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Abstract
Purpose Previous studies have focused on global cerebral alterations observed in cirrhosis. However, little was known about the
specific abnormalities of vision-related brain regions in cirrhotic patients. In this study, we sought to explore neurological
alterations of vision-related regions by measuring brain resting-state network connectivity, based on the structural investigation
in cirrhotic patients without clinical sign of hepatic encephalopathy (HE).
Methods Structural and functional magnetic resonance image (MRI) data were collected from 20 hepatitis B virus (HBV)-related
cirrhotic patients without clinical sign of HE and from 20 healthy controls (HC). Voxel-based morphometric (VBM) analysis and
brain functional network analysis were performed to detect abnormalities in cerebral structure and function.
Results Cirrhotic patients showed regions with the most significant gray matter reduction primarily in vision-related brain
regions, including the bilateral lingual gyri, left putamen, right fusiform gyrus, and right calcarine gyrus, and other significant
gray matter reductions were distributed in bilateral hippocampus. Based on structural investigation focused on vision-related
regions, brain functional network analysis revealed decreased functional connectivity between brain functional networks within
vision-related regions (primary visual network (PVN), higher visual network (HVN), visuospatial network (VSN)) in the patient
group compared with HC group.
Conclusion These results indicate that structural and functional impairment were evident in the vision-related brain regions in
cirrhotic patients without clinical sign of hepatic encephalopathy. The physiopathology and clinical relevance of these changes
could not be ascertained from the present study, which provided a basis for further evolution of the disease.
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Introduction

Hepatitis B virus–related cirrhosis is a global public health
problem characterized with high infection, morbidity, and
mortality rates [1]. It has been estimated that the chronic
HBV infection affects 350 million people worldwide (more
than 5% of the world population), who suffer from brain

edema, intracranial hypertension, and widespread cerebral
neurological deficits [2–4].

In some case reports regards cirrhosis, the vision-related
regions were shown to be affected, which lead to transient
losses of the vision [5–8]. Zafiris et al. have also reported that
cirrhotic patients without clinically overt hepatic encephalopa-
thy (HE) showed impaired performance in vision capacity tasks
with reference to the extrastriate visual cortex [9]. Cirrhotic
studies based on MRI, a noninvasive imaging technique, have
repeatedly reported the neuroimaging changes within different
vision-related regions. For instance, MRI studies showed that
cirrhotic patients exhibited a significant reduction in graymatter
regions, particularly in putamen, fusiform gyrus, and occipital
regions [10–12]. A neuroimaging study has reported the
occipital-parietal cortical edema by MRI and focal occipital
status epilepticus by electroencephalogram (EEG) in the
HBV-related hepatic disease [8]. Reduced cortical thickness
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was observed in the occipital cortex in patients with hepatitis C
virus infection [13]. In this study, we sought to study alterations
in cerebral gray matter volume in cirrhotic patients by voxel-
based morphometric analysis. This type of analysis permitted
an unbiased general search of structural abnormalities across
the entire brain. Based on this structural investigation, the
resting-state functional MRI (rs-fMRI) was further performed
to detect abnormalities within these regions.

The rs-fMRI measured spontaneous brain activity as low-
frequency fluctuations in blood oxygen level-dependent
(BOLD) signals. During the resting-state, correlated sponta-
neous fluctuations occurred within spatially distinct and func-
tionally related groups of cerebral regions, in which variations
would reflect task performances in the real life [14].
Furthermore, the resting-state method has been used to reveal
functional architecture in the brain of cirrhotic patients and
could serve as a marker to reflect altered features of cirrhosis
without overt HE, particularly in lingual gyrus, middle occip-
ital gyri, and cuneus [15–17]. It was worth noting that the
vision-related brain regions were a complex patchwork of
functionally interconnected regions, and previous studies have
not adequately provided a systematic investigation into aber-
rant organization among these regions.

The method of brain functional network analysis could
provide a new way of understanding human brain function
procedures and investigating dysfunctional brain architecture
in cerebral alterations [18, 19]. The systematic investigation of
distinct brain functional networks could provide an important
perspective to uncover mechanisms regarding brain alter-
ations [20]. To the author’s knowledge, there was not any
MRI study having examined alterations focused on vision-
related regions using brain functional network analysis, which
would provide a systematic insight into the vision-related re-
gions from a more comprehensive perspective in cirrhotic
patients. Thus, brain functional network analysis would be a
useful method to furtherly quantify disease-related pathophys-
iological changes within these regions.

Therefore, we hypothesized that cirrhotic patients would
exhibit abnormalities in the vision-related brain regions com-
pared to HC group. From a systematic perspective by neuro-
imaging investigations, this study aimed to explore how
vision-related regions were affected in the cirrhotic group
without clinical sign of overt HE.

Methods

Participants

This study was approved by the local Research Ethics
Committee. Written informed consents were obtained from
all the participants before the study. The clinical and demo-
graphic data are shown in Table 1.

We employed 20 HBV-related cirrhotic patients without
clinical sign of HE for participation in the study. Considering
the needs of clinical treatment, no clinical sign of HE was
diagnosed during recruitment by the two professional physi-
cians in the local hospital. Patients were excluded if they
showed or were judged to exhibit current symptoms of overt
HE at the time of recruitment, other types of viral hepatitis, a
transjugular intrahepatic portosystemic or a surgical
portacaval shut, or any history of alcohol abuse. Laboratory
indices including venous blood ammonia, albumin, total se-
rum bilirubin, and prothrombin time were obtained from pa-
tients for the assessment of the functional state of the liver. For
comparisons, 20 age and sex-matched healthy controls were
recruited from the hospital. Exclusion criteria for healthy con-
trols included less than 5 years of formal education, false teeth,
or clinically determined diseases of the liver or other systems.

Imaging acquisition

All MRI images were collected from a GE Signa HDxt 3.0T
MRI scanner (GE Medical Systems, Milwaukee, WI)
equipped with a standard eight-channel head coil. Gradient
specifications: amplitude 50 mT/m, slew rate 150 T/m/s.
The resting-state functional MRI images were recorded with
the following settings: repetition time/echo time, 2000/30 ms;
flip angle, 90°; slice thickness, 3 mm; matrix size, 64 × 64;
and field of view, 240 mm× 240 mm and fMRI volumes, 240
(the first four fMRI volumes were removed before analysis).
The T1-weighted anatomic images were acquired in sagittal
orientation with three-dimensional inversion recovery pre-
pared fast spoiled gradient recalled sequence with following
parameters: repetition time/echo time radio, 7.012/2.876 ms;
inversion time, 90 ms; flip angle, 8°; field of view, 256 mm×
256 mm; slice thickness, 1.2 mm; voxel size, 1 mm× 1 mm×
1 mm; and the number of slices, 166. All the patients and
healthy controls were examined in resting state with closed
eyes.

Image preprocessing

The fMRI data were preprocessed by using Analysis of
Functional NeuroImages (AFNI) software tools (Medical
College of Wisconsin, Milwaukee, WI, USA) and FSL (the
FMRIB Software Library, Oxford, UK). First, structural and
functional images were reoriented to MNI standard orienta-
tion. Then, skull stripping and motion correction were per-
formed. Next, the individual structural images were registered
to the Montreal Neurological Institute (MNI) standard tem-
plate with a resolution of 1 mm × 1 mm × 1 mm using 12
degrees of freedom of the affine transformation (FSL flirt)
and non-linear transformation (FSL flirt, optimizing the local
deformations), and transformation file is generated simulta-
neously. After that, the individual functional images were
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linearly registered to the individual structural images by the
rigid body of six degrees of freedom. Then, functional images
were registered to the MNI space using the transforma-
tion file which was generated before. The motion was
also calculated and data with head motion over 2 mm
or 2° were excluded (2 mm or 2° is a common criterion
for excluding the head motion) [21–23], and all the
fMRI data met the criteria. To remove low-frequency
drift and high-frequency noises, all fMRI signals were
filtered by band-pass filtering (0.01–0.08 Hz) and then
spatially smoothened using a 6-mm full width at half
maximum Gaussian kernel. In addition, because of the
topic focused on the human cerebrum, the cerebellum
was removed. After being preprocessed, the individual
data were used for further correlation analyses.

VBM analysis

Structural data was analyzed using FSL-VBM (http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM), an optimized VBM
protocol included in FSL tools. First, structural images were
brain-extracted and gray matter-segmented before being reg-
istered to the MNI152 standard space using non-linear regis-
tration. The resulting images were averaged and flipped along
the x-axis to create a left-right symmetric, study-specific gray
matter template. Second, all native gray matter images
were non-linearly registered to this study-specific tem-
plate and Bmodulated^ to correct for local expansion (or
contraction) due to the non-linear component of the spa-
tial transformation. The modulated gray matter images
were then smoothed out with an isotropic Gaussian ker-
nel with a sigma of 3 mm. Then, voxel-wise GLM was
applied using permutation-based non-parametric testing,
and VBM results were corrected for multiple compari-
sons using the threshold-free cluster enhancement
(TFCE) method with family-wise error (FWE) across
space. Results were considered to be significant for
p < 0.0002 after FWE correction.

Mask ICA (mICA) and identification of resting-state
networks (RSN)

Independent component analysis (ICA) is a widely used
technique for studying functional connectivity (FC) in
fMRI data. The mask independent component analysis
(mICA), restricted to a defined region of interest, has
been shown to detect local FC networks in particular
brain regions [24].

Using the mICA toolbox, the components to be
retained for further analysis were selected on the basis
of the resting-state atlas template defined by Richiardi
et al. [25]. In these templates, vision-related networks
included primary visual network (PVN, 2 ROIs), higher
visual network (HVN, 4 ROIs), and visuospatial net-
work (VSN, 13 ROIs). The VSN included mainly bilat-
eral precentral gyrus, bilateral postcentral gyrus, and bi-
lateral superior/left inferior temporal gyrus. The HVN
consisted mainly of right occipital lobe and left middle
occipital gyrus. The PVN was made up primarily of the
left lingual gyrus and bilateral calcarine gyrus.

Network functional connectivity analysis

For each participant, the mean of time series was ex-
tracted from each ROI, and pairwise ROI functional
connectivity was then calculated as the Pearson corre-
lation between perspective mean time series [26]. The
functional connectivity within (intra-FC) and between
(inter-FC) networks were averaged across pairwise
ROI functional connectivity [27], respectively, within
single network and between every pair of network.
This was used to generate a 3 × 3 network correlation
matrix for each participant. Then mean network con-
nectivity matrices were averaged across participants af-
ter Fisher’s r-to-z transformation [28]. The network
functional connectivity was analyzed using the scripts in
Matlab (MathWorks, Natick, MA).

Table 1 Demographics and
clinical characteristics of cirrhosis
patients and healthy controls

Variable Cirrhosis group (n = 20) HC group (n = 20) p value

Age (years) 51.65 ± 11.25 51.00 ± 10.13 0.85a

Sex ratio (M/F) 11/9 14/6 0.18b

Venous blood ammonia (in μ mol/L) 51.60 ± 33.34 N/A

Child-pugh stage (A/B/C) 4/4/7 N/A

Album 34.30 ± 4.75 N/A

Total serum bilirubin 20.73 ± 9.84 N/A

Prothrombin time 38.78 ± 9.24 N/A

Values are expressed as mean ± SD
a The p value for age difference between the two groups was obtained by two sample t test
b The p value for gender distribution in the two groups was obtained by chi-square test
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The Fisher’s r-to-z transformation was conducted in order
to determine the statistical differences in network functional
connectivity between the patients and HC group. To reduce
the probability of type I error, we controlled the false-
discovery rate (FDR, p < 0.05) for comparisons within each
subsystem.

Correlation analysis

Pearson correlation and liner regression modeling were per-
formed to assess the relationship between the functional
changes and biochemical parameters (i.e., blood ammonia,
total serum bilirubin). The statistical significant was set at
p < 0.05.

Results

There were no significant differences (p > 0.05) between the
cirrhotic group and healthy group in age and sex (Table 1).
VBM analysis, based on the TFCE methods with FWE cor-
rection, showed the specific pattern of gray matter deficits that
we have identified in cirrhotic patients (Fig. 1). Gray matter
volume decreased in patient group was detected in the follow-
ing areas: right lingual gyrus, right fusiform, and right
calcarine gyrus compared with HC group. In addition, several
subcortical structures, including left putamen and bilateral
hippocampus, also showed marked volume reduction among
the patients. Table 2 provides an overview of detectable struc-
tural brain changes of cirrhotic patients compared with HCs.

By resting-state brain functional network analysis, cirrhotic
patients showed significantly decreased FC between PVN and
HVN, and between VSN and HVN compared with HCs
(Figs. 2 and 3). No significant difference was observed in
the intra-network connections. Figure 4 and Table 3 show
the values of pairwise network FC strength on the network
connectivity matrix for patients and HCs respectively. There
was not any significant correlation between the functional
changes and biochemical parameters (i.e., blood ammonia,
total serum bilirubin) following correlation analysis.

Discussion

In this study, the voxel-based morphometric study demon-
strated that cirrhotic patients showed serious gray matter def-
icits in vision-related regions, including the bilateral lingual
gyri, left putamen, right fusiform gyrus, and right calcarine
gyrus. Furthermore, a network analysis of brain visual cortices
showed the cirrhotic patients suffered from the decreases of
internetwork functional connectivity between the HVN and
VSN, and that between the HVN and PVN. Our findings
suggested that functional abnormality of vision-related brain
functional networks in patient group compared with HC
group.

In the whole-brain VBM analysis, our results suggested the
cirrhotic patients suffered from serious reduction in several
brain regions, including the bilateral lingual gyri, left puta-
men, right fusiform gyrus, right calcarine gyrus, and bilateral
hippocampus. It was of note that these areas were related with

Fig. 1 VBM analysis results
between cirrhotic patient group
and healthy controls group.
Significant gray matter deficits
were detected in right lingual
gyrus, right fusiform, right
calcarine gyrus, left putamen, and
bilateral hippocampus.
Significant thresholds were set at
a p < 0.0002 after FWE
correction. VBM, voxel-based
morphometric; FWE, family-wise
error
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the visual functions. For example, PET studies with colored
and moving visual stimulation showed that the lingual gyri
and fusiform gyri were critically involved in the color vision
[30, 31]. The putamen was reported to be associated
with visual attention [32], and a voxel-wise statistical
analysis showed that damage in the putamen area was
significantly related to deficits in contralateral visual
processing speed [33]. The fusiform gyrus has been
identified in previous study as important in the visual
analysis of human face [34]. Taken together, our VBM
result suggested that the vision-related regions showed
seriously significant reductions of gray matter volume in
patient group without clinical sign of HE.

Based on the structural investigation, we selected brain
functional networks within vision-related regions as ROIs
from the basis of the atlas template defined by Richiardi
et al. [25] for brain functional network analysis. Then, our
findings of decreased FC between VSN and HVN, as well
as between PVN and HVN, indicate functional impairment
within these regions in patient group without clinical sign of
HE. The FC reflected the temporal dependency between spa-
tially remote neurophysiological events, which was related to
the activity of the underlying neuronal networks [35].
Interestingly, the functional abnormality reflects the impaired
functional communication level between remoted cortical re-
gions. Therefore, functional disconnections between HVN
and PVN/VSN in patient group showed the impaired co-
activation between the neuronal activation patterns of anatom-
ically separated vision-related brain regions compared with
HCs.

We speculated that the impaired co-activation might be
related to the microstructural alterations in cirrhotic condition.
From a neurobiological perspective, some possible
mechanisms include, but may not be limited to, both
swelling and dysfunction of astrocytes induced by

Table 2 Group-wise VBM
comparison of the significant
clusters showing reduced gray
matter volume in patient group
compared with healthy control
group

Cluster size (voxels) MNI coordinates Region p value (peak)

X (mm) Y (mm) Z (mm)

916 20 − 96 − 24 Right lingual gyrus p < 0.0002

294 − 24 10 − 10 Left putamen p < 0.0002

270 32 − 8 − 18 Right hippocampus p < 0.0002

230 − 26 − 10 − 14 Left hippocampus p< 0.0002

148 24 − 72 − 2 Right lingual gyrus p < 0.0002

77 36 − 40 − 26 Right fusiform gyrus p < 0.0002

51 16 − 76 12 Right calcarine gyrus p < 0.0002

Threshold at a cluster significance level at p < 0.0002 after FWE correction. The automated anatomical labeling
(AAL) atlas was used to label each cluster [29]

Fig. 2 Decreased functional connectivity between vision-related net-
works. Brain graph showing the network connectivity of nodes (ROIs
of vision-related networks) via edges (line, blue for connectivity between
HVN and PVN, white for connectivity between HVN and VSN), indi-
cates the decreased connections between HVN and PVN/VSN
respectively

Fig. 3 Statistical differences of FC between the patients group and HC
group. The vertical axis is inter-FC strength (mean Z value) between
HVN and VSN, as well as between HVN and PVN. The horizontal axis
is pair networks with significant different connectivity coefficient. (Error
bar indicates the st.d.). Between-group differences of inter-networks have
been corrected by FDR
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increased concentration of glutamine [36, 37], cytotoxic
edema induced by increased intracellular water [38], in-
creased expression of proinflammatory cytokines (including
TNF-α and the inter leukins IL-1β and IL-6) [39], and man-
ganese deposition [40]. Thus, the discovery of the current
study may supply further neuroimaging evidence for explor-
ing the neural mechanisms of cerebral deficit in the liver cir-
rhosis without apparent clinical resolution of overt HE, which
might provide a basis for further evolution of the disease.

However, several limitations of the present study are note-
worthy. First, owing to the limitation of experimental condi-
tions, the psychometric hepatic encephalopathy score (PHES)
was not utilized in this study and would be a desirable addition
in further studies. In addition, although current results provid-
ed the neuroimaging evidence for cerebral lesions in vision-
related regions, vision-related examinations should be

incorporated in future studies and used to assess the quantita-
tive information of general vision performance. Then, an anal-
ysis of the direct correlation would be executed between the
clinical characteristics and neuroimaging alterations in cirrho-
sis without clinical sign of overt HE, which would be of great
interest for future investigation.

In conclusion, the current study using voxel-based
morphometry showed that the most changed areas were
anatomically distributed in the vision-related brain re-
gions. Then, the fMRI-based analysis suggested im-
paired co-activation in neuronal activity between remote
cortical regions in cirrhotic patients without clinical sign
of overt HE. Although the physiopathology and clinical
relevance of this abnormality could not be ascertained
from the current study, our findings provide a basis for
further evolution of the disease.

Fig. 4 Vision-related networks
average functional connectivity
matrices. Pairwise Pearson’s
correlations between the time
courses were Fisher Z-
transformed and averaged across
subjects for each group. a HBV-
related cirrhotic patients, b
healthy control. The intensity of
colors in the matrix (a) and (b)
indicates the strength of pairwise
network FC. c Patients minus HC,
colors of the grid in the matrix C
represent the differences of
pairwise network FC. The marker
+ indicates a significant difference
between two groups (p < 0.05 af-
ter FDR). d The statistical results
by t test

Table 3 Group-wise comparison
of pairwise FC between vision-
related networks

Patients (mean ± st.d.) HC (mean ± st.d.) p value (t test)

Intra-FC

VSN 0.3092 ± 0.0825 0.3293 ± 0.1160 0.5326

HVN 0.3950 ± 0.2123 0.4479 ± 0.2239 0.5374

PVN 0.8102 ± 0.3112 0.9567 ± 0.3776 0.2300

Inter-FC

VSN—PVN 0.0294 ± 0.1753 0.0996 ± 0.1211 0.2229

HVN—VSN 0.0499 ± 0.0925 0.1292 ± 0.0841 0.0219*

ssHVN—PVN 0.1108 ± 0.2302 0.3021 ± 0.1776 0.0330*

The marker * indicates significant p < 0.05 after FDR correction
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