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ABSTRACT
A generalist pollination system may be characterized through the interaction of a
plant species with two or more functional groups of pollinators. The spatiotemporal
variation of the most effective pollinator is the factor most frequently advocated to
explain the emergence and maintenance of generalist pollination systems. There are
few studies merging variation in floral visitor assemblages and the efficacy of
pollination by different functional groups. Thus, there are gaps in our knowledge
about the variation in time of pollinator efficacy and frequency of generalist species.
In this study, we evaluated the pollination efficacy of the floral visitors of Edmundoa
lindenii (Bromeliaceae) and their frequency of visits across four reproductive
events. We analyzed the frequency of the three groups of floral visitors (large bees,
small bees, and hummingbirds) through focal observations in the reproductive events
of 2015, 2016, 2017, and 2018. We evaluated the pollination efficacy (fecundity
after one visit) through selective exposure treatments and the breeding system by
manual pollinations. We tested if the reproductive success after natural pollination
varied between the reproductive events and also calculated the pollen limitation
index. E. lindenii is a self-incompatible and parthenocarpic species, requiring the
action of pollinators for sexual reproduction. Hummingbirds had higher efficacy
than large bees and small bees acted only as pollen larcenists. The relative frequency
of the groups of floral visitors varied between the reproductive events. Pollen
limitation has occurred only in the reproductive event of 2017, when visits by
hummingbirds were scarce and reproductive success after natural pollination was the
lowest. We conclude that hummingbirds and large bees were the main and the
secondary pollinators of E. lindenii, respectively, and that temporal variations in the
pollinator assemblages had effects on its reproductive success. Despite their lower
pollination efficacy, large bees ensured seed set when hummingbirds failed. Thus, we
provide evidence that variable pollination environments may favor generalization,
even under differential effectiveness of pollinator groups if secondary pollinators
provide reproductive assurance.
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INTRODUCTION
In most plants, flowers are visited by a diverse assemblage of animals, which characterizes
generalist pollination systems (Waser et al., 1996). Based on the behavior and
morphophysiological traits, floral visitors can be arranged in different functional groups of
pollinators, which may differ in their contribution to the plant reproductive success
(Fenster et al., 2004). This difference in contribution occurs as these pollinators can vary in
frequency of visits and ability to transfer pollen (Shuttleworth & Johnson, 2008; Ollerton,
2017). Studies encompassing generalist pollination systems mainly report floral visitor
assemblages and visitation rates (Thompson, 2001; Freitas & Sazima, 2006; Scrok &
Varassin, 2011) despite that not all visitors are actual pollinators (Armbruster, Fenster &
Dudash, 2000; Ollerton, 2017). Therefore, studies that evaluate the pollination efficacy
(for instance, measuring seed set after one visit; Freitas, 2013) of different functional
groups of pollinators are necessary to better understand pollinators’ relevance on plants
with a generalist pollination system.

Based on the principle of “the most effective pollinator,” a plant having more than
one functional group of pollinators could be interpreted as an intermediary stage in
the shift from one specialized pollinator to another (Stebbins, 1970). An alternative
explanation is that generalist systems are not transient and may be favored in certain
scenarios, for example, under unpredictable pollination environments (Herrera, 1988,
1996; Waser et al., 1996; Armbruster, Fenster & Dudash, 2000; Gómez & Zamora, 2006;
Ollerton et al., 2007). Accordingly, the spatiotemporal variation of the most effective
pollinator is the factor most frequently advocated to explain the emergence and
maintenance of generalist pollination systems. Several studies have explored temporal
variation in composition and frequency of floral visitors (Fenster & Dudash, 2001; Ivey,
Martinez & Wyatt, 2003; Zych et al., 2018). Other studies have quantified the effectiveness
(i.e., the product of efficacy times visitation rate, after Herrera (1987) and Freitas (2013))
of different pollinator species or functional groups (Amorim, Galetto & Sazima, 2013;
Salas-Arcos, Lara & Ornelas, 2017). However, information about floral visitor assemblages
and their effectiveness on pollination over multiple reproductive events is restricted to
a few systems (Herrera, 1987, 1988; Larsson, 2005; Wiggam & Ferguson, 2005). Thus,
there are gaps in knowledge about the variation of pollinators in generalist plants and their
effectiveness over time.

Generalized pollination systems have ecological and evolutionary dimensions
(Armbruster, Fenster & Dudash, 2000), therefore the effect of several pollinators in the
process of evolutionary generalization depends on the selective pressures exerted by those
floral visitors. In this sense, differences in pollination efficacy (sensu Freitas (2013))
among functional groups may be enhanced if the variations in the pollination environment
affect the plant reproductive success. For instance, pollen limitation (PL), the lower fruit
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and/or seed production due to inadequate pollen receipt, is widespread in angiosperms
(Ashman et al., 2004; Knight et al., 2005) and similarly to the pollinator effectiveness,
its magnitude varies at several scales (Bennett et al., 2018). However, how temporal
variations in the pollination environment and PL levels are related is a fundamental but
poorly understood aspect to a better understanding of the mechanisms that lead to the
maintenance of generalized pollination systems (Koski et al., 2018).

Bromeliaceae is the largest family of predominantly Neotropical angiosperms (Givnish,
2017) and hummingbirds are the main group of pollinators of them (Benzing, 2000).
However, several species are known to have mixed pollination systems, for example,
involving hummingbirds and bees or bats (Givnish et al., 2014). Edmundoa lindenii
(Regel) Leme bears flowers that are visited by both hummingbirds and bees in montane
tropical forests, however we do not know the role of those groups on the plant sexual
reproduction over time. Here, we evaluated the efficacy of three groups of floral visitors
and their frequency of visits over four reproductive events. In particular, we addressed
the following questions: (1) Do hummingbirds, large bees, and small stingless bees
pollinate this species, considering the high divergence of traits between them? (2) Is the
pollination efficacy of hummingbirds higher than large bees, since hummingbirds pollinate
most species of Bromeliaceae? (3) Are the relative frequencies of floral visits by each
group equivalent over four reproductive events, since clear environmental variations were
not noted in those years? (4) However, if they are not equivalent, are those variations
in frequency related to the reproductive success in natural conditions and the occurrence
of pollen limitation?

MATERIALS AND METHODS
Study site and species
This study was conducted in an area covered by montane Atlantic Forest, located
in the Serra dos Órgãos National Park (PARNASO), Rio de Janeiro state, Brazil
(22� 52′–22� 54′ S and 42� 09′–45� 06′W, ca. 960 m a.s.l.) among four reproductive events
(from 2014 to 2018). The average annual rainfall at the study site is 2,436 mm, with
the rainiest period between December and March and colder and drier months from June
to August. The mean annual temperature is 18.6 �C, with minimum and maximum
monthly temperatures of 13.7 �C and 22.9 �C (climate data for 2015 to 2018 from the
meteorological station located inside the PARNASO). The field research reported here was
performed using the required permit (SISBIO Nos. 34882 and 432793).

Edmundoa lindenii (Regel) Leme (Bromeliaceae-Bromelioideae) is a terrestrial,
saxicolous, or epiphyte herb, endemic to the Atlantic Forest in south and southeastern
Brazil (Martinelli et al., 2008; Zappi et al., 2015). In the study area, this species blooms
between December and February and produces fruits between March and April; its flowers
are visited by bees and hummingbirds (R.L.B. Leal et al., 2015, personal observations).

Floral biology
We measured inflorescences of E. lindenii (n = 16 individuals) directly in the field with a
measuring tap, considering the following traits: scape length, inflorescence diameter and
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bract length. Flowers (n = 73) from 28 individuals were collected in the field, stored in 70%
alcohol and measured in the laboratory with a digital caliper considering the following
structures: corolla tube length (i.e., from septal nectary to the opening of the corolla) and
the width of the corolla tube opening. We counted the number of ovules in 25 flowers
(n = 15 individuals).

To analyze the color quantitatively, we measured the spectral reflectance of petals, sepals
and bracts. For this, 12 flowers (n = 6 individuals) were collected in the field, stored in
thermal bags containing moist paper and brought to the laboratory, where they were
immediately measured (Lunau et al., 2011). We measured the reflectance using an
USB2000 spectrophotometer (OceanOptics, Inc., Dunedin, FL, USA) coupled with a
deuterium–halogen light source (DH-2000; OceanOptics, Inc., Ostfildern, Germany), with
a light emission range between 215 and 1,700 nm.We took all reflectance measurements at
a 45� angle in relation to the plant structure and we used barium sulfate as the white
standard and black paper as the black standard (Chittka & Kevan, 2005).

We used the logarithm version of the receptor noise-limited model (Vorobyev et al.,
2001) to compare the colors of the petals, sepals and bracts. Chromatic distances were
calculated according to the trichromatic formulation for bees and the tetrachromatic
formulation for hummingbirds (Vorobyev & Osorio, 1998). We modeled spectral
sensitivity curves using data from Sephanoides sephaniodes (Herrera et al., 2008) to
estimate hummingbird color distances and from Bombus terrestris for bees (Telles &
Rodríguez-Gironés, 2015). In all cases, we used standard daylight illumination (D65—
Wyszecki & Stiles, 1982). Using these models, we determined the spectral location of each
structure in a color space for each pollinator.

The distance between two points in a color space provides an approximation of the
perceived color difference (Endler & Mielke, 2005). We evaluated color distances
between sepals, petals and bracts. Using the receptor noise-limited model, we estimated
that two colors were discriminable if their distance was greater than 0.27 units for bees
(Telles & Rodríguez-Gironés, 2015) and 1.0 for hummingbirds (Vorobyev et al., 1998).
For representation, we also calculated the color loci of the flower colors in the respective
color space models: the color hexagon for bees (Chittka, 1992) and the color tetrahedron
for hummingbirds (Vorobyev et al., 1998).

Nectar
We measured the nectar volume in flowers previously bagged in bud stage, with a
graduated microliter syringe (Hamilton, NV, USA) and the concentration with hand-held
refractometer (Bellingham + Stanley Eclipse, UK). To evaluate nectar production
during anthesis, without the effect of nectar removal, 36 flowers (n = 10 individuals)
previously bagged at the bud stage were measured once after anthesis onset. In total, we
performed measurements at four different times of the day: 7:00 AM (n = 10 flowers);
8:30 AM (n = 10); 10:00 AM (n = 10); and 11:30 AM (n = 6). To evaluate if nectar removal
stimulates its secretion, 24 flowers were submitted to four treatments (n = 6 individuals,
four flowers per individual—one flower per treatment per individual): R = nectar was
measured once at 11:00 AM; R1 = nectar was measured twice (at 10:00 AM and 11:30 AM);
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R2 = nectar was measured three times (at 8:30 AM, 10:00 AM and 11:30 AM); and R3
nectar was measured four times (at 7:00 AM, 8:30 AM, 10:00 AM and 11:30 AM). Thus, for
the treatments R1, R2 and R3, nectar was remeasured on the same flowers. We calculated
the total amount of sugar (mg) per flower by multiplying nectar volume (mL) by its
corrected concentration (mg/mL) according to Dafni, Kevan & Husband (2005).

Breeding system and pollen limitation
We evaluated the breeding system and pollen limitation (PL) through manual pollination
treatments. Floral buds of different individuals were previously bagged with “voile” bags
and the flowers submitted to the following treatments: (1) spontaneous self-pollination–20
flowers from 8 individuals, were bagged and not manipulated in 2016; (2) hand self-
pollination—49 flowers from 20 individuals, were supplemented manually with pollen
from the same flower and bagged in 2016; (3) hand cross-pollination—130 flowers from
47 individuals, were supplemented with pollen from other individual, located at least 10 m
away and then bagged. We conducted the cross-pollination treatment in the years 2016
(26 flowers), 2017 (48 flowers) and 2018 (56 flowers); (4) pollination under natural
conditions—131 flowers from 36 individuals were marked and kept unbagged.
We evaluated the flowers from natural pollination in 2016 (49 flowers), 2017 (20 flowers)
and 2018 (62 flowers). At the end of the experiments we collected the fruits and
counted the number of seeds per fruit in the laboratory. We calculated the index of pollen
limitation as IPL = 1−Pn/Pc where Pn is the proportion of seed-bearing fruits multiplied by
the mean number of seeds per fruit of flowers exposed to natural pollination and Pc is
the proportion of seed-bearing fruits multiplied by the mean number of seeds per fruit of
flowers after hand cross-pollination (adapted from Lloyd & Schoen (1992); Larson &
Barrett (2000)). We used as response variable of reproductive success in all analyses such
an estimate combining fruits bearing seeds and the number of seeds, which is appropriate
because E. lindenii is parthenocarpic (i.e., flowers develop into fruits independent of
pollination). Values of IPL ≤0.2 indicate absence of PL, whereas IPL > 0.8 indicates strong
PL (Freitas, Wolowski & Sigiliano, 2010). We assessed the self-incompatibility by the
index of incompatibility (ISI), a relative measure of the seeds produced after self- and
cross-pollination (Zapata & Arroyo, 1978). Species with ISI < 0.30 may be classified as
self-incompatible (Ramirez & Brito, 1990).

Frequency and efficacy of floral visitors
We performed focal observations (sensu Dafni, Kevan & Husband, 2005) to evaluate the
identity of floral visitors and their frequency of visits, by censuses of 30 min per individual
(n = 190 individuals) between 6:00 AM and 12:00 PM, totalizing 184 h of observation.
Observations were done in four reproductive events, in the years 2015 (43.5 h, n = 50
individuals), 2016 (39.0 h, n = 42), 2017 (51.0 h, n = 48), and 2018 (50.5 h, n = 50).
Images and videos were captured during the visits to evaluate the foraging behavior and
the floral resources obtained. The visits were identified as legitimate or illegitimate by
the expected mode of pollination, considering the shape and arrangement of the flower
parts (sensu Irwin et al., 2010; Freitas, 2018). Specimens of insects were collected for
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posterior identification. We grouped the floral visitors into three functional groups based
on identity, body size and foraging behavior, as following: hummingbirds, large bees
(length ≥ 10 mm) and small bees (<10 mm).

We evaluated the efficacy of the three functional groups of floral visitors through
experiments of selective exposition. In this experiment, flowers previously bagged at the
bud stage were exposed to a single visit by any visitor of the three functional groups, as
follows: small bees (48 flowers in 2016), large bees (20 flowers in 2017 and 60 in 2018)
and hummingbirds (20 flowers in 2017 and 65 in 2018). Here we also considered the
proportion of seed-bearing fruits multiplied by the mean number of seeds per fruit as the
response variable of the pollination efficacy by each functional group.

Data analyses
We performed all the analyses in R version 3.4.4 (R Core Team, 2018). We evaluated
the production of nectar during anthesis and the effect of nectar removal in nectar
secretion by analyses of variance (one-way ANOVA), using the function aov. We assessed
the differences between treatments (time of anthesis and number of removals) by Tukey
HSD post-hoc test, using the function TukeyHSD.

We conducted a linear model to evaluate if the reproductive success after natural
pollination varied between three reproductive events (2016, 2017 and 2018). Prior to
analyses, we cubic-root transformed values of the response variable to meet the
normality assumptions. We used the reproductive events (three levels: 2016, 2017 and
2018) as fixed effect. We established the model using the function lm and we tested the
model assumptions by visual inspection of the residuals using the qqnorm function.
We calculated the significance of each term in the model using the function Anova (Type
II) from the car package (Kuznetsova, Brockhoff & Christensen, 2017) and the differences
between levels of categorical factors using the function lsmeans from lsmeans package
(Lenth, 2016).

To evaluate whether hummingbirds and large bees differ in their efficacy, we conducted
a linear model. Prior to analyses, we cubic-root transformed values of the response variable
to meet the normality assumptions. We used the functional group of pollinators (two
levels: hummingbirds and large bees) and the year when the treatments were conducted
(two levels: 2017 and 2018) as fixed effects. We established the model using the function lm
and we tested the model assumptions by visual inspection of the residuals using the
qqnorm function. We calculated the significance of each term in the model using the
function Anova (Type II) from the car package (Kuznetsova, Brockhoff & Christensen,
2017) and the differences between levels of categorical factors using the lsmeans package
(Lenth, 2016). We did not compare the efficacy of small bees as no seeds were produced
after their visits.

To evaluate if the frequency of visits varies between the four reproductive events and the
group of floral visitors, we conducted a log-linear model for categorical data (Wood, 2017).
We used the relative frequency of visits as a response variable and the reproductive
events (four levels: 2015, 2016, 2017 and 2018) and the functional groups (three levels:
hummingbirds, large bees and small bees) as fixed effects. We established the model using
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the glm function with the family set to poisson (Lindsey, 1997). We tested the model
assumptions by visual inspection of the residuals. We calculated the significance of each
term in the model using the anova function (test = Chisq) and the differences between
levels of categorical factors using the emmeans function available in the emmeans package.

RESULTS
Floral biology
The flowers of E. lindenii are grouped in a compound corymboid inflorescence with ca.
100–150 flowers, inserted in the leaf rosette (Fig. 1). Inflorescence diameter reached
121.32 ± 17.01 mm and scape length 296.87 ± 23.86 mm (mean ± SD throughout the text).

Figure 1 Edmundoa lindenii flowers were visited by three functional groups: hummingbirds, large
bees and small bees. (A) Inflorescence and flowers; (B) visit by the hummingbird Amazilia fimbriata;
(C) visit by the large bees Bombus morio; (D) visit by the small bee Trigona spinipes. All observations were
made in the montane Atlantic Forest at Serra do Órgãos National Park, southeastern Brazil.

Full-size DOI: 10.7717/peerj.8836/fig-1
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The flowers are hermaphrodite, with the androecium presenting six stamens included in
the corolla and anthers with longitudinal dehiscence (Fig. 1). The gynecium is also
included in the corolla and the style ends in a three-lobed stigma (Fig. 1). The inferior
and trilocular ovary contained 197.9 ± 54.12 ovules. The length of bracts and sepals
was 55.15 ± 6.99 mm and 26.0 ± 4.0 mm, respectively. The corolla is tubular (length:
17.95 ± 2.92 mm) with a narrow opening (3.11 ± 1.17 mm). The flowers have diurnal
anthesis, characterized by the presence of exposed pollen grains and receptive stigma.
The anthesis began at around 06:00 AM and lasted for about 6 hours when corolla closed.
The secretion of nectar started in the beginning of anthesis and it did not increase over
time (F = 0.44; df = 3; p = 0.726; Fig. 2A). However, the removal of nectar stimulated new
secretion (F = 6.632, df = 3, p = 0.00273, Fig. 2B).

The bracts reflect red wavelengths, whereas the corolla is UV-reflecting white and the
sepals are UV-absorbing white (Fig. 3). The color of petals, sepals and bracts, as well as
open or closed flowers, is distinguishable by bees and hummingbirds. Flower color was
1–7 times above the discrimination criteria (0.27) for bee vision (petals-sepals 4 ± 1,
bracts-sepals 4 ± 2) and 5–15 times above the discrimination criteria (1.0) for
hummingbirds (petals-sepals 8 ± 2, bracts-sepals 12 ± 4, bracts-petals 15 ± 7).

Figure 2 Nectar production in Edmundoa lindenii flowers did not increase during the anthesis, but
the nectar removal stimulated new secretion. (A) Nectar production along the anthesis at four different
times of the day: 7:00 AM; 8:30 AM; 10:00 AM; and 11:30 AM. (B) Nectar production after experimental
removal of nectar: R, no removal; sampled one time at 11:00 AM; R1, one removal; sampled two times at
10:00 AM and 11:30 AM; R2, two removals; sampled three times at 8:30 AM, 10:00 AM and 11:30 AM;
and R3, three removals; sampled four times at 7:00 AM, 8:30 AM, 10:00 AM and 11:30 AM. The hor-
izontal line in the both boxplots represents the median values, the upper and lower sides of the box
represent the corresponding quartiles and vertical lines are minimum and maximum values of the data
range. Dots are outliers. Different letters indicate statistical significance between pairs of years (p < 0.05)
by ANOVA post-hoc test (TukeyHSD). Full-size DOI: 10.7717/peerj.8836/fig-2
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Breeding system and pollen limitation
Edmundoa lindenii is self-incompatible (ISI = 0.08; Table 1) and parthenocarpic (Table 1),
requiring the action of pollinators for sexual reproduction. We observed that the
reproductive success after natural pollination varied between reproductive events
(ANOVA: F = 12.9, df = 2; p < 0.001). The lowest reproductive success occurred in the
reproductive event of 2017 (contrasts: 2016–2017: t = 5.050; df = 103; p < 0.001;
2016–2018: t = 2.100; df = 103; p = 0.095; 2017–2018: t = −3.840; df = 103; p < 0.001; Fig. 4).
Pollen limitation was expressive only in 2017 (PL index: 2016 = −0.21, 2017 = 0.70,
2018 = −0.003).

Figure 3 Attractive structures of Edmundoa lindenii include red bracts, UV-reflecting white petals
and UV-absorbing white sepals and can be detected by bees and hummingbirds. (A) The reflec-
tance spectra of attractive structures in E. lindenii inflorescences. For each structure, the colored line
represents the mean reflectance and the corresponding color shading represents the standard deviation.
Red, bract reflectance; blue, sepal reflectance; green, petal reflectance. (B) Hexagon model for bee vision
based on the photoreceptors of Bombus terrestris. (C) Tetrahedron model for bird vision based in the
photoreceptors of Sephanoides sephaniodes. In both models, the gray point represents achromatic center,
the red point represents mean loci for bracts, the blue point indicates the mean loci for sepals, and the
green point represents mean loci for petals. Full-size DOI: 10.7717/peerj.8836/fig-3

Table 1 The population of Edmundoa lindenii in PARNASO is self-incompatible and
parthenocarpic. Fruit and seeds production after hand pollination treatments at Serra do Órgãos
National Park, southeastern Brazil. Reproductive success = proportion of fruits with seeds multiplied by
the number of seeds.

Treatments Flowers
(n)

Fruits with
seeds (n)

Fruit set Seeds
(mean ± SD)

Reproductive
success

Spontaneous self-pollination 20 1 0.05 26 1.30

Manual self-pollination 49 4 0.08 126.00 ± 58.17 10.08 ± 4.65

Cross-pollination total 130 127 0.98 116.11 ± 58.97 113.64 ± 61.27

Cross-pollination 2016 26 23 0.89 126.57 ± 53.66 99.65 ± 57.91

Cross-pollination 2017 48 48 1.00 138.44 ± 63.47 138.44 ± 63.47

Cross-pollination 2018 56 56 1.00 98.88 ± 54.65 98.88 ± 54.65

Natural conditions total 131 108 0.82 119.08 ± 66.31 101.98 ± 58.43

Natural conditions 2016 49 45 0.92 131.19 ± 55.58 120.69 ± 51.13

Natural conditions 2017 20 11 0.55 76.73 ± 73.66 42.20 ± 40.51

Natural conditions 2018 62 52 0.84 118.04 ± 70.23 99.15 ± 58.99
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Floral visitors and temporal variation
The flowers of E. lindenii were visited by 11 species of animals belonging to three
functional groups (hummingbirds, large bees and small bees; Table 2). Hummingbirds
were the group with the highest species richness with seven species (Table 2; Fig. 1).
The small bee T. spinipes was the only visitor that conducted illegitimate visits, resulting in
damage of corolla and/or anthers by chewing. Hummingbirds and large bees foraged for
nectar acting as legitimate visitors and small bees collected pollen.

The pollinator functional group affected the reproductive success of E. lindenii (Table 3)
and hummingbirds had higher efficacy than large bees (contrast: t = 3.015 df = 148,
p = 0.003; Table 4; Fig. 5). Small bees did not act as pollinators, as none of the flowers they
visited produced seeds. The frequency of visits varied between functional groups of floral
visitors with significant interaction between functional group and reproductive event
(Table 4; Fig. 6).

DISCUSSION
The frequency of floral visitors’ groups (hummingbirds, large bees and small bees) varied
between reproductive events of E. lindenii and this variation resulted in a reduction in
the natural pollination in one year, when pollen limitation was also recorded. The existence
of year-to-year changes in the composition of floral visitors has been found in several

Figure 4 The reproductive event of 2017 presented the lower reproductive success by natural
pollination. Reproductive success after natural pollination among three reproductive events (2016,
2017 and 2018). Seeds, proportion of fruits with seeds formed multiplied by the number of seeds in each
fruit. Different letters show statistically significant difference (p < 0.05).

Full-size DOI: 10.7717/peerj.8836/fig-4
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systems (Schemske & Horvitz, 1984; Traveset & Sáez, 1997; Price et al., 2005; Olesen et al.,
2008; Petanidou et al., 2008), while in others, pollination efficacy between different years
was studied (Fishbein & Venable, 1996; Stoepler et al., 2012). However, there are fewer
studies that consider both plant reproductive success and variations in the pollinator
assemblages along time (Herrera, 1990; Fleming et al., 2001; Salas-Arcos, Lara & Ornelas,
2017). Thus, through observational and experimental approaches, we have shown that the

Table 2 Floral visitors and the resources they have taken in Edmundoa lindenii flowers. All records
were made in 2015 to 2018 at Serra do Órgãos National Park, southeastern Brazil. Functional groups,
represented by different shades: HB, hummingbirds; LB, large bees; SB, small bees. Type of resources:
P, pollen; N, nectar.

Family Species Functional group Resource

Trochilidae Amazilia lactea (Lesson, 1832) HB N

Amazilia versicolor (Vieillot, 1818) HB N

Leucocholoris albicollis (Viellot, 1818) HB N

Phaethornis eurynome (Lesson, 1832) HB N

Ramphodon naevius (Dumont, 1818) HB N

Thalurania glaucopis (Gmelin, 1788) HB N

Amazilia fimbriata (Gmelin, 1788) HB N

Apidae Bombus morio (Swederus, 1787) LB N/P

Bombus brasiliensis (Lepeletier, 1835) LB N/P

Euglossa sp. LB N

Trigona spinipes (Fabricius, 1793) SB P

Table 3 The pollination efficacy of hummingbirds was higher than efficacy of large bees in
Edmundoa lindenii. ANOVA results on the pollination efficacy of functional groups of pollinators of
E. lindenii, measured by seed set after a single visit to the flower at Serra do Órgãos National Park,
southeastern Brazil.

Effects DF F p

Reproductive event (year) 2 0.15 0.860

Functional group of pollinators 1 71.07 <0.001

Reproductive event: functional group 1 2.60 0.078

Table 4 The reproductive events and the functional groups of flower visitors of Edmundoa lindenii
had an effect on the relative frequency of visits. ANOVA results on the relative frequency of floral visits
by functional groups during the reproductive events of 2015, 2016, 2017 and 2018 at Serra do Órgãos
National Park, southeastern Brazil.

Effects DF Deviance p (>Chi)

Reproductive events (year) 3 0.020 0.999

Functional group of floral visitors 2 26.392 <0.001

Reproductive events: functional group 6 244.562 <0.001
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reproductive success of a generalist species responded to temporal variation of its
assemblage of pollinators.

Overall hummingbirds had higher efficacy and visitation frequency than large bees, so
they could be pointed as the main pollinators of E. lindenii. Hummingbirds also act as
the main pollinators in other species of Bromeliaceae (Schmid et al., 2011;Magalhães et al.,
2018). However, large bees did not always act as secondary pollinators of E. lindenii:
they were the main pollinators when the frequency of visits by hummingbirds was low.
Pollinators belonging to different functional groups may vary in their pollination
effectiveness, exerting pressures toward specialization (Stebbins, 1970; Rosas-Guerrero
et al., 2014). Thus, evolution of a generalized pollination system is expected when different
pollinators play the same role as selective agents or if the less effective pollinators provide
reproductive assurance, offsetting fluctuations of the most effective pollinators. This
could be the case for large bees and E. lindenii, as they can ensure sexual reproduction
when hummingbirds fail. In short, our results are consistent with the hypothesis that the
maintenance of generalist pollination is related to the existence of variable pollination
environments (Waser et al., 1996) and support the combined measurements of
reproductive success and pollinator assemblages along time and space as an interesting
approach in this regard (see Gómez & Zamora, 2006 for additional suggestions). Curiously,
there was no evidence of declining populations of hummingbirds in the study area in

Figure 5 Hummingbirds had higher efficacy than large bees in two reproductive events. Pollinator
efficacy in the reproductive events of 2017 (A) and 2018 (B). Seeds, proportion of fruits with seeds formed
multiplied by the number of seeds in each fruit. Different letters show statistically significant difference
(p < 0.05). Full-size DOI: 10.7717/peerj.8836/fig-5
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2017, the causes of the drastic reduction of visits to the flowers of E. lindenii by
hummingbirds that year are completely unknown.

Despite the differences on effectiveness, flowers of E. lindenii are attractive to
both hummingbirds and bees. Floral visitors identify and select flowers using a variety
of characteristics, including size and color contrasts (Papiorek et al., 2016) and
hummingbirds and bees can detect different color spectra (Chittka & Waser, 1997;
Vorobyev & Osorio, 1998). The floral traits of E. lindenii are detectable by both groups of
floral visitors. Petals had UV reflection, sepals absorbed UV and bracts were red. These
results correspond to the expected pattern for attraction of bees and hummingbirds, as
bees have a spectrum of vision that includes UV wavelengths, around 300–400 nm
(Kevan, Chittka & Dyer, 2001) and hummingbirds are known for their preference for
red-coloured flowers that mostly are UV-absorbent (Lunau et al., 2011). However,
tradeoffs between selective pressures exerted by different pollinators may occur if they
differ in preference for floral traits (Gervasi & Schiestl, 2017). As pointed out above, we
may speculate that the temporal fluctuation in the visitor frequencies of E. lindenii may
reduce the probability of pollinators exerting consistent selective pressures on its floral
traits (Schemske & Horvitz, 1984; Gómez & Zamora, 2006). In this case, attractive
and nonrestrictive flowers for large bees are important for reproductive assurance in
reproductive events with a low frequency of hummingbirds, thus it would not be expected
a shift to specialized hummingbird-flowers. However, further experiments are needed

Figure 6 Relative frequency of visits by each functional group in Edmundoa lindenii flowers varied
among the four reproductive events. The relative frequency of visits in the reproductive events of 2015,
2016, 2017 and 2018. HB, hummingbirds; LB, large bees; SB, small bees.

Full-size DOI: 10.7717/peerj.8836/fig-6

Leal et al. (2020), PeerJ, DOI 10.7717/peerj.8836 13/22

http://dx.doi.org/10.7717/peerj.8836/fig-6
http://dx.doi.org/10.7717/peerj.8836
https://peerj.com/


to support that selection toward pollination specialization by hummingbirds is restrained
in this system.

In addition to visual signals, the nectar of E. lindenii is accessible to hummingbirds and
large bees, thus its flowers are attractive and legitimately accessible to the two groups.
The dynamics of nectar production influences the behavior of pollinators during visits to
the flowers (Parachnowitsch, Manson & Sletvold, 2018). Although nectar production of
E. lindenii did not increase over time, its removal stimulated further secretion. Similar
results have been found in other bromeliads, including some species visited by
hummingbirds and bees (Galetto & Bernardello, 1992; Ordano & Ornelas, 2004). Nectar
secretion after withdrawal may favor repeated visits to the flower. This is consistent with
our results of the pollination efficacy experiment in E. lindenii. Specifically, seed set
after one visit by a large bee or hummingbird was lower than seed set of flowers exposed to
pollinators during the whole anthesis, indicating that more than one visit is necessary to
achieve maximum fecundity in this species. At last, nectar secretion after removals and
repeated visits by pollinators could be related to the male component of the reproductive
success (Ordano & Ornelas, 2004).

The population of E. lindenii at PARNASO was self-incompatible, but self-compatibility
has been registered in other populations of this species (Matallana et al., 2010). Variations
between self-incompatibility and self-compatibility within species are common in
plant evolution and may indicate transitions between reproductive systems (Igic, Lande &
Kohn, 2008; Moreira, Miranda & de Lima, 2017). Studies have shown that compatibility
barriers can be broken by genetic changes (such as mutations) (Sassa et al., 1997),
physiological factors, elevated temperatures and stress (Tezuka et al., 1997), allowing for
self-pollination. Moreover, breeding systems may be related to the degree of pollination
generalization, linking shifts in pollination and incompatibility systems. For instance,
Wessinger & Kelly (2018) found a relationship between self-compatibility and attributes
related to the attraction of hummingbirds, including red flowers and loss of floral
aroma and UV-absorbing pigments. In contrast, we found self-incompatibility and
UV-absorbing sepals in E. lindenii despite higher frequency of visits by hummingbirds.
Self-incompatibility in this species seems to work as a barrier to autogamous pollination,
since small bees access the anthers, make long visits to the flower, and manipulate the
pollen. In fact, pollinators usually do not operate independently of herbivores (florivores in
this case), which may generate a tradeoff between the fitness functions by each kind of
organism (Ashman, 2002; Gómez & Zamora, 2006; Gélvez-Zúñiga et al., 2018).

CONCLUSION
Our results allow us to conclude that hummingbirds and large bees were the main and
the secondary pollinators of E. lindenii, respectively. Moreover, small bees had a negative
effect on its reproduction. These results could indicate a higher degree of specialization of
this system than the apparent generalization considering floral visitor composition
(Padyšáková et al., 2013), which would be in accordance with the most effective pollinator
principle (Stebbins, 1970). However, temporal variations in the pollinator assemblages
had effects on reproductive success of E. lindenii, leading to the occurrence of pollen
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limitation when visits by hummingbirds were scarce. Despite their lower pollination
efficacy, large bees ensured seed set when hummingbirds failed. Plant pollination
generalization has been associated with similar effectiveness by the different pollinators
(Waser et al., 1996). However, we provide evidence that variable pollination environments
may favor generalization, even under differential effectiveness of pollinator groups if
secondary pollinators provide reproductive assurance. This reinforces the idea of different
mechanisms driving the evolution of generalized pollination systems (Schiestl, Balmer &
Gervasi, 2018).
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