, 
stimulate the generation of myofibroblasts and the deposi-
tion of extracellular matrix, eventually leading to renal 
dysfunction and potentially to the indirect development 
of anemia (45). Notably, anemia is a common complica-
tion in patients with infections, autoimmune disorders, 

malignancies, CKD and other inflammation-associated 
disorders (46). Inflammatory cytokines impair erythro-
poiesis by inhibiting the production and function of EPO, 
and inhibiting erythroid progenitor cell proliferation and 
differentiation. Notably, inflammation induces the expres-
sion of iron regulatory hormone hepcidin and suppresses the 
iron exporter ferroportin, restricting the supply of iron for 
erythropoiesis (46).

KL is known to be an inhibitor of several inflammatory 
cytokines (47). The transcription factor NF-κB is an important 
stimulator of inflammation in CKD (48). A recent study reported 
that intracellular KL diminished the DNA binding ability of 
NF-κB and stabilized the NF-κB/NF-κB inhibitor α complex, 
thus preventing uremia-induced NF-κB expression (24). KL 
serves as an anti‑inflammatory modulator through negatively 
regulating the production of NF-κB‑associated inflammatory 
proteins (47). A potential mechanism for this effect is that 
KL inhibits the Ser536 phosphorylation of the NF-κB p65 
subunit and its subsequent recruitment to the promoter sites 
of multiple cytokines (49). Additionally, KL may attenuate the 
glucose-stimulated activation of the NF-κB by downregulating 
the expression of toll-like receptor 4 (50), which is associated 
with CKD (51). Conversely, NF-κB regulates the activity of 
exogenous and intracellular KL in endothelial cells (52). NF-κB 
also suppresses the activity of KL, potentially by promoting 
the production of reactive oxygen species (52). Finally, 
NF-κB also inhibits the proinflammatory effect of IL‑12 (20). 
These results demonstrate the anti‑inflammatory effects of 
KL (Fig. 2).

4. Conclusions

Although several studies have reported that there is reduction 
of α-KL in patients with CKD with anemia, the mechanisms 
are complicated. Based on previous studies, it appears that low 
levels of EPO in patients with CKD with anemia downregu-
lates the expression of α-KL, which results in high serum levels 
of iron and vitamin D, mitigating anemia. This suggests that 
low expression of α-KL may be a compensatory mechanism 
to attenuate the effects of anemia. Meanwhile, the expression 
of α-KL declines when serum levels of iron increase, and the 
expression of α-KL increases with vitamin D. Overall, further 
understanding of the role of α-KL in renal anemia is needed, 
which may offer novel insights into the treatment of patients 
with CKD complicated with anemia.
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Figure 1. Low expression of α-Klotho in patients with chronic kidney disease 
complicated by anemia could increase serum EPO and iron levels. HIF, 
hypoxia-inducible factor; EPO, erythropoietin; NF-κB, nuclear factor-κB.

Figure 2. Low expression of α-Klotho in patients with chronic kidney disease 
complicated by anemia could increase serum vitamin D levels and inhibit 
inflammation.
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