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Topological phase transition is accompanied with a change of topological numbers. According to the
bulk-edge correspondence, the gap closing and the breakdown of the adiabaticity are necessary at the phase
transition point to make the topological number ill-defined. However, the gap closing is not always needed.
In this paper, we show that two topological distinct phases can be continuously connected without gap
closing, provided the symmetry of the system changes during the process. Here we propose the generic
principles how this is possible by demonstrating various examples such as 1D polyacetylene with the
charge-density-wave order, 2D silicene with the antiferromagnetic order, 2D silicene or quantum well made
of HgTe with superconducting proximity effects and 3D superconductor Cu doped Bi2Se3. It is argued that
such an unusual phenomenon can occur when we detour around the gap closing point provided the
connection of the topological numbers is lost along the detour path.

T
opological insulator and superconductor are among the most fascinating concepts in physics found in this
decade1–7. It is characterized by the topological numbers such as the Chern number and the Z2 index. When
there are two topological distinct phases, a topological phase transition may occur between them. According

to the bulk-edge correspondence, the gap must close at the topological phase transition point since the topological
number cannot change its quantized value without gap closing. Note that the topological number is only defined
in the gapped system and remains unchanged for any adiabatic process. Alternatively we may think of the edge or
surface of the sample in a topological phase. Gapless edge or surface modes appear because the boundary of the
sample separates a topological state and the vacuum whose topological numbers are zero. The phenomenon is
known as the bulk-edge correspondence. We wonder if a topological phase transition cannot occur without gap
closing at all.

The topological classes are classified8 by the eigenvalues of H2, J2 and P2, where H, J and P, represent the
time-reversal, particle-hole and chiral symmetry operators. There are ten classes, which are separated into two
complex and eight real representations. The topological periodic table has been established as in Table I, which
classifies all the possible homotopy groups and topological numbers depending on the symmetry and dimen-
sionality of the system. One important fact about this topological periodic table is that the adiabatic connection
is possible between the two classes with the difference in dimensions by one9. As for the eight real representa-
tions, this connection is summarized by the symmetry clock shown in Fig. 1. Namely, considering the
Hamiltonian H(k, r) which depends on both the D-dimensional real space coordinates r and d-dimensional
momentum space coordinates k, the mapping connecting the neighboring classes in the symmetry clock is
possible by adding r- or k-dependent Hamiltonian9. This means that the essential dimensionality is d9 5 d 2 D
and the adiabatic connection exists next to each other along the diagonal direction in the topological periodic
table. In addition to this diagonal shift, one can consider the horizontal shift, i.e., dimensionality d9 by intro-
ducing the defects such as vortex (D 5 1), and point defect (D 5 2)10. There are several works on the vertical
shift in the periodic table11–15. However in these cases, the gap closing is necessary for topological phase
transitions.

In this paper, we study the adiabatic connection within the common dimensionality d9, and the possible change
in the topological numbers without closing the gap. We propose two principles. Let the energy spectrum be given
by Er(k) with a topological phase transition taking place at a critical point r 5 rcr of a certain parameter r, where
the gap closes. Let us assume that we can extend the Hamiltonian to include a new parameterDs so that the energy
spectrum is modified as
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The phase transition point is (rcr, 0) in the (r, Ds) phase diagram. We
may detour the point (rcr, 0) in the phase diagram, along which the
gap never closes though a topological phase transition occurs. The
second principle is that the topological number should become ill-
defined by a symmetry change along the above detour. This invali-
dates requirements of the gap closing when the topological number
changes.

Results
We have explored the generic principles of topological phase trans-
ition without gap closing by demonstrating various examples. The
first example is a simple one-dimensional model of polyacetylene
with reduced symmetry at intermediate states (BDI R A R BDI)
by way of the charge-density-wave (CDW). We also present a two-
dimensional example of silicene with the antiferromagnet (AF) order
as another model with symmetry reducing. We then present three
models with enhanced symmetry at intermediate state (AII R DIII
R AII) by way of introducing the superconducting (SC) order8. They
are silicene and quantum well made of HgTe as two-dimensional
models, and superconductor Cu doped Bi2Se3 as a three-dimensional
model.

Polyacetylene with CDW order. We start with presenting a well-
known one-dimensional example of polyacetylene with the CDW
order from a new light. Polyacetylene belongs to the class BDI.
With including the CDW order, the class change occurs into A by
breaking the time-reversal and particle-hole symmetries simultane-
ously. We now show that there are two ways of topological phase
transitions, one (BDI R BDI) with gap closing and the other (BDI R
A R BDI) without gap closing.

Effective Hamiltonian. Polyacetylene is a bipartite system with one
unit cell made of A and B sites. The bipartiteness introduces a pseu-
dospin. We neglect the spin degree of freedom. The tight-binding
model is given by16–20

Hpoly~dxtxzdyty ð2Þ

in the momentum space, where ti is the Pauli matrix acting on the
pseudospin Y 5 {yA, yB}, and

dx~tzdz t{dð Þ cos k, dy~ t{dð Þ sin k, ð3Þ

where k is the momentum (0 # k , 2p), t is the mean transfer
integral, d is the dimerization of the transfer integral. The energy
spectrum is given by

Epoly kð Þ~+2
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The band gap locates at k 5 p, and is given by 2jEpoly (p)j5 2jdj. We
consider polyacetylene with a finite length. We show the band struc-
ture in Figs. 2(c1), (c2), (c3). For d , 0, the system is in the topo-
logical phase, as is evidenced by the presence of the gapless edge
states in Fig. 2(c1). As jdj increases, the gap decreases, and vanishes
at d 5 0 as in Fig. 2(c2). For d . 0, the gap opens again but no gapless
modes appear as in Fig. 2(c3): Hence, it is in the trivial phase. Thus,
the topological phase transition occurs with gap closing at d 5 0.

We proceed to introduce CDW to polyacetylene. We assume it to
generate the site-energy difference m between the A and B sites. The
Hamiltonian is modified as

HCDW~Hpolyzmtz: ð5Þ

The energy spectrum is modified to be

ECDW kð Þ~+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Epoly kð Þ
� �2

zm2

q
, ð6Þ

which is of the form (1). The gap does not close when m ? 0.

Phase diagram. We explore the topological phase diagram in the (d,
m) plane in Fig. 2(a). We show the band gap as a function of the
electric field d and the CDW gap m in Fig. 2(b). It is intriguing that
the gapless point exists only at one isolated point (0, 0) in the phase
diagram. We consider two paths connecting the topological state at
(d, 0) with d , 0 and a trivial state at (d, 0) with d . 0 shown in the
phase diagram. In Fig. 2(c) we show the energy spectrum of finite
chain at typical points.

We have already studied the first path along the d axis. As the
second path, we first move along the m axis. As changing d, there is
no gap closing even at d 5 0 due to the CDW gap: See Fig. 2(c5).
When d exceeds 0 as in Fig. 2(c6) we remove the CDW order. The

Table I | Periodic table for the homotopy group of each class. The rows correspond to the different Altland Zirnbauer (AZ) symmetry classes
while the columns distinguish different dimensionalities, which depend only on d9 5 d 2 D with d-dimensional k space and D-dimensional
real space coordinates

Symmetry d9 5 d 2 D

s AZ H2 J2 P2 0 1 2 3 4 5 6 7

0 A 0 0 0 Z 0 Z 0 Z 0 Z 0
1 AIII 0 0 1 0 Z 0 Z 0 Z 0 Z

0 AI 1 0 0 Z 0 0 0 2Z 0 Z2 Z2

1 BDI 1 1 1 Z2 Z 0 0 0 2Z 0 Z2

2 D 0 1 0 Z2 Z2 Z 0 0 0 2Z 0
3 DIII 21 1 1 0 Z2 Z2 Z 0 0 0 2Z

4 AII 21 0 0 2Z 0 Z2 Z2 Z 0 0 0
5 CII 21 21 1 0 2Z 0 Z2 Z2 Z 0 0
6 C 0 21 0 0 0 2Z 0 Z2 Z2 Z 0
7 CI 1 21 1 0 0 0 2Z 0 Z2 Z2 Z

BDID

A

C

DIII

AII

CII CI

AI

1-1

1

-1

2

2

Figure 1 | Topological classes and possible class changes. The horizontal

axis is H2 5 0, 61, which represents the time-reversal symmetry, while the

vertical axis is J2 5 0, 61, which represents the particle-hole symmetry.

The eigenvalue 0 means the absence of the symmetry. We present examples

of class changes by bold lines that occur without gap closing. AIII resides

with the same position as A. The red (blue) lines indicate the topological

phase transition without (with) gap closing.
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resultant phase is a trivial insulator, as is given by Fig. 2(c3) on the d
axis. Along this process the gap never closes. This is an explicit
example of a topological phase transition without gap closing.

Topological analysis. We analyze the topological number. For this
purpose we define

Nwind mð Þ~ 1
2p

ð2p
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~ dx,dy,m
� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2
xzd2

yzm2
q

is the normalized

vector, which we illustrate in Fig. 3(a).
When m 5 0, the pseudospin is confined in the xy plane, and the

homotopy class is p1 S1ð Þ~Z. Correspondingly, the quantity (7)
takes only two values; Nwind 5 1 for d , 0, and Nwind 5 0 for d .

0. It is the winding number, as explained in Fig. 3(a). Indeed, the
system is topological for d , 0, and trivial for d . 0.

On the other hand, when the CDW is present (m ? 0), the pseu-
dospin acquires the z component, and the homotopy class changes to
the trivial class p1(S2) 5 0. The quantity (7) is no longer the quantized
to be an integer. Indeed, we can continuously change Nwind(m) from
Nwind(m) 5 1 to Nwind(m) 5 0 as we move in the (d, m) plane: See
Fig. 3(b).

Silicene with AF order. We next present a two-dimensional example
of silicene with the AF order as another model with symmetry

reducing. Silicene is a honeycomb structure made of silicone
atoms. It is a quantum spin-Hall (QSH) insulator21, and belongs to
the class AII. When we introduce the AF order in the z axis, the class
changes into A, but it is still a topological insulator. We call it spin-
Chern insulator because the time-reversal symmetry is broken. We
show that there are two ways of topological phase transitions
between the QSH insulator and the trivial insulator with and
without gap closing.

Figure 2 | Phase diagram and band gap of polyacetylene. (a) Topological phase diagram in the (d, m) plane. The horizontal axis is the dimerization d and

the vertical axis is the CDW gap m. The band gap closes at the point denoted by a filled circle. The system is in topological state on the red line along the d

axis. Circles show points where the energy spectrum is calculated for finite chains in (c). (c1),(c6) Energy spectrum of a finite chain in each point in the

phase diagram. The vertical axis is the energy in unit of t and the horizontal axis is the numbering of eigenvalues.

Figure 3 | Bipartite pseudospin and winding number in polyacetylene.
(a) Bipartite pseudospin in a polyacetylene chain in the momentum space

(0 # k # 2p). The pseudospin is confined within the (x, y) plane. The red

and blue arrows correspond to the pseudospin configurations (nx, ny) for d

, 0 and d . 0, respectively. They belongs to different homotopy classes

with the winding number Nwind 5 1 and 0. The pseudospin is allowed to

have the z component in the presence of the CDW order, as indicated by

the green arrows. It connects two different classes continuously. (b) The

winding number Nwind in the (d, m) space. It changes suddenly at the phase

transition point d 5 0 along the d axis, but smoothly when the point is

detoured.
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Low-energy Dirac theory. We analyze the physics of electrons near
the Fermi energy, which is described by Dirac electrons near the K
and K9 points. We also call them the Kg points with the valley index g
5 6. We introduce the AF order mz along the z direction. The low-
energy Dirac theory reads13,22,23

HAFz
g ~ uF gkxtxzkyty

� �
zglSOsztz{mzsztz, ð8Þ

where sa and ta with a 5 x, y, z are the Pauli matrices of the spin and
the sublattice pseudospin, respectively. The first term arises from the

nearest-neighbor hopping, where uF~

ffiffiffi
3
p

2
at~5:5|105m=s is the

Fermi velocity with the lattice constant a 5 3.86Å. The second term
is the intrinsic spin-orbit interaction with lSO 5 3.9 meV. The third
term represents the AF order. We have neglected the Rashba inter-
action since its existence does not modify the essential part of the
physics. We present the Hamiltonian containing it in Supplementary
Information.

The system undergoes a topological phase transition as the AF
order mz changes13. The energy spectrum is given by

EAFz kð Þ~+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uFð Þ2k2z glSO{mzð Þ2
q

: ð9Þ

The system is a topological insulator for jmzj , 2lSO with the gap
2jlSO 2 mzj, as is evidenced by the emergence of gapless edge modes
based on the bulk-edge correspondence: See Fig. 4(c1). As gmz

changes at the Kg point, the gap decreases and closes at the critical
point mz 5 glSO, as in Fig. 4(c2). Then, the gap opens again, but there
appear no longer gapless edge modes as in Fig. 4(c3), indicating that
the system is in the trivial phase. The Chern and spin-Chern numbers
are calculated to be

C,Cspin

� �
~

0,1ð Þ for mzj jvlSO

0,0ð Þ for mzj jwlSO

�
: ð10Þ

This is a typical example of a topological phase transition with gap
closing.

Let us now introduce the AF order additionally in the x and y
directions. The low-energy Dirac theory is given by

HAF
g ~HAFz

g { mxsxzmysy
� �

tz: ð11Þ

The energy spectrum is given by

EAF kð Þ~+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EAFz kð Þ½ �2zm2

xzm2
y

q
, ð12Þ

which is of the form (1). The band gap locates at k 5 0, and is given by

2 Esi 0ð Þj j~2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
glSO{mzð Þ2zm2

xzm2
y

q
. It closes only at (mx, my, mz)

5 (0, 0, glSO).

Phase diagram. We explore the phase diagram in the (mz, mx) plane
with my 5 0 in Fig. 4(a). We show the band gap as a function of the
AF orders mz and mx in Fig. 4(b). The gapless points exist only at two
isolated points (glSO, 0) in the phase diagram. We consider two paths
connecting the QSH state at the origin and a trivial state at (mz, 0) with
mz . lSO shown in the phase diagram. In Fig. 4(c) we show the band
structure of silicene with edges at typical points. Along the detour the
gap never closes. Hence we have shown that there are two ways of
topological phase transitions with and without gap closing.

Topological analysis. Silicene is a topological insulator characterized
by the Chern number and the Z2 index. It is to be noted that the z axis

Figure 4 | Phase diagram and band gap of silicene with AF order. (a) Topological phase diagram in the (mz, mx) plane. The horizontal and vertical axes

are the AF orders mz and mx, respectively. (c) We have set lSO 5 0.2t for illustration. See also the caption of Fig. 2.
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has been chosen by the intrinsic SO interaction in the Hamiltonian
(8). As far as the AF order is along the z axis, there exists a rotational
symmetry around the z axis. The system is the sum of two decoupled
systems of sz 5 1/2 and 21/2, and their respective Chern numbers
are the topological numbers in this case. Equivalently, one can define
the sum (Chern number) and the half of the difference (spin-Chern
number) of these two Chern numbers. Note that the Z2 index is well
defined when the time-reversal symmetry is present while the spin-
Chern number is well defined when the spin sz is a good quantum
number. They are equal mod 2 when both of them are well defined24.

When mx 5 my 5 0, the spin-Chern number C is well-defined. The
topological phase is indexed by Cspin~1. However, when we intro-
duce mx, the AF direction cants, and the spin-Chern number
becomes ill-defined. The system becomes a trivial insulator for mx

? 0 or my ? 0. After we make a detour around the critical point, we
decreases mx until mx 5 0, where the spin-Chern number becomes
well-defined again. However, the system is in the trivial phase with
Cspin~0 when mz . lSO.

Helical edge states with AF order. It is quite interesting that the QSH
insulator becomes a trivial insulator as soon as mx is introduced. (We
assume mz 5 0 for simplicity.) We are able to construct an effective
low energy theory to explain how such a transition occurs. The
helical edges are described by the 4 3 4-matrix Hamiltonian given by

Hedge~
lSO=tð Þ uFksz mxsx

mxsx { lSO=tð Þ uFksz

	 

: ð13Þ

It is diagonalized as

EBdG kð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lSO

t
uFk

	 
2

zm2
x

s
: ð14Þ

The Hamiltonian describes two edge modes crossing at k 5 0 for mx

5 0. As soon as mx ? 0, the level crossing turns into the level antic-
rossing, with open gap. The gap monotonously increases as jmxj
increases. The system is topological for mx 5 0 and is trivial for mx

? 0.

Silicene with SC order. We then present three models with
symmetry increasing transitions (AII R DIII) by way of
superconducting proximity effect25–30. The system is in the class
AII without the SC order, and the gap closing occurs at the
topological phase transition point separating the two phases with
Z2~1 and 0. However, we are able to make a topological phase
transition (AII R DIII R AII) to occur without gap closing by
switching on and off the SC order.

The first model is silicene with the SC order, which might be
experimentally achieved by silicene synthesized on the Ir substrate,
which has recently been found31. Its prominent feature is that Ir is
superconducting at 0.1 K. This opens a natural way to fabricate
superconducting proximity effects on to silicene by cooling down
the system made of silicene together with the Ir substrate.

Low-energy Dirac theory. We analyze silicene by applying external
electric field perpendicular to the sheet. The effective Dirac
Hamiltonian in the momentum space reads22,23,32

Hg~ uF gkxtxzkyty
� �

zlSOszgtz{Vtz: ð15Þ

The third term is the staggered potential term V induced by the
electric field.

The system exhibits a topological phase transition from a QSH
insulator to a trivial insulator as jVj increases32. The energy spectrum
is given by

Esi kð Þ~+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uFð Þ2k2z gszlSO{Vð Þ2
q

: ð16Þ

The band gap locates at k 5 0, and is given by 2jEsi(0)j5 2jgszlSO 2
Vj. It closes at V 5 6lSO. The QSH state has gapless edge states as in
Fig. 5(c1). At V 5 lSO, the gap closes as in Fig. 5(c2), and it opens for
V . lSO as in Fig. 5(c3). The Chern and spin-Chern numbers are
calculated to be

C,Cspin
� �

~
0,1ð Þ for Vj jv lSOj j
0,0ð Þ for Vj jw lSOj j

�
, ð17Þ

This is a typical example of a topological phase transition with gap
closing.

We assume that Cooper pairs are formed by mixing electrons at
the K and K9 points and condense in silicene by attaching the s-wave
SC. We present the BCS Hamiltonian and the associated BdG
Hamiltonian in Supplementary Information.

It is straightforward to diagonalize the BdG Hamiltonian,

EBdG kð Þ~+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Esi kð Þ½ �2zD2

s

q
, ð18Þ

which is of the form (1). The band gap locates at k 5 0, and it closes at
(6lSO, 0) in the (V, Ds) plane.

Phase diagram. We explore the phase diagram in the (V, Ds) plane in
Fig. 5(a). We show the band gap as a function of the electric field V
and the SC gap Ds in Fig. 5(b). The gapless points exist only at two
isolated points (6lSO, 0) in the phase diagram. We consider two
paths connecting the QSH state at the origin and a trivial state at
(V, 0) with V . lSO shown in the phase diagram. In Fig. 5(c) we show
the band structure of silicene with edges at typical points.

As to the second path, we first move along the Ds axis from the
origin in the phase diagram. Namely, we cool down the sample below
the critical temperature of superconductivity. As soon as the critical
temperature is passed, a topological class change occurs by adding
the particle-hole symmetry associated with the Cooper-pair con-
densation. The SC gap mixes the helical edge modes, resulting in
the disappearance of gapless edge modes, and the system becomes
trivial [Fig. 5(c4)]. The mechanism how the helical edge modes dis-
appear is precisely the same as we demonstrated before: See Eq.(14).
After the detour we warm up the sample. The superconductivity
disappears. The resultant phase is a trivial insulator, as is given by
Fig. 5(c3) on the V axis. Along this process the gap never closes.

Let us study this class change more in detail to confirm that it does
not involve the gap closing. For this purpose we analyze a system
where SC is attached on one-half of the system. It is important to
demonstrate whether there emerge edge states between the boundary
of the two regions25,33. The region without SC is in the QSH phase,
while the superconducting region is in the trivial phase. We may
alternatively calculate the band structure of silicene in torus geo-
metry with the SC order introduced to one-half side of a cylinder
[Fig. 6(a)]. Note that there are no edge states in silicene in torus
geometry even in the QSH phase. The band structure is well known34

and given in Fig. 6(b). Once the superconducting gap is introduced
partially as in Fig. 6(a), two boundaries appear between the SC and
normal regions. We naively expect the emergence of gapless edge
modes along each boundary due to the bulk-edge correspondence, as
is the case34 between the QSH phase and the trivial phase.
Nevertheless, we find no gapless edge states to appear as in
Fig. 6(c). This reflects the fact that the topological phase changes
between Ds 5 0 and Ds ? 0 undergoes without gap closing.

Topological analysis. We next search for the reason why a topological
phase transition can occur without gap closing as soon as the super-
conductor gap Ds is introduced. For this purpose we investigate the
topological charges of the system. With the superconducting prox-
imity effects, silicene belongs to the class DIII. Thus the topological
class change occurs from AII to DIII as soon as the superconductor
gap Ds is introduced, i.e., by adding the particle-hole and chiral
symmetries. Both classes AII and DIII are characterized by the Z2

www.nature.com/scientificreports
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indices. However they are different objects. Consequently, although
we have given the phase diagram in Fig. 5(a), each domain is indexed
by different topological indices.

Since the spin sz is a good quantum number along the E axis in the
phase diagram, the Z2 index is essentially the spin-Chern number for
Ds 5 0. The latter counts the numbers of up-spin electrons and down-
spin electrons separately. When the SC order is introduced, the ground
state is a condensed phase of Cooper pairs each of which is a pair of up-
spin and down spin electrons. Consequently, the spin Chern number
becomes ill-defined for Ds ? 0, and the gap closing is not required
between the QSH state at Ds 5 0 and a trivial state at Ds ? 0.

A comment is in order. Here we have assumed the singlet SC
order. When we assume the triplet SC order, the energy spectrum
is shown to be of the form

EBdG kð Þ~+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uFð Þ2k2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

SOzD2
t k2

q
{ Vj j

	 
2
s

: ð19Þ

The triplet SC parameter Dt does not contribute to the gap at k 5 0.
The gap closing occurs although this is a topological class change
from AII to DIII together with the Bose-Einstein condensation. This
is not surprising since the spin-Chern number is well-defined for Dt

? 0 because the members of a Cooper pair are either up-spin or
down-spin electrons.

Quantum well made of HgTe and CdTe. We present another two-
dimensional example, which is the Bernevig-Hughes-Zhang (BHZ)
model of the QSH system. The BHZ model describes the electronic

Figure 5 | Phase diagram and band gap of silicene with SC order. (a) Topological phase diagram in the (V, Ds) plane. The horizontal axis is the electric

field V and the vertical axis is the superconducting gap Ds. (c) We have set lSO 5 0.2t for illustration. See also the caption of Fig. 3.

Figure 6 | Band structure of silicene in torus geometry. (a) Illustration of silicene in torus geometry with the SC order on one-half of the system. The

upper half region is in the trivial phase with the SC order included, while the lower half is in the QSH phase. Band structures of silicene in torus geometry

(b) without the SC order and (c) with the the SC order on one-half of the system. The vertical axis is the energy in unit of t, while the horizontal axis is the

momentum k.
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structure of the subband of a quantum well made of HgTe and
CdTe35, which is experimentally verified36. A topological phase
transition can be induced by changing the thickness of the
quantum well.

The Hilbert space is spanned by the four states which are eigen-
states of the operator mJ, j6 1/2æ and j6 3/2æ. We present the BHZ
Hamiltonian in Supplementary Information. The energy spectrum is
determined as

EBHZ kð Þ~C{Dk2+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ak2z M{Bk2ð Þ2

q
, ð20Þ

where A, B, C, D are sample-dependent parameters, and M is the
Dirac mass. The topological phase transition is known to occur at M
5 0.

To explain it let us slightly simplify the model by choosing C 5 0.
Then, the energy spectrum is simplified as

EBHZ kð Þ~{Dk2+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ak2z M{Bk2ð Þ2

q
: ð21Þ

The band gap locates at k 5 0, and is given by 2jEBHZ (0)j5 2jMj. We
show the band structure of silicene with edges in Figs. 7(c1),(c2),(c3).
For M/B , 0, the system is in the topological phase, as is evidenced by
the presence of the gapless edge modes in Fig. 7(c1). As jMj decreases,
the gap decreases, and closes at M 5 0 as in Fig. 7(c2). For M/B . 0,
the gap opens again but no gapless modes appear as in Fig. 7(c3):
Hence, it is in the trivial phase. Thus, the topological phase transition
occurs with gap closing.

We proceed to assume that the singlet Cooper pairs are formed
due to the SC proximity effects with the SC gapDs. The first pairing is

between j1/2æ and j2 1/2æ. The second pairing is between j3/2æ and
j2 3/2æ. In general these two gaps are different, but we assume them
to be equal for simplicity. The BdG Hamiltonian is derived and given
in Supplementary Information. It is diagonalized as

EBdG kð Þ~+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EBHZ kð Þð Þ2zD2

s

q
, ð22Þ

where each level is two-fold degenerate. The gap does not close when
Ds ? 0.

We show the topological phase diagram in the (M, Ds) plane, the
band gap and the band structure of silicene with edges with straight
edge in Fig. 7. Employing the same discussion as in the case of
silicene, we find that it is possible to make a topological phase trans-
ition without gap closing.

Cu doped Bi2Se3. Finally we present a three-dimensional example.
Bi2Se3 is a three-dimensional topological insulator37. On the other
hand, Cu doped Bi2Se3

38–40 becomes superconducting at low
temperature38–41. The topological class change occurs from AII to
DIII.

The Hamiltonian is given by42,43

HBiSe~m kð Þtxzvzkztyzvtz kxsy{kysx
� �

{m, ð23Þ

with the chemical potential m, and

m kð Þ~m0zm1k2
zzm2 k2

xzk2
y

� �
, ð24Þ

where sa and ta with a 5 x, y, z are the Pauli matrices of the spin and
the orbital pseudospin, respectively: (v, v, vz) is the Fermi velocity,

Figure 7 | Phase diagram and band gap of silicene with Quantum well made of HgTe and CdTe. (a) Topological phase diagram in the (M,Ds) plane. The

horizontal axis is the Dirac mass M and the vertical axis is the superconducting gapDs. The vertical axis is the energy in unit of B. We have set A 5 B 5 1, C

5 D 5 0. See also the caption of Fig. 2.
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and mi are sample parameters, which satisfy m1m2 . 0. The system is
topological when m0m1 , 0 and trivial when m0m1 . 0. The energy
spectrum is given by

EBiSe kð Þ~{m+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 k2

xzk2
y

� �
zv2

z k2
zzm kð Þ2

r
: ð25Þ

The band gap locates at the C point with kx 5 ky 5 kz 5 0, where
EBiSe (0) 5 6jm0j. The band gap is 2jm0j.

We cool the system below the SC transition point. There are four
possible superconducting pairing40. The simplest one is the intra-
orbital spin-singlet pairing, which results in trivial superconductor.
The other three pairings lead to topological superconductor. We
concentrate on the intra-orbital spin-singlet pairing since only this
pairing enables the topological class change without gap closing. The
BdG Hamiltonian is derived and given in Supplementary
Information. It is diagonalized as

EBdG kð Þ~+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EBiSe kð Þ½ �2zD2

s ,

q
ð26Þ

where each level is two-fold degenerate. The gap does not close when
Ds ? 0. In the same way, the topological class change occurs without
gap closing in the three-dimensional space.

Topological superconductor. We have so far studied a model
Hamiltonian where the initial and final states are normal state
without SC order. Here, we consider a situation where initial and
final states are SC states. We consider a model Hamiltonian of two-
dimensional spin-triplet px-wave superconductor with opposite spin
pairing Sz 5 0 or spin-singlet dxy-wave one. Although the initial
Hamiltonian is 4 3 4 matrix in the electron-hole and spin spaces,
it can be block diagonalized by 2 3 2 matrix in the absence of
magnetic scattering and spin-orbit coupling. In order to consider
the edge state for flat surface parallel to the y direction, we fix
momentum ky. Then, the original two-dimensional Hamiltonian is
reduced to be one-dimensional one. The resulting Hamiltonian can
be written as

H~etzzD kxð Þsin kxtx ð27Þ

with D(kx) 5 D0 for px-wave pairing and D(kx) 5 D0 sin ky for dxy-
wave one, respectively.

The energy spectrum of this Hamiltonian is

E~+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2zD2 kxð Þsin2 kx

q
ð28Þ

with e 5 2t cos kx 2 m and t . 0 with m 5 m0 1 t cos ky. For jmj, t,
the superconducting state becomes topological with the zero-energy
surface Andreev bound state44,45. On the other hand, for jmj . t, it
becomes trivial without zero energy ABS. For jmj5 t, the gap closing
occurs at kx 5 0 or kx 5 6p. It has been clarified that the zero energy
surface Andreev bound state is protected by the bulk topological
number46.

Now, let us introduce an additional term D1ty. Then, the time
reversal symmetry is broken and the resulting Hamiltonian becomes

H~etzzD kxð Þsin kxtxzD1ty: ð29Þ

The energy spectrum is obtained as

E~+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2zD2 kxð Þsin2kxzD2

1:

q
ð30Þ

There is no gap closing for all kx and m.
We first start from the topological phase with D1 5 0 with jmj, t.

Next, we switch on D1. Then, the system becomes a fully gapped one
with time reversal symmetry breaking. We can change m from jmj, t
to jmj. t. During this change, there is no gap closing. After we switch
off D1, we reach the topological trivial phase of the original
Hamiltonian. One of the example relevant to the intermediate state

is dxy-wave superconductor with s-wave pairing, where the relative
phase between these two states is p/2. The (dxy 1 is)-wave pairing
was focused on as the possible surface state of dxy-wave pairing in the
context of Cuprate47. Topological phase transition for fixed
momentum has been discussed in superfluid 3He-B under a magnetic
field h parallel to the surface48. In this case, helical Andreev bound
state remains gapless up to some critical field hc protected by discrete
symmetry. There is no bulk gap closing at the transition point h 5 hc.

Discussion
According to the bulk-edge correspondence, a topological phase
transition requires the gap closing and the breakdown of the adia-
baticity at the transition point. This is not necessarily the case pro-
vided a topological class or symmetry change occurs such that the
original set of topological numbers become ill-defined. There exists
two possibilities of symmetry change. Both the cases with reduced
symmetry and enhanced symmetry have been considered.

When the symmetry is reduced, the target space of the Hamil-
tonian becomes wider, which enables us to connect two distinct
spaces adiabatically. As such an example we have considered a
one-dimensional example of polyacetylene by way of the CDW,
which induces the class change BDI R A. Here, the homotopy class
changes from p1 S1ð Þ~Z to p1 S2ð Þ~0, and the winding number
becomes ill-defined. Consequently, we are able to make a topological
phase transition (BDI R A R BDI) to occur without gap closing by
switching on and off the CDW. We have also analyzed silicene with
the AF order as another example with symmetry reducing. It is
interesting that a topological phase transition without gap closing
takes place within the same class A. However, there is a symmetry
change whether the spin sz is a good quantum number and not. The
reduced symmetry case may be regarded as an explicit example of the
symmetry protected topological order49–52.

When the symmetry is enhanced, the above reasoning no longer
follows. As such examples we have considered symmetry increasing
transitions (AII R DIII) by way of introducing the SC order.
Although both the classes AII and DIII are characterized by the Z2

index, their physical meaning is different. The Z2 index is essentially
the spin-Chern number in the class AII system, which becomes ill-
defined as soon as the system moves into the SC phase (DIII) due to
the SC order. We have explicitly shown that a topological phase
transition (AII R DIII R AII) may occur without gap closing by
switching on and off the SC order.

We also note there is an another mechanism of topological phase
transition without gap closing, which is induced by interactions53,54.
The topological phase transition without gap closing is possible due
to the appearnace of zeros in the Green function.

To conclude, we mention the implications of the adiabatic con-
nection between the different sectors of topological number. Up to
now only the single-particle Hamiltonian has been considered, but in
reality the electron-electron interaction is effective, and the gaps are
often induced by the order parameters. Therefore, the character of
the quantum critical phenomenon depends strongly on whether the
continuous change of the topological number is possible or not.
Namely, when we write down the effective action for the quantum
phase transition, there are multiple order parameters relevant to the
gapless point when the continuous detour is possible to change the
topological number. When the multiple topological phase transitions
merges at one point, even more interesting quantum critical phe-
nomenon is expected. The global view of the phase diagram taking
into account all the possible classes will be an important direction to
study the topological quantum transition.
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