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1 | INTRODUCTION

The relative influence of either dispersal distances or the environ-
ment upon the occurrence of species in communities across large
scales is unclear (Bemmels et al., 2018; Carvajal-Endara et al., 2017;
Dexter et al., 2017; Ibanez et al., 2018). The geographic or spatial
distance between sites consistently shapes the composition of com-
munities (Wallace, 1869). In general, the shorter the dispersal dis-
tance between communities the more species they share (Condit
et al., 2002; Nekola and White, 1999). Similar environments are also
more likely to share species (Weigelt et al., 2015; Whittaker, 1960).

However, in archipelagos, examples of species distributions shaped

currence across Malesia's taxonomic database working group areas from Peninsular
Malaysia to New Guinea. Predictor variables were environmental stress, spatial dis-
tance between areas and two trait principal component axes responsible for increas-
ing fruit and leaf size and a negative correlation between flower size and plant height.
We found that Lamiaceae species with smaller fruits and leaves are more likely to
tolerate environmental stress and become widely distributed across megadiverse
Malesian islands. How global species distribution and diversification are shaped by

multifactorial environmental stress requires further examination.

biogeography, dispersal, macroecology, Malesia, mints, stress tolerance, Wallacea

TAXONOMY CLASSIFICATION

more by the environment than spatial distance between islands are
less frequent (Konig et al., 2021; Carvajal-Endara et al., 2017; Giarla
et al., 2018; Ng et al., 2017). A global analysis of oceanic islands
found that altitude can significantly shape which plants are present
(Konig et al., 2021). In the Galapagos, climate was found to be the
main driver of island floras (Carvajal-Endara et al., 2017). Malesia,
the phytogeographical region stretching from Peninsular Malaysia to
New Guinea, offers another opportunity to compare the effects of
dispersal distances and the environment upon archipelagic species
distributions. The region houses more diversity per unit area than
any other tropical region but has little coverage in studies of island
plant biogeography (Raven et al., 2020; Trethowan, 2021).
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Here, we examine whether multifactorial environmental stress
influences Malesian plant distributions. A recent definition states
that stressors are “any deviation in the value of an external environ-
mental ... variable from the range of values that is favorable for ... an
entity” (Love and Wagner, 2022). Here our “entity” is plants, and the
“deviation” in question are differences from a seasonal wet tropical
lowlands either with altitude, drought, or metal-rich ultramafic soils.
The “favorable” lowland wet tropics enable plant communities to
achieve both high biomass and their greatest levels of productivity
(Cleveland et al., 2011; Shenkin et al., 2019). Crucially, this simple
definition can be applied to large-scale studies. This differs from the
definition used in fine-scale studies of populations that focuses upon
differences from optimum conditions in stressful environments (Love
and Wagner, 2022; MacLean et al., 2013), an approach that is less
tractable across large scales and many taxa (McGill, 2019). The three
stressors focused upon here all have documented examples of how
they damage plant function (Zandalinas et al., 2021). First, drought
causes hydraulic failure, carbon starvation, and increased pathogen
attack and herbivory (Anderegg et al., 2015; Anderegg et al., 2012;
Choat et al., 2018; Fensham et al., 2009; McDowell et al., 2008;
Powers et al., 2020). Second, ultramafic soils with toxic high metal
content damage enzymes, DNA, and cell membranes (Kupper and
Andresen, 2016; Singh et al., 2013). Ultramafic soils also have low
P, K, and Ca - all key nutrients for plant growth (Proctor, 2003).
Likewise, altitude poses difficulties through reductions in tempera-
ture and soil fertility (Asner et al., 2014; Grubb, 1977). In Malesia, we
can compare the effects of these stressors and dispersal distances
between islands upon species distributions (Brambach et al., 2020;
Joyce et al., 2020b; Kooyman et al., 2019; Trethowan, 2021).

Traits should influence how plants overcome dispersal dis-
tances and environmental stress (Crayn et al., 2015; Grime, 1977,
Ottaviani et al., 2020; Schrader et al., 2021; van Steenis, 1962; Yap
et al., 2018). There has been evidence from island systems that
traits may vary consistently dependent upon the traits of close rel-
atives on the mainland. Known as the “island rule”; traits of insular
species with large relatives on the mainland show lower trait val-
ues, whereas species with small mainland relatives show increases
(Biddick et al., 2019). These changes depend upon the trait in ques-
tion but also upon the environmental conditions of islands (Biddick
et al., 2019; Garcia-Verdugo et al., 2019). By focusing upon the en-
vironmental drivers of species traits, we can hypothesize how traits
influence both inter-island dispersal and toleration of environmental
stress. Leaf size and height in tropical ecosystems generally declines
when species are better adapted toward stressful environments
(Fajardo et al., 2019; Wright et al., 2017). Smaller leaves are less at
risk of extreme water loss via transpiration (Wright et al., 2017) and
shorter species have smaller conduit size that reduces chance of
embolism-linked death (Olson et al., 2018). Fruit size likely follows a
similar pattern whereby low-productivity high-stress environments
limit the production of large, high-energy cost fruit (McConkey
et al., 2022; Moles et al., 2007). Smaller fruit, however, could also
promote dispersal because they can be consumed by both small and
large frugivores meaning dispersal is possible via a greater number

of agents (Chen and Moles, 2015; Green et al., 2022). Smaller flow-
ers may be advantageous for drought stress tolerance because they
lose less water via transpiration (Galen, 1999). Alternatively, because
small flowers are more likely to be resource cheap and short-lived
than larger flowers, they could promote dispersal by enabling fast
reproduction in newly occupied habitat (Roddy et al., 2021). Small
flowers can also be high cost and therefore long-lived, attracting a
greater range of pollinators, increasing the chance of successful pol-
lination in a new area (Roddy et al., 2021). Some traits, therefore,
could support both the tolerance of environmental stress and long-
distance dispersal. To address this, we compare how these traits
improve the chances of overcoming either stress or the distances
between islands. The results will help determine how these traits
shape plant distributions at large scales.

The Lamiaceae (mint family) is ideal for studying the drivers of
species distributions in Malesia: there are 281 native species, widely
distributed across the region and found in almost all vegetation
types; plants vary from weedy pioneers to species restricted to
mature forest. The family also has substantial variation in stature
from herbs to large trees. Crucially, recent floristic work by Bramley
et al. (2019) enables accurate species identification, ensuring species
distributions and trait data are reliable. Using a dataset built from
the description data in Bramley et al. (2019), we examine how traits,
dispersal distances, and environmental stress interact to shape

Lamiaceae species distribution in Malesia.

2 | MATERIALS AND METHODS

2.1 | Studyarea

Malesia (10°S - 19°N, 94°E - 151°E) is the region spanning the coun-
tries of Malaysia, the Philippines, Indonesia, Timor Leste, and Papua
New Guinea. Other than mainland Peninsular Malaysia, the region
consists of islands separated by seas. Climate varies from the wet
tropics to drought-prone seasonally dry tropics. Altitude shapes
habitats from mangroves at sea level to alpine mountain peaks. The
region is also home to the tropics' largest area of ultramafic soil/rock
which outcrops across most islands (Galey et al., 2017; Garnica-Diaz
etal., 2022).

2.2 | Malesian Lamiaceae traits

The dataset (Table S1) consists of 222 species in 38 genera. These
are all the native species with recorded maximum height, leaf
length, leaf width, fruit size, calyx length, and corolla length in
Flora Malesiana (Bramley et al., 2019). The 59 native species not
analyzed lacked one or more of these recorded measurements.
Midpoint leaf length and width (maximum plus minimum values
divided by two) are used here alongside maximum values for other
traits, because maximum values were often the only measurement

recorded in the description. Log-transformed and scaled (z-scores)
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species traits were reduced to two principal component (PC) axes
via singular value decomposition. The two axes were responsi-
ble for 73% variation in traits amongst 222 Lamiaceae species in
Malesia (Figure S1). Principal component loadings showed that
the first axis corresponds to increasing leaf length (PC axis load-
ing = 0.51), width (PC axis loading = 0.5), and fruit size (PC axis
loading = 0.45) and the second a negative correlation between
flower size (Calyx length PC axis loading = 0.57, Corolla length PC
axis loading = 0.59) and species height (PC axis loading = -0.51)
(Figure S2). For simplicity, herein we refer to the two axes as (1)
leaf and fruit size and (2) flower size vs height.

2.3 | Environmental stress

Environmental stress was a single PC axis responsible for covaria-
tion in increasing ultramafic soil area (PC axis loading = 0.52) and
decreasing minimum monthly rainfall (PC axis loading = -0.44)
and lowland area (PC axis loading = -0.73) (Figure 1a) in Malesia's
nine taxonomic database working group (tdwg) areas: Peninsular
Malaysia, Sumatra, Borneo, Philippines, Java, Sulawesi, the Lesser
Sundas, Moluccas, and New Guinea (Brummitt, 2001). This
axis represented 53% variation in the environmental variables
(Figure S3).

Lowland area was the percentage area below 400m. A 400m
cutoff was chosen because at these altitudes there are noticeable
shifts in plant traits and in certain locations in Malesia, montane
flora is observed (Holthuis and Lam, 1942; Trethowan, 2021; Umana
and Swenson, 2019). Ultramafic soil area was estimated as the
percentage covering tdwg areas from the map presented in Galey
et al. (2017). There is currently not an ultramafic soil layer available.
Minimum monthly rainfall values were taken from WorldClim, these
were values recorded from 1970-2000 (Exposito-Alonso, 2017)
(Table S2). All these variables were scaled prior to the PC analysis.
The environmental stress values peak at the archipelago's center, in
Sulawesi, Moluccas, Lesser Sundas, and the Philippines, where there
is least lowland, most ultramafic soils, and the strongest dry season
(Figure 1b).

2.4 | Environmental stress and Malesian Lamiaceae
distributions

To test the effect of environmental stress upon species occurrence,
we built the following phylogenetic generalized mixed effects model
(Li et al., 2020):

Y; ~ Bernoulli(p;)
logit(p;) = @ + By + 6y + 6 + 56 + Agpp[i] + bap[i]
a ~ Gaussian(0,621,)

b ~ Gaussian(0,62%,,)
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Greek letters above refer to fixed effects and latin to mixed ef-
fects (Gelman and Hill, 2006; Li et al., 2017). Here, Y; represents the
observations i of presence/absence n across Malesia's nine tdwg
areas m according to Bramley et al. (2019). The logit-transformed
probability of species presence p; was modeled as a function of leaf
and fruit size p and flower size vs height § and their interaction with
environmental stress y and a spatial eigenvector 6. The spatial ei-
genvector 8 was the first selected Moran's eigenvector of spatial
distance between tdwg centroids (Dray et al., 2012; Griffith, 1996)
(Figure 1b). This involved calculation of a Gabriel neighbor graph be-
tween tdwg centroids and subsequent unweighted orthogonaliza-
tion of the resulting distance matrix (Dray et al., 2012). The intercept
a estimates species average presence in tdwg areas.

We included two random effects for species identity: one with-

outag,,;jand one with b, 11 the covariance in species effects decided

spp[i]
by phylogenetic distance between them Gizs,;p (lves, 2018; Li and

Ives, 2017). spp [:] connects observations to species. £, represents

'spp
the n x n phylogenetic distance matrix that assumed a Brownian mo-
tion model of evolution and was calculated from a phylogeny built
for all species in the dataset (Li et al., 2020). The species random
effect without phylogenetic covariance was drawn from a Gaussian
distribution with mean O and variance 62 Phylogenetic data were
derived from the latest Lamiaceae backbone (Zhao et al., 2021).
Genera missing from the backbone were manually placed, using phy-
tools (Revell, 2012), based upon more finescale phylogenetic studies
(Li et al., 2016; Steane et al., 2004). Species not in the backbone
phylogeny were randomly imputed alongside congeners to produce
a bifurcating tree using pez (Pearse et al., 2015). This is not expected
to affect overall variability in phylogenetic distances between spe-
cies used in the random effect by, ;) (Li et al., 2019).

To account for more species-rich areas sharing more species sim-
ply because of sample size, we took 25 randomly sampled communi-
ties the size of the least species-rich area and repeated the model for
each of these (Cardoso et al., 2009; Nash, 1950; Stier et al., 2016).
The averaged effects and Wald test p values from these models
were used to identify significant effects of predictor variables upon
species occurrence.

To further explore model behavior, we extracted predicted oc-
currences of species. This allowed us to examine species-predicted
occurrence across the phylogeny, tdwg areas, and the environmental
stress gradient.

All analyses were carried out in R version 4.0.2.

3 | RESULTS

Phylogenetic generalized mixed effects models of species presence-
absence across tdwg areas showed that increasing fruit and leaf
size had a negative effect upon species occurrence across Malesia
(mean effect score = -0.17 and mean Wald test p from 25 model
iterations < 0.05) (Figure 1c) and that increasing leaf and fruit size
decreased the chance that species occurred in areas of high envi-
ronmental stress (mean effect score = -0.13 and mean Wald test
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FIGURE 1 (a) The contributions of ultramafic soils, minimum monthly rainfall, and lowland area to environmental stress - which is a
principal component axis that accounts for 53% variation in these variables. (b) Spatial eigenvector scores and environmental stress across
taxonomic database working group (tdwg) areas of Malesia and their global position (inset map). (c) Drivers of Lamiaceae species occurrence
across Malesia according to phylogenetic generalized mixed effects models. We ran 25 separate models each with a randomly selected
number of species equal to the tdwg area of least species richness - each point represents effect score and standard error from each model.
Gray and black bars are the mean effect. Bar colors correspond to mean p <.05 (black) and mean p >.05 (gray). (d) Predicted occurrences of
species with varying leaf and fruit size across the environmental stress gradient of Malesian tdwg areas.
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p <.05) (Figure 1c). All other predictor variables had considerably
lower effect scores none of which were significant (maximum mean
effect score = 0.088 all mean p >.05, Figure 1c). This indicates that
species with smaller fruit and leaves are more likely to occur in areas
of high environmental stress in Malesia.

Environmental stress effects upon predicted occurrence vary
across the phylogeny. The general pattern being species from clades
with greater diversity in the tropics tend to have lower predicted
occurrence in high-stress environments, except for the genera Vitex
and Premna (Figure 2). Species belonging to clades/genera most di-
verse in temperate and subtropical regions (e.g., Leucas and Salvia)
have consistently high predicted occurrence in stressful environ-

ments (Figure 2).

4 | DISCUSSION

Species occurrence across island communities is often driven by
the spatial distance between them (lbanez et al., 2018; MacArthur
and Wilson, 1963). We have shown here that a gradient of envi-
ronmental stress that represents variation in drought, altitude,
and ultramafic soils influence distributions of Lamiaceae species
in Malesia (Hulshof and Spasojevic, 2020; Sheldon et al., 2018),
whereas previously, plant growth and survival in experimental set-
tings have been shown to be negatively affected by multifactorial
stress (Zandalinas et al., 2021), our results show its importance for
the distribution of species at large scales. Previous study has shown
that low-temperature stress of temperate regions and high alti-
tude irrespective of latitude drive similarities in plant communities
(Segovia et al., 2020). Similar convergence because of additional
stressors may occur (Rillig et al., 2019; Zandalinas et al., 2021).
For instance, in the Neotropics, stressors include altitude in the
Andes, nutrient deficiency of white sands, and drought/fire in the
seasonal biome - similarities in how they shape biogeography could
be sought (Fine et al., 2014; Pérez-Escobar et al., 2017; Segovia
et al., 2020; Simon et al., 2009).

Our study focuses upon the Lamiaceae; other plant family distri-
butions may or may not follow the pattern we have observed. Firstly,
Lamiaceae species have relatively small drupaceous or schizocarpic
fruits, families that have larger and different fruit types such as
drupes and berries could be more closely linked to frugivore distri-
butions across islands (Crayn et al., 2015; McConkey et al., 2022;
McFadden et al., 2022; Yap et al., 2018). Wind-dispersed seeds may
also facilitate patterns different to our observations; noticeably,
wind-dispersed Asteraceae have been shown to be less speciose than
expected on islands except when insular diversification has occurred
(Konig et al., 2021). Asteraceae are not particularly species rich in
Malesia (Mandel et al., 2019), which suggests that again their disper-
sal mechanism is not linked to greater insular diversity. Asteraceae
versus Lamiaceae also highlights differences in floral morphology.
Asteraceae and other families that are more diverse in Malesia, such
as the Myrtaceae (Joyce et al., 2020a), have open flowers that differ
from the typically tubular, closed flowers of Lamiaceae species. An

Ecology and Evolution 50f11
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open flower may enable a wider range of pollinators compared to
closed flowers, which could be advantageous in multiple environ-
ments with varying pollinator communities (Herrera, 2020).

There has been little clarity as to what factors determine the
ability of plant species to colonize new islands and then diversify
in Malesia (Shee et al., 2020). We have shown here that environ-
mental stress influences species occurrence: could the ability to
tolerate stress also enable access to unoccupied islands and novel
conditions - driving diversification (Gavrilets and Losos, 2009;
Pillon et al., 2014)? In this study, we demonstrate that a reduction
in leaf and fruit size increased the chance that Lamiaceae species
were able to cope with environmental stress, allowing them to es-
tablish across Malesia's islands. Similarly, non-Lamiaceae clades may
have strategies that allow species to occupy islands across the ar-
chipelago. For instance, many clades (e.g., Palms, Cercidoideae, and
Caesalpinia) that are diverse and widely distributed in Malesia have
strategies to cope with stress such as reduced height and stature,
often becoming more shrubby or lianescent, compared to species
of the same clade outside Malesia (Couvreur et al., 2015; Gagnon
et al., 2019; Sinou et al., 2020; Trethowan, 2021; Westoby, 1998).
A switch to lianescence could have a positive effect upon dispersal
because it increases the opportunity to access tree fall gaps and oc-
cupy lower canopied forests where lianas become most abundant
(Dalling et al., 2012). By gathering trait data from museum specimens
to allow sampling of a high percentage of a clade's species, it should
be possible to identify whether traits linked to ecological strategies,
such as stress tolerance, encourage dispersal events that precede
lineage diversification on islands (Cacho and Strauss, 2014; Esquerré
et al., 2020; Heberling and Isaac, 2017). The growing understanding
of evolutionary relationships for clades that are speciose in Malesia
make examination of this achievable (Atkins et al., 2019; Bellot
et al., 2020; Kuhnhéauser et al., 2021; Murphy et al., 2020).

In this study, we have analyzed species rather than lineages,
and therefore, we are not able to identify insular speciation events
that may influence the patterns we observe. For instance, altitude,
drought, and ultramafic soils have been implicated as drivers of in-
sular speciation (Garot et al., 2019; Pillon et al., 2014; Steinbauer
et al., 2016). To address this, we need greater sampling of Malesian
Lamiaceae species in published phylogenies. However, our results
do allow us to survey model predictions of species occurrence
across the phylogeny and observe how different clades are af-
fected by tdwg areas with varying environmental stress. What is
striking about these results is that the genera Clerodendrum and
Teijsmanniodendron, that have diversified mostly in the tropics, have
low predicted occurrence in high-stress environments, whereas gen-
era that are most diverse in temperate or subtropical regions (Leucas,
Salvia, etc) have consistently high predicted occurrence in stressful
environments. This could help inform where we expect to find diver-
sification within islands. For instance, Vitex, a speciose tropical genus
has high predicted occurrence in stressful environments which could
be linked to insular diversification.

Multifactorial environmental stress may help explain diversi-
fication more generally. For diversification to occur species must
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FIGURE 2 Phylogenetic context of species occurrence probabilities in Borneo and Sulawesi. Two of nine taxonomic working group
regions selected to highlight large environmental stress differences between spatially adjacent islands. This also means the probabilities are
better visualized than if all data from nine areas were plotted. Species occurrence probabilities are their mean value resulting from the 25
model iterations. Lineages highlighted in dark gray are most diverse in temperate and subtropical regions.

become differentiated. Benign environments without sharp stress
gradients lack a potential axis of differentiation (Bouchenak-
Khelladi et al., 2015; Gavrilets and Losos, 2009; Hart and
Marshall, 2013). Stress gradients could underpin why mountain
ranges with high percentages of ultramafic soils are some of the

most diverse regions on earth (Rahbek et al., 2019). There are many
examples of diversification across single variable stress gradients.
For instance, Diospyros, Codia, and Geissosis diversify across the
ultramafic non-ultramafic soil mosaic of New Caledonia (Paun
et al.,, 2016; Pillon et al., 2014, 2009). Likewise, diversification
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of the Burseraceae subfamily Protieae is linked to occupation of
Neotropical low-nutrient white sands and flooded forests (Fine
et al., 2014). In Malesia, the Lamiaceae genus Callicarpa has a cen-
ter of diversity in the Philippines, islands that have many stress-
ful ultramafic soils, a defined dry season, and many mountains.
Philippine montane gradients have been shown to drive mammal
diversification (e.g., Heaney et al., 2018). For Callicarpa, multifac-
torial stress, including altitudinal, drought, and soil stress, could
be tied to their diversification. Combining variables such as these
to identify general environmental stress-driven diversification
would be a tractable approach for studies at local or global scales.
This would complement fine-scale studies showing how stressors
can increase population phenotypic plasticity (Levis et al., 2020).
Experimental studies also highlight how the effects of stressors
are not always consistent between populations or species (Love
and Wagner, 2022). Similarly, extratropical clades could experi-
ence stress in the warm wet tropics. Therefore, a stress gradient in
reverse to that presented in this study could drive diversification
of clades with extratropical origins (Baldwin and Wagner, 2010).
This study has
Deforestation, non-natural fires, and domestic livestock-driven her-

not explored human-caused stressors.
bivory are all stressors that require examination (Donlan et al., 2002;
Gaveau et al, 2021; Nolan et al, 2021; Voigt et al., 2021).
Incorporation of these factors alongside climate change predictions
will be crucial when modeling future scenarios for the Malesian flora.
How species traits affect toleration of anthropogenic stressors, like
we have shown for environmental stressors, may prove useful for

predicting change on megadiverse islands.

5 | CONCLUSIONS

Overall, we have identified the importance of environmental stress
over large scales. By simplifying Malesia to a gradient of environ-
mental stress, the abiotic influence upon Lamiaceae distributions
was clear. Questions remain about how the formation of stressors in
relation to rapid island uplift in Malesia has contributed to the diver-
sification of species over time. Comparison of the effects of island
and environmental stress formation in diversification rate analyses
would address this. Environmental stress could offer an elegant and
simple explanation for the distribution and diversity of species.
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