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Abstract

High-density single nucleotide polymorphism (SNP) markers are crucial to improve the reso-
lution and accuracy of genome-wide association study (GWAS) and genomic selection
(GS). Numerous approaches, including whole genome sequencing, genome sampling
sequencing, and SNP chips are able to discover or genotype markers at different densities
and costs. Achieving an optimal balance between sequencing resolution and budgets, espe-
cially in large-scale population genetics research, constitutes a major challenge. Here, we
performed improved double-enzyme digestion genotyping by sequencing (ddGBS) on
chicken. We evaluated eight double-enzyme digestion combinations, and EcoR |- Mse |
was chosen as the optimal combination for the chicken genome. We firstly proposed that
two parameters, optimal read-count point (ORP) and saturated read-count point (SRP),
could be utilized to determine the optimal sequencing volume. A total of 291,772 high-
density SNPs from 824 animals were identified. By validation using the SNP chip, we found
that the consistency between ddGBS data and the SNP chip is over 99%. The approach
that we developed in chickens, which is high-quality, high-density, cost-effective (300 K,
$30/sample), and time-saving (within 48 h), will have broad applications in animal breeding
programs.

Introduction

Genetic markers, as material for genetic research, have evolved from early restriction fragment
length polymorphisms (RFLPs), amplified fragment length polymorphisms (AFLPs), and sim-
ple sequence repeats (SSRs) to currently widely-used SNP markers. Tremendous advances in
genome-wide genotyping approaches have revolutionized the fields of population genetics and
molecular breeding analysis [1]. Many different genotyping methods (such as whole genome
sequencing, genome sampling sequencing, and SNP chips) have been developed, that vary in
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terms of marker density and cost. Since higher density leads to greater resolution but higher
cost, achieving an optimal balance between the two constitutes a major challenge [2].

For research on population genetics, genotyping via whole genome sequencing is currently
prohibitively expensive and technically unnecessary [3]. SNP chips, such as 600K oligonucleo-
tide chicken arrays (Affymetrix, Inc., Santa Clara, CA, U.S.A.) [4] and 60K BeadArray micro-
arrays (Illumina, Inc., San Diego, CA, U.S.A.) [5], are substantially less expensive, but possess
limitations, such as: 1) less representative of Chinese local breeds; 2) inability to detect novel
SNPs; and 3) applicable only to small-scale studies. However, the Reduced-Representation
Genome Sequencing (RRGS) method has been recently developed [6-8], which refers to a
group of various technologies with the principle of utilizing restriction enzyme digestion to
reduce the loci to be sequenced. At present, numerous related methods are proposed, includ-
ing restriction-site-associated DNA sequencing (RAD-seq) [9], genotyping by sequencing
(GBS) [10], reduced-representation libraries (RRLs) [11], complexity reduction of polymor-
phic sequences (CRoPS) [12], their improved versions [13-16], etc. These RRGS methods are
widely applied in animal, plant, and microorganism research [17-19].

Regarding chickens, RRGS approaches are widely employed. Kerstens et al. investigated
genome-wide structure variations (SVs) by constructing reduced representation libraries
(RRLs) of the chicken genome [20]. They identified hundreds of shared and divergent SVs in
different layer and broiler lines. Zhai et al. discovered 75 K SNPs from 72 individuals, and 28
K SNPs were identified as candidates for 16 chicken breeds using the RAD-seq method [21].
Liao et al. further applied the genotyping by genome reducing and sequencing (GGRS)
method in chickens, and identified 91 K SNPs from 252 individuals with lower cost [16]. In
addition, Fabio et al. identified 134 K SNPs by optimizing the Cornell GBS procedure [22]. For
the researches above, single-enzyme (Alu I, Hind 111, Ava 1II, Pst 1, respectively) was used for
preparing sequencing libraries, under the guidance of the choosing of enzyme by either in sil-
ico digestion or extant literature [16,21,22]. However, the method of single-enzyme digestion
might introduce some problematic issues, such as decreased sequencing quality caused by a
high proportion of short fragments and inconsistency in the read counts per individual
[16,22]. A meaningful diversification of GBS/RAD methods constituted the introduction of
two enzymes. Some studies demonstrated that double-enzyme digestion generates more con-
sistent results among different individuals than single-enzyme digestion [14,23]. However, to
the best of our knowledge, the double-enzyme method has not yet been applied in chickens.

The required SNP marker density was determined by the extent of linkage disequilibrium
(LD) in the experimental population. Previous studies have shown that the extent of LD varied
significantly across different chicken breeds [24-26]. Generally, a minimum of 100 K SNPs are
required to infer LD and haplotype information for the whole chicken genome [27]. For
genome-wide association study (GWAS) and genomic selection (GS), a higher marker density
is needed to increase resolution and accuracy, especially for populations with a low level of LD,
such as advanced intercross lines (AILs) [28,29].

In this paper, we systematically evaluated the effects of various restriction enzymes and
their combinations on the chicken genome. A nine-generation advanced intercross population
was used to examine the ddGBS output. Our results showed that the EcoR I- Mse I combina-
tion was most suitable for chicken-GBS analysis. We proposed to use two parameters, optimal
read-count point (ORP) and saturated read-count point (SRP), to determine the optimal
sequencing volume. With an average sequencing depth of 10x, approximately 300 K SNP
markers could be discovered with the EcoR I- Mse I combination.

Many RRGS adopted low-depth sequencing and imputation strategies. The common prob-
lem of these methods is high error rates in distinguishing heterozygous and homozygous
individuals [8,30]. In this study, we validated the accuracy of genotyping utilizing various
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sequencing depth filter conditions by comparing the results to Illumina Chicken 60K Bead-
Chip. Overall, we developed an optimized double-digest genotyping by sequencing (ddGBS)
method with high-density SNP markers and high genotyping accuracy for chickens. Our
experimental procedure could be applied to any other species.

Materials and methods
Ethics statement

All methods were carried out in accordance with relevant guidelines and regulations. All
experimental protocols were approved by the Animal Welfare Committee of Agro-biotechnol-
ogy of China Agricultural University. All animals used in this study were cared for and
experimented on according to the requirements of the Animal Welfare Committee of Agro-
biotechnology of China Agricultural University with the approval SKLAB-2014-06-07.

Experimental population and sample preparation

We aim to assess ddGBS performance in a population with a low level of LD. A nine-genera-
tion advanced intercross population was established from two divergent chicken lines, High
Quality chicken Line A (HQLA), a broiler line bred by Guangdong Wiz Agricultural Science
and Technology, Co. (Guangzhou, China), and Huiyang Beard chicken (HB), a native Chinese
meat-type breed. The FO—F, cross has been described in detail by Sheng et al. [31]. After F,
generation, the population was bred by random mating. In total, a set of animal material,
consisting of 31 F, individuals, 191 Fg animals, and 602 Fy progeny, was selected. DNA was
extracted from EDTA-anticoagulated blood using the Qiagen DNeasy Blood and Tissue Kit
according to the manufacturer’s instructions (Qiagen, Hilden, Germany).

Pre-sequencing processing and evaluation

In this study, both in silico simulation and empirical evidence were considered in choosing the
proper enzyme for the digestion of chicken genome. We employed seven single-enzyme diges-
tions (EcoR I, HinP1 I, ApeK 1, Pst I, Mse I, Msp I, and Bgl I1, including four-/five-/six-cutter
enzymes and restriction enzymes resistant to dam, dcm, and CpG methylation, methylation-
sensitive: EcoR I, HinP1 I, and ApeK I; methylation-insensitive: Pst I, Mse I, Msp I, and Bgl IT)
and eight double-enzyme digestions (Pst I-Mse I, Pst I-ApeK I, EcoR I- Mse I, Bgl I1- ApeK I,
PstI- Msp I, HinP1 I- Mse I, HinP1 I- ApeK I, and EcoR I- Msp I) in our experiment. I silico
analysis were conducted with an in-house Perl script. The size distribution of enzyme diges-
tion fragments was reported using R software. Enzyme digestion experiments for all enzyme
digestion combinations were performed according to the enzyme manufacturer’s protocol
(New England Biolabs, Ipswich, MA, U.S.A.), and the digesting time for each combination was
either 2h or 12 h.

We employed double-digest genotyping by sequencing (ddGBS) on three samples from the
F, generation. All DNA samples were diluted to 50 ng/uL, and 200 ng DNA was used for each
digestion of the eight double-enzyme combinations according to the enzyme manufacturer’s
instructions. We designed 24 barcode adapters (eight enzyme combinations x three samples,
see S1 Table). Mixing proportions of the barcode adaptors (BAs) and common adapters (CAs)
were determined according to the fragment counts resulted from the in silico analysis of each
restriction enzyme combination (S1 Protocol). The barcode adaptors (BA) were linked to the
reverse complementary sequences of the Enzyme I overhang, and the common adaptors (CA)
were linked to the reverse complementary sequences of the Enzyme II overhang. Library
size-selection was implemented by Agencourt™ AMPure®™ XP Reagent (Beckman Coulter,

PLOS ONE | https://doi.org/10.1371/journal.pone.0179073 June 9, 2017 3/19


https://doi.org/10.1371/journal.pone.0179073

@° PLOS | ONE

Optimized ddGBS method for chickens

Pasadena, CA, U.S.A.): 0.8x and 1.3x sample volume of Agencourt™ AMPure®™ XP Reagent
can remove most of the short fragments (< 300 bp) and long fragments (> 650 bp), respec-
tively. Detailed library preparation procedures are provided in S1 Protocol.

We evaluated each double-enzyme digestion strategy based on the enzyme digestion frag-
ment size, the fragment consistency index (FCI), the coefficient of variation of sequencing
depth (per fragment) across three samples (CV gepn), the number of SNPs, and the distribution
uniformity of SNPs across the chromosomes. We also subsampled reads of each individual in
different proportions (10%, 20%, 50%, 80%, and 100%), and evaluated the “optimal read-
count point (ORP)” and the “saturated read-count point (SRP)” parameters for cost optimiza-
tion. A detailed definition of the above technical terms was described in the “Terminology”
section.

EcoR |- Mse | library preparation

All DNA concentrations were normalized to 50 ng/pL. Samples were digested for 12 h at 37°C
with EcoR I- Mse I (New England Biolabs, Ipswich, MA, U.S.A.) in 20 pL volume containing

4 uL DNA (200 ng), 1x CutSmart™ Buffer, 5U EcoR I, and 5U Mse 1. The enzymes were then
inactivated by heating at 65°C for 20 min, and the samples were cooled to 4°C. The barcode
adaptor (EcoR-BA) binds to the EcoR I overhang, and the common adaptor (Mse-CA)
matches the Mse I overhang. The 96 indexes at the 3’ end of the barcode adaptors were
designed by the GBS Barcode Generator (http://www.deenabio.com/) and modified to allow
for Illumina NextSeq500 sequencer (San Diego, CA, U.S.A.) (no barcodes begin with GG; S2
Table). Barcodes were modulated in length between six and nine bases to prevent a decrease of
sequencing quality near the restriction sites. 5 L anneal adapter mix (the ratio of the EcoR-BA
and Mse-CA is 0.8:15 based on the predicted fragment counts obtained from EcoR I and Mse,
S3 Table) was ligated to 20 uL digestion products by T4 DNA ligase (Invitrogen, Carlsbad, CA,
U.S.A.). The reaction was incubated at 22°C for 1 h, and inactivated at 65°C for 20 min. Con-
sidering the maximum reads per flow cell of the NextSeq500 sequencer and the ORP of EcoR
I- Mse I, 96 ligation products were pooled together (one library). Agencourt™ AMPure™
beads (Beckman Coulter, Pasadena, CA, U.S.A.) were used for DNA fragment purification and
size-selection. The PCR amplification reaction system contained 10 ng purified products,

50 uL Platinum® PCR SuperMix High Fidelity (Thermo, MA, U.S.A.), and 25 pmol primers
(S1 Table). The amplification cycling protocol was as follows: 95°C for 5 min; three steps of
95°C for 30 s, 62°C for 30 s, and 68°C for 30 s for 17 cycles; followed by a final extension at
72°C for 5 min. PCR products were also purified by Agencourt™ AMPure® beads. The frag-
ment sizes obtained by this method were approximately 300 bp-650 bp, and the fragment size
of the highest proportion was 350 bp. The final library quality (concentration and fragment
size distribution) was determined by Qubit2.0 Fluorometer (Thermo, MA, U.S.A.) and Agilent
2100 Bioanalyzer (Agilent, Santa Clara, CA, U.S.A.), respectively.

Sequencing and data processing

All sequencing experiments were performed on the Illumina Nextseq500 Sequencer at the
State Key Laboratory for Agro-biotechnology, China Agricultural University. BCL files as
primary sequencing output were converted into FASTQ files using bcl2fastq2 conversion soft-
ware (version 2.16.0). During the conversion step, we also masked and trimmed the sequenc-
ing adapter [32]. After the trimming step, the Illumina 91-bp single-end reads were subjected
to a filtering process: at first, the reads that were polluted by the adapter sequence were deleted,
and then the reads which contained more than 50% low quality bases or more than 5% N bases
were removed. The quality control check report of filtered reads was generated by FastQC
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software (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). We used TASSEL GBS
analysis pipeline (version 4.0) [11,33], in which reads were aligned to the chicken reference
genome Gallus_gallus-4.0 (released 2011) using Bowtie2 [34]. All SNP filter options in TAS-
SEL were "-c 3", the minimum number of times a tag must be present to be output; "-mnTCov
0.01", the minimum SNP call rate for a taxon to be included in the output; "-mnSCov 0.6", the
minimum sample call rate for a SNP to be included in the output; and "-mnMAF 0.05", the
minimum minor allele frequency. The raw SNP sites were filtered by VCFtools [35] according
to the following parameters: 1) minor allele frequency (MAF) > 5%; 2) genotypes with a qual-
ity above 98 (GQ > 98) and depth > 5; 3) and only biallelic markers were retained. Ungeno-
typed markers were imputed using Beagle4.0 software [36] with the pedigree file of Fg-Fq
family relationships. To annotate mutations from the GBS output, we used the SNPE(f pro-
gram [37], with the chicken reference genome sequence and GTF annotation files downloaded
from Ensembl (http://www.ensembl.org/info/data/ftp/index.html). The Circos software pack-
age (http://circos.ca/) [38] was utilized to visualize the distribution of fragments, GC islands,
repeat regions, and SNPs in the chicken genome. The genome-wide LD pattern assessment
was implemented using a squared allelic correlation coefficient (r*) against the distance
between the SNPs. To visualize the LD pattern, the r* values were plotted against the pair-wise
SNP distances.

Terminology

A “good barcode read” is a sequence read with a perfect match to one of the barcodes pro-
vided in a barcode file. A “tag” refers to a unique sequence (excluding the barcode) from one
or more “good barcode reads”. A “fragment” is defined as a set of tags that align to the exact
same genomic position and strand. The number of tags and fragments is counted by the out-
put file of the TASSEL software [33]. The fragment consistency index (FCI) is defined as the
average fragment count from three samples divided by the total fragment counts obtained
from pools of three samples. The sequencing depth is calculated as the total good barcode
read counts divided by the fragment counts. The CV gy, is calculated as the mean of
sequencing depth (per fragment) across three samples divided by the standard deviation
(SD). The SNP density is defined as SNP number divided by chromosome length. The
CVsNp density is calculated as the mean of SNP density (per chromosome) divided by the stan-
dard deviation (SD).

The sequencing cost per fragment unit is calculated by total sequencing cost against frag-
ment counts. The optimal read-count point (ORP) is defined as the minimum sequencing cost
per fragment unit. We also defined the saturated read-count point (SRP) as the minimum
good barcode reads when reaching the maximum fragment counts.

Results
Screen the appropriate enzyme combinations for the chicken genome

We performed a series of assessments for enzyme selection. The first parameter tested was
fragment size. According to the predicted results from the in silico digestion, for every combi-
nation the majority of the predicted fragments were smaller than 500 bp (Fig 1A). In extreme
cases, the Pst I- ApeK I and HinP1 I- ApeK I combinations produced a high proportion of
short fragments (< 100 bp). Although the size-selection step could theoretically filter out short
fragments, it is difficult to remove them completely in practice. Specifically, too many short
fragments will lower the quality of library construction and subsequent sequencing. In addi-
tion, by comparing the results of three methylation-sensitive enzymes (EcoR I, HinP1 I, and
ApeK 1), we noticed that HinP1 I (G/CGC) could not completely digest the chicken genomic
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distribution obtained by in silico digestion of the chicken genome with different double-enzyme combinations. B)
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DNA in 12 h, and the ApeK I (G/CWGC) digestion products exhibited a few discrete bands
(Fig 1B). By contrast, the sizes of the EcoR I (G/AATTC) digestion product were appropriate
(100 bp—1000 bp) and evenly distributed without discrete bands.

For a more accurate estimation, we carried out direct sequencing after digestion. We pre-
sented another four parameters, including the fragment consistency index (FCI), the coeffi-
cient of variation of sequencing depth (per fragment) across three samples (CV gepin), the
number of SNPs, and the distribution uniformity of SNPs across chromosomes. We pre-
pared and sequenced 24 libraries of the eight double-enzyme digestions (three replicates for
each combination, details are described in the Methods). Sequencing of all libraries pro-
duced a total of 365 million clean sequencing reads and 273 million good barcode reads, and
all 24 barcode sequences were represented. The raw sequence reads were deposited in the
SRA database (SRR3951559). A high FCI value represented high consistency and low level of
missing data in different samples. We noticed that the fragment counts of the pooling sample
(3-plex) was larger than the counts of each single sample at a high sequencing depth, indicat-
ing variance across different individuals (Table 1), which, in turn, might lead to missing data
for the population. Moreover, we found that FCI was mainly determined by the types of
combinations and independent of sequencing depth (FCI: 0.89, average depth: ~29x in EcoR
I-Mse I; FCI: 0.64, average depth: ~36x in Pst I -Msp I; FCI: 0.58, average depth: ~16x in
HinP1 I- Msel).

PLOS ONE | https://doi.org/10.1371/journal.pone.0179073 June 9, 2017 6/19


https://doi.org/10.1371/journal.pone.0179073.g001
https://doi.org/10.1371/journal.pone.0179073

o @
@ : PLOS | ONE Optimized ddGBS method for chickens

Table 1. Statistics of sequenced three samples from different combinations.

Enzyme Individual Good Barcode Reads Fragments Depth (x) Tags SNPs
Number Consistency Index (FCI)
Pstl—Msel 1 31,092,630 974,736 - 31.90 1,191,540 -
2 32,074,913 976,575 32.84 1,190,301
3 32,481,526 978,805 33.18 1,203,774
3-plex 95,649,069 1,247,742 0.7828 76.66 1,852,830 | 402,083
Pst1—ApeK| 1 6,155,700 423,350 - 14.54 488,241 -
2 14,690,702 562,974 26.09 679,210
3 15,964,678 577,803 27.63 700,684
3-plex 36,811,080 761,797 0.6844 48.32 1,043,308 | 195,960
EcoR |I—Msel 1 8,191,164 351,880 - 23.28 409,007 -
2 11,120,572 378,023 29.42 446,787
3 13,497,447 385,716 34.99 463,467
3-plex 32,809,183 414,294 0.8976 79.19 603,396 | 134,291
Bglll—ApeK | 1 11,435,477 356,686 - 32.06 425,531 -
2 12,485,558 356,658 35.01 431,400
3 14,856,233 359,323 41.35 452,015
3-plex 38,777,268 436,503 0.8191 88.83 657,868 | 133,770
Pstl—Msp| 1 10,777,226 313,086 - 34.42 418,533 -
2 11,714,670 321,991 36.38 422,068
3 12,063,591 322,469 37.41 437,846
3-plex 34,555,487 498,114 0.6408 69.37 788,391 | 117,571
HinP11—Msel 1 4,208,229 275,611 - 15.27 316,572 -
2 4,663,311 289,381 16.11 323,745
3 4,786,013 292,617 16.36 331,145
3-plex 13,657,553 491,451 0.5817 27.79 629,468 | 94,724
HinP11—ApeK| 1 3,620,005 201,394 - 17.97 245,372 -
2 3,515,377 194,682 18.06 238,182
3 4,661,900 218,302 21.36 295,108
3-plex 11,797,282 389,479 0.5258 30.28 533,246 | 71,751
EcoR |—Msp| 1 2,635,952 75,407 - 34.96 93,221 -
2 3,086,989 75,537 40.87 93,227
3 3,451,969 76,099 45.36 96,194
3-plex 9,174,910 96,527 0.7840 95.05 157,425 | 26,112

https://doi.org/10.1371/journal.pone.0179073.t001

The consistency of sequencing depth (per fragment) across samples is also important
because it is related to genotyping accuracy. We defined the CV g, to evaluate the perfor-
mance for each of the eight combinations. The distribution of CV gepe, for all fragments in each
combination was shown in Fig 2. EcoR I-Mse I had the lowest mean CV gepeh across three indi-
viduals (0.42+0.34 (SD)) followed shortly after by Bgl II—ApeK I (0.44+0.43 (SD)). The highest
mean CV gepe, across three individuals occurred in HinP1 I—ApeK I (0.82+0.51 (SD)) followed
by HinP1 I—Mse1(0.77+0.51 (SD)).

The number of SNPs was also critical, since too many (such as Pst [—Mse I) would increase
sequencing cost, while too few (such as EcoR I—Msp I) would lower the resolution (Table 1).
Another important factor for ddGBS was the distribution of SNPs per chromosome (Table 2).
SNP density and coefficient of variation of SNP density (CVsnp density) across different chro-
mosomes is shown in Table 2. The SNP discovered by EcoR I-Mse I and Bgl II-ApeK I was
more evenly distributed across chromosomes with a CVgxp gensity 0f 0.19 than other
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combinations. In contrast, the highest CVsnp gensity Was found in Pst I-Mse I (0.60) followed by
HinP1 I-ApeK I (0.59). Overall, the parameters among selected combinations were summa-
rized in Table 3, and we concluded that the EcoR I- Mse I digestion was the optimal combina-
tion for the chicken ddGBS.

Determine the optimal level of sequencing depth

In order to obtain the optimal sequencing depth, we resampled a series of incremental subsets
from total sequencing reads, and then investigated the relationship among the fragment
counts, sequencing depth, and good barcode read counts. Different from whole genome
sequencing, in which depth was calculated as the total length of the raw reads divided by the
fixed total length of reference genome, in ddGBS the depth would be calculated as the total
good barcode read counts divided by the fragment counts, which would increase with amount
of sequencing until saturation. We estimated the two parameters: ORP (the minimum
sequencing cost per fragment unit, Fig 3A) and SRP (the point at which there is a tangent line
with zero slope for the fragment counts curve in Fig 3B) for all eight double-enzyme digestion
libraries.

Fig 3A shows that the unit cost firstly decreased and then increased with the increasing of
fragment counts. The unit cost fell to the lowest level (ORP) at approximately 10x sequencing
depth in most combinations. Fig 3B shows how the fragment counts change as a function of
good barcode reads. In this study, no SRPs were reached in most combinations, except EcoR I-
Msp Tand Bgl II- ApeK 1, even though the sequencing depth was greater than 20x (Fig 3B).
Theoretically, the fragment counts would be saturated when good barcode reads continued to
increase, and saturation is expected to ensure consistency among different individuals. How-
ever, a typical GWAS/GS examines several hundred individuals. It is impractical to sequence
all of the individuals to the saturation level (ranging in depths from 30x to 50x) for large popu-
lations (such as a family-based population with individuals of more than 100). One affordable
design is to reduce the amount of sequencing appropriately and impute the missing genotypes.
Taking the EcoR I- Mse I digestion as an example, at ORP, there were 2.7 million good barcode
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Table 3. Summary of parameters among different combinations.

Combinations | Fragment Fragment Consistency of | The Number | Uniformity of SNPs
Size Consistency | Sequencing of SNPs Distribution
Index (FCI) Depth (three (assessed by CVgnp
(assessed by individuals) | gensity across
CV4epth) chromosomes)
Bgl I—ApeK | | <1000 bp Medium High Medium High
EcoR [—Mse | | <1000 bp High High Medium High
EcoR I—Msp | | <1000 bp Medium High Low Medium
HinP1 |—ApeK | Large Low Low Low Low
| Proportion
of Short
Fragments
HinP1 [—Mse | | <1000 bp Low Low Low Medium
Pst I—ApeK| | <1000 bp Medium Low Medium Medium
Pstl—Mse | | Large Medium High High Medium
Proportion
of Short
Fragments
Pst—Msp| | <1000 bp Low Medium Medium Low

https://doi.org/10.1371/journal.pone.0179073.t003

reads and approximately 270 K fragment counts for each sample, and the average sequencing
depth was 10x for each fragment. Therefore, this compromise formula is not only highly pre-
cise, but also cost- effective.

SNP discovery and distribution

A total of 827 samples (824 chickens, among which three individuals were duplicated) in AIL
were used to construct the ddGBS libraries. 96-plex samples were sequenced in one lane
according to the ORP of EcoR I- Mse I. The raw sequence reads were deposited in the SRA
database (SRR5462540, SRR5462541, SRR5462542, SRR5462543, SRR5462544,
SRR5462545, SRR5462546, SRR5462547, and SRR5462548) . On average, 3.44
million good barcode reads were obtained for each sample, and the average sequence depth
was approximately 10x. The coefficient of variation (CV) of read counts among individuals
was 0.13 (S1 Fig), indicating good consistency of library preparation. The SNPs ranged from
220-270 K among individuals prior to imputation. After strict parameter filtering in the TAS-
SEL-BEAGLE-GBS pipeline (including imputation), we identified 291,772 SNPs ultimately
(average sequencing depth was 10x with no missing data), corresponding to 1 SNP per 3.68
Kb in the chicken genome (S2 Fig and S4 Table). It is worth noting that the marker density is
higher than what was reported in previous studies in chickens [16,21,22]. Among all discov-
ered SNPs, 102,304 (accounting for 35.06% of all SNPs; the distribution is shown in S4 Table)
are novel to the NCBI chicken dbSNP database (data from ftp://ftp.ncbi.nih.gov/snp/
organisms/chicken_9031/VCEF/ on May 4, 2016). In addition, the markers were evenly distrib-
uted without interference from GC islands and repeat regions (S2 Fig). The majority of SNPs
identified were located in intergenic regions (45.19%) or intronic regions (39.55%). The exonic
regions contained only 1.37% of SNPs (Table 4), comprising 51.69% missense, 3.57% non-
sense, and 44.74% silent mutations.

Genotyping accuracy evaluation

The average sequencing depth of our experiments was 10x, with an abundance of low coverage
SNP sites (Fig 4A). In order to guarantee high-quality genotyping of the founders prior to
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Fig 3. Relationship of ORP/SRP with good barcode reads for eight double-enzyme combinations. A)
The function of unit sequencing cost of fragments was calculated by plotting sequencing depth versus
fragment counts. The ORP was defined as the minimum value of the unit sequencing cost (the minimum value
of the black-dashed line). B) The sequencing reads of three individuals were sampled at five thresholds (10%,
20%, 50%, 80%, and 100%, respectively). The sequencing depth (green) was equal to the good barcode read
numbers divided by the fragment counts. The SRP was the corresponding good barcode reads when the

slope of the fragment counts (orange curve) reduced to zero.

https://doi.org/10.1371/journal.pone.0179073.9003
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Table 4. Number of SNPs by region.

Type Count Percent (%)
UPSTREAM 18441 6.32
UTR_3_PRIME 2428 0.832
EXONIC 4005 1.373
--MISSENSE 2070 51.69
--NONSENSE 143 3.57
--SILENT 1792 44.74
INTRONIC 115399 39.551
INTERGENIC 131862 45.193
UTR_5_PRIME 298 0.102
DOWNSTREAM 18899 6.477
Others 440 0.15

https://doi.org/10.1371/journal.pone.0179073.t1004

imputation, we filtered raw SNP data using sequencing depth and genotyping quality, as well
as minor allele frequency. Sufficient depth at each locus is essential to accurately distinguish
heterozygous and homozygous sites. To assess the accuracy of genotyping, Illumina 60K
chicken BeadArray microarray data and GBS results from 22 same F, individuals were com-
pared. The correspondence between the two methods was evaluated at different depths rang-
ing from 2x to 12x. When the sequencing depth reached 5x, the genotyping consistency for
homozygous loci, heterozygous loci and total SNPs was 100%, 97.2%, and 99.1%, respectively
(Fig 4B). The missing rates of SNPs with the 5x sequencing depth are shown in Fig 4C and 4D.
After depth filtering of 5x, about 45.7% SNPs contained < 50% missing genotypes (Fig 4C).
The missing rates of most of the samples are between 40% and 60% (Fig 4D). We also per-
formed two technique repeats for SNP calling for three samples, and found that reproducibility
(in the case of the 5x filter condition) reached 98.5%, 98.2%, and 98.1%, respectively. There-
fore, our results indicated that the genotyping results of our methods are highly reliable and
accurate.

Discussion

To design a ddGBS plan, multiple factors needed to be considered, including selection of
enzyme combinations, optimization of library construction, sequencing depth of coverage,
SNP density, and cost.

Selection of enzyme combinations

The selection of enzymes constitutes one of the key steps in the GBS method, and is often
neglected. In this study, we investigated five parameters obtained from in silico/ in vitro diges-
tion or sequencing. We found that the result of HinP1 I enzyme digestion was not consistent
with its in silico simulation. Specifically, the fragments produced by HinP1 I- Mse I and HinP1
I- ApeK I were far fewer than the results of in silico simulation. This difference could be mainly
due to DNA methylation in chicken genome. Indeed, some methylation sensitive enzymes
cannot digest the genome completely, which will not only cause inconsistency with the pre-
dicted results, but also interferes with the reproducibility of downstream genotype calling
among different individuals [8]. Therefore, a pre-assessment experiment is necessary when
markers in a new species are to be developed.

The distribution of SNPs obtained by different enzymes was tested in this study. We noticed
that GGA10-20 has two-fold more fragment density than the GGA1-10 for Pst I and Msp L in
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conditions (sequencing depth ranging from 2x to 12x). C) Comparison of the missing rates of all 292 K SNPs on a per-site
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https://doi.org/10.1371/journal.pone.0179073.9004
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silico prediction (S3 Table), which may explain the result that the fragments generated from
Pst I- Msp I were not evenly distributed between macrochromosomes and microchromo-
somes. An uneven distribution of SNPs may have hampered the construction of evenly-dis-
tributed genetic linkage maps. However, Fabio suggested that Pst I would be suitable for
chicken methylation analysis since the microchromosomes are enriched for high CpG regions
[22].

Library construction process

There are two key points in library preparation that need to be addressed. First, we improved
the original GBS approach described by Poland et al. in the size-selection step [23]. In previous
study, 37% reads were discarded in the data processing step since the fragment size was too
short (< 50 bp). Here, we removed long fragments (> 650 bp) by adding 1.3x sample

volume of Agencourt™ AMPure®™ XP Reagent, and removed short fragments (< 300 bp) by
adding 0.8x sample volume of Agencourt™ AMPure™ XP Reagent (details are described in

S1 Protocol). In our experience, magnetic bead purification was more convenient, and exhib-
ited better consistency among different libraries compared to gel extraction.

Second, the accurate concentration of double-stranded DNA could improve the consis-
tency of good barcode read numbers for each sample. De Donato reported that the read num-
ber per sample varied by 39% when 47 individuals were digested by Pst I [18]. Several other
studies have also observed high CV in the number of different individuals (0.69 for 252-plex in
chickens [16], 0.89 for 96-plex in Drosophila [39], etc.). Liao suggested that this should result
from poor DNA quality, such as inaccurate quantification or contamination of DNAs with
phenol/chloroform [16]. To ensure the uniformity of DNA concentration, high-molecular-
weight DNA concentration was measured by Qubit2.0 prior to enzyme digestion in this study.
Sequencing results showed that all of the 824 samples were well represented, and the CV of
good barcode reads was 0.13 (S1 Fig), which was better than that achieved in previous studies
[9,16,18,39,40]. Moreover, we noticed that the majority of missing rates of samples ranged
from 40% - 60% (Fig 4D). This phenomenon may be attributed to the low CV of good barcode
reads among samples.

Characteristics of sequencing depth per site

The number of SNPs declined with the increase of minimum depth used for identifying SNPs
(Fig 4A), which was similar to other studies that used the GBS method [41,42]. A possible
cause for the distribution was the inconsistency in the depth per fragment. The number of
fragments and tags (which refers to a unique sequence from one or more good barcode reads)
was counted with the Tassel parameter “-c” of 3 [33], which required a tag to be presented at
least three times to be reported. Thus, a number of fragments of low depth were discarded in
single sample analysis, but still retained in 3-plex pooling sample analysis, which might be the
main reason for FCI < 1 (Table 1). We also noticed the divergent FCI value from the eight
combinations and its dependence of combination type rather than the sequencing depth. The
possible reason is that methylation (such as HinP1 I) or polymorphism disrupted a restriction
site in varying extents among different samples [8]. Moreover, the difference in enzyme activ-
ity may affect the efficiency of enzyme digestion.

The accuracy of genotyping constitutes another key aspect of GBS technology. Currently, a
typical GBS combines low-depth sequencing (for some inbred line of maize, the depth < 1x)
and missing data imputation [43-45]. However, this strategy works better for populations with
a low level of heterogeneity, such as recombinant inbred lines (RILs) rather than outcrossing
populations. Genotyping errors in calling heterozygotes as homozygotes are quite common in
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Fig 5. LD decay of the advanced intercross chicken lines. A squared allelic correlation coefficient (%) against the
distance between the SNPs in the Fy generation (HQLA was depicted as the green line, and HB was depicted as the
red line) and Fg generation (the blue line).

https://doi.org/10.1371/journal.pone.0179073.9005

GBS, either due to the low depth of reads or the incorrect read alignment resulting from para-
logous regions. Our results showed that the 5x depth was the lowest depth for accurate SNP
calls prior to the imputation step. Under this condition, the reliable SNPs of each individual
were approximately 150 K, which was still higher than that in other studies [16,21]. The refined
identity-by-descent (IBD) method implemented in Beagle 4.0 achieved a better performance
[35].

SNP density and cost

In this study, we developed a high-density and accurate SNP genotyping method for chickens
using EcoR I- Mse I. The SNP density was approximately 290 K, and some minichromosomes
were not included. AIL population was commonly used for QTL fine-mapping in animal
genetics [28,46-48]. Applying the SNP markers that we identified on our chicken population,
we noticed that r* in the Fo generation, which was r?; = 3.1 Kb, was substantially lower than
the F, generation (r%01 > 50 Kb) (Fig 5). This suggested that, although eight generations of
recombination decrease LD levels effectively, our marker density (SNP/3.68 Kb) can still
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capture almost all recombination events. Thus, it can greatly benefit the fine-mapping of the
QTL locations and functional genes.

The preliminary experiment was introduced to determine the optimal enzyme combination
(EcoRI- MseI) and approximate scope of the sequencing depth (ORP for large-scale popula-
tion and SRP for a small number of samples). Consequently, we achieved a balance between
the density of SNPs and cost. This pre-assessment method is recommended for any novel
species.

Reducing cost constitutes a primary aim of all reduced-representation genome sequencing
methods. Thus, our method has been optimized for cost at almost every step. However, Illu-
mina HiSeq X Ten pair-end 150 sequencing is now much more cost-effective than single-end
sequencing using NextSeq500. Moreover, adopting pair-end sequencing would provide a bet-
ter chance in SNP identification than single-end sequencing in this study. Currently, ddGBS
costs $30 per sample (approximately 300 K SNPs/individual), and more than 65% of the
expense comes from the sequencing step in our protocol. Therefore, decreases in the cost of
GBS are expected with the rapid development of sequencing technology. For example, HiSeq
X Ten systems can output 800-900 Gb data/2.6-3 billion reads in a single flow cell with a cost
of $1,000 for 30x of the human genome, which would be more appropriate for large-scale pop-
ulation sequencing (http://www.illumina.com/systems/hiseq-x-sequencing-system/system.
html). The RRGS process will be quickly standardized with the declining cost of sequencing
and it will, together with SNP chips, continue to be a crucial method for genomics study. In
addition, the combination of RRGS and other genome-wide sampling sequencing, such as
RNA-seq or Targeted Re-sequencing, could effectively promote genetics and evolutionary
studies. In conclusion, we present an accurate, high-density, and cost-effective genotyping
method for chickens. Our method could facilitate functional gene mapping and molecular
breeding of agricultural animals, and could easily be applied to any other species.

Supporting information

S1 Fig. Number of good barcoded reads per sample. The x-axis denotes the 824 samples, and
the y-axis denotes the good barcoded reads. Sample ID number was sorted by the number of
sequencing reads.

(PDF)

$2 Fig. SNP and tag distribution across the chicken genome in 824 individual samples
digested by EcoR I- Msel. In total, 292 K SNPs were identified among all individuals. The
genome characteristics and genome-wide distribution of restricted digest fragments are repre-
sented circularly. The exterior circle displays the lengths of the chromosomes. The four inte-
rior circles show the distribution of fragments (green), GC islands (orange), repeat regions
(black), and SNPs (red) from outside to inside.

(PDF)

S1 Table. PCR primers and 24 barcode sequences.
(PDF)

$2 Table. Barcode adaptor (BA) sequences (96-plex).
(PDF)

§3 Table. Number of predicted fragments obtained from seven enzymes and their distribu-
tion across the chromosomes.
(PDF)
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