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Development of a heat labile 
antibiotic eluting 3D printed 
scaffold for the treatment of 
osteomyelitis
Ji-Hyun Lee1,7, Jong-Min Baik2,7, Young-Soo Yu3, Joo Hyun Kim3, Chi Bum Ahn1, Kuk Hui Son4, 
Joo-Hyung Kim5, Eun Seok Choi6 ✉ & Jin Woo Lee1,3 ✉

In general, osteomyelitis is treated with antibiotics, and in severe cases, the inflammatory bone tissue 
is removed and substituted with poly (methyl methacrylate) (PMMA) beads containing antibiotics. 
However, this treatment necessitates re-surgery to remove the inserted PMMA beads. Moreover, 
rifampicin, a primary heat-sensitive antibiotic used for osteomyelitis, is deemed unsuitable in this 
strategy. Three-dimensional (3D) printing technology has gained popularity, as it facilitates the 
production of a patient-customized implantable structure using various biodegradable biomaterials 
as well as controlling printing temperature. Therefore, in this study, we developed a rifampicin-
loaded 3D scaffold for the treatment of osteomyelitis using 3D printing and polycaprolactone (PCL), a 
biodegradable polymer that can be printed at low temperatures. We successfully fabricated rifampicin-
loaded PCL 3D scaffolds connected with all pores using computer-aided design and manufacturing 
(CAD/CAM) and printed them at a temperature of 60 °C to prevent the loss of the antibacterial activity 
of rifampicin. The growth inhibitory activity against Escherichia coli (E. coli) and Staphylococcus aureus 
(S. aureus), the representative causative organisms of osteomyelitis, was confirmed. In addition, 
we optimized the rifampicin-loading capacity that causes no damage to the normal bone tissues in 
3D scaffold with toxicity evaluation using human osteoblasts. The rifampicin-releasing 3D scaffold 
developed herein opens new possibilities of the patient-customized treatment of osteomyelitis.

Osteomyelitis is a bacterial infection of the bones that is common in various pathological conditions and may 
occur at all ages and in any bone1. In general, osteomyelitis is caused by hematogenous dissemination, continuous 
diffusion from adjacent soft tissues and joints, and direct inoculation due to surgery1. Osteomyelitis encourages 
the growth of bacteria such as Staphylococcus epidermidis, Staphylococcus aureus (S. aureus), Pseudomonas aerug-
inosa, Serratia marcescens, and Escherichia coli (E. coli)2. The discovery of penicillin by Fleming in 1928 has led to 
a rapid decrease in the rate of associated morbidity, mortality, and complications3. However, the resistance of S. 
aureus, the major causative organism, to penicillin has increased since 1960, and has affected the treatment and 
prognosis of osteomyelitis4,5. In general, osteomyelitis is treated with antibiotics depending upon the severity of 
the infection and treatment time; however, the recurrence rate is as high as 30% once the infection has progressed, 
thereby posing difficulties for disease treatment6.

Chronic osteomyelitis is associated with recurrence and is caused by the swelling of the infected tissue, which 
impedes blood circulation to the affected area and prevents the transfer of antibiotics. In addition, the infected 
areas that do not receive oxygen and nutrients from the blood undergo rapid necrosis and accelerate bacte-
rial growth. In most severe chronic osteomyelitis cases, debridement is carried out to remove necrotic tissues. 
However, it is impossible to completely remove bacteria, which are the root cause of osteomyelitis. Therefore, 
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long-term administration of high doses of antibiotics is opted for the complete removal of the bacteria and pre-
vention of recurrence. However, the orally or intravenously administered antibiotic may not be delivered to the 
infected area and cause complications, owing to a burden on the liver or kidney. In particular, bio-films produced 
by the bacteria may prevent the effect of antibiotics, thereby making the treatment regimen more complicated7.

To date, several studies have been conducted on the local delivery of antibiotics directly to the infected site to 
overcome the limitations associated with indirect drug delivery8. The direct application of drugs or antibiotics to 
the infected site offers the advantage of prevention of side-effects and reduction of antibiotic usage. Therefore, the 
strategy of mixing antibiotics with spherical carriers (beads) using poly (methyl methacrylate) (PMMA) has been 
widely used9,10. However, PMMA generates heat (up to 110 °C) during the polymerization process and hence, 
may be unsuitable with many antibiotics. In addition, the amount of antibiotic eluted from the beads cannot be 
controlled. As PMMA is non-biodegradable, there is a need for an additional surgery to remove the beads after 
treatment. Rifampicin, first synthesized in 1965, exhibits excellent antibacterial properties against Mycobacterium 
tuberculosis and exerts a broad spectrum of antibacterial activity against gram-positive and gram-negative bac-
teria11. Recently, PMMA beads loaded with rifampicin were applied in a traumatic musculoskeletal model12. 
However, rifampicin inhibits the polymerization of PMMA and may not be mounted in the form of PMMA 
beads, although it shows excellent efficacy in osteomyelitis treatment.

Three-dimensional (3D) printing is a technique used for the production of a desired three-dimensional shape 
by stacking sectional shapes based on two-dimensional sliced digital data13–18. In particular, the combination of 
3D printing with medical imaging data, as observed with computed tomography (CT) and magnetic resonance 
imaging (MRI) with a reverse engineering technology, facilitates the development of a customized construct to 
the affected areas in patients. In addition, the fused deposition modeling (FDM)-based 3D printing technology 
allows for the construction of a structure at low temperatures by the selection of the printing material as the 
carrier19. As the process of polymerization is excluded, this method allows the use of several different antibiotics 
without any restriction. Furthermore, it also controls the drug release amount through the free designing of the 
external and internal shapes of the structure. In particular, the use of a biodegradable polymer as a printing mate-
rial may avoid the need to perform a second operation to remove the implanted structure after the treatment of 
osteomyelitis, unlike the PMMA beads.

Among the various biodegradable biopolymers, polycaprolactone (PCL) has a low melting temperature and 
allows the progression of the 3D printing process at low temperatures20. This phenomenon may facilitate the 
loading of heat-labile antibiotics. In addition, unlike poly (lactic acid) (PLA) and Poly(D,L-lactic-co-glycolic acid) 
(PLGA), PCL does not produce acidic by-products during the biodegradation process, thereby causing less dam-
age to the surrounding tissues21,22. So far, PCL has been used as a biomaterial for the reconstruction of various 
tissues such as bone, cartilage, liver, muscle, vessel, and ligament in regenerative medicine23–27.

In the present study, we have developed a drug-releasing scaffold with rifampicin that proved effective for 
biofilm removal but could not be used with the conventional PMMA beads using FDM-based 3D printing sys-
tem and PCL. We confirmed the feasibility of the customized treatment strategy for osteomyelitis by evaluating 
the bacterial growth inhibition ability of the developed scaffold in the representative bacterial environment of 
osteomyelitis.

Results
Scaffold fabrication by 3D printing and characterization.  To determine the feasibility of the heat-la-
bile rifampicin-loaded scaffolds, the 3D scaffolds were designed and printed as described in Materials and 
Methods (Fig. 1A). Scaffolds with two-layer patterns of the strands were plotted and processed. Scaffolds with 
two-layer patterns of the strands such as 0/90 lattice structure were plotted and processed. The size of the scaffold 
for in vitro experiments was 5 × 5 × 1 mm. The addition of rifampicin and PCL resulted in the change in the color 
of the scaffold to orange owing to the color of the drug, and the color intensity was proportional to the concentra-
tion of rifampicin (Fig. 1B). The shape and accuracy of the fabricated scaffolds were evaluated at each stage as well 
as after the completion of fabrication. As shown in Fig. 1C,D, the pore size and strut size were measured using 
an optical microscope to confirm that no special changes were observed in the strand and scaffold shapes. The 
scaffolds were fabricated layer by layer, and the homogeneous porous structure was confirmed by morphology of 
scaffolds using SEM (Fig. 1E).

Drug release profiles.  The drug release profiles of the rifampicin-loaded scaffolds were evaluated under 
physiological conditions (37 °C and pH 7.4). The release curve was expressed as the cumulative mass of rifampicin 
per mass of scaffold to compare different materials and concentration conditions. In the case of rifampicin-mixed 
PMMA scaffold (R-PMMA), rifampicin was only detected in the sample prepared at 2.5:1 ratio (Fig. 2A). The 
rifampicin-mixed CPC scaffold (R-CPC) showed a rapid rifampicin release profile from 4 to 6 days. The release of 
rifampicin was not dependent upon the concentration of rifampicin in the sample, and only the 2.5:1 ratio group 
showed a slight increase in the release of rifampicin (Fig. 2B). Rifampicin was released from each sample prepared 
from PCL scaffold using 3D printing system (R-3D scaffold) (Fig. 2C). Rifampicin was completely released from 
all the scaffolds within 14 days. Thus, only the R-3D scaffolds showed a consistent release profile of rifampicin, 
and this effect was suitable for bone infection treatment.

Antibacterial activity assay.  To explore the biological efficiency of the scaffolds, we tested their antibac-
terial activities against E. coli and S. aureus. Figure 3 show the bacterial inhibition rate in the presence of differ-
ent scaffolds at various time points. Although R-PMMA group exhibited bacterial inhibitory activity from 1 to 
5 h, the effect was significantly lower at 7–24 h (Fig. 3A,D). In contrast, the growth of E. coli and S. aureus was 
completely inhibited upon incubation with R-CPC and R-3D scaffolds for up to 24 h (Fig. 3B,E). As shown in 
Fig. 3C,F, the inhibitory effect on the growth of E. coli and S. aureus were same at both 5:1 ratio and 2.5:1 ratio. 
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However, although the growth inhibitory of E. coil was reduced in low-concentration, it was confirmed that the 
inhibitory of the S. aureus was maintained.

Analysis of HOB proliferation.  To determine the cell toxicity of the scaffolds, we tested the proliferation of 
HOBs with the CCK8 assay and evaluated cell morphology for 14 days in each group. As shown in Fig. 4A,B, the 
proliferation of HOBs in low concentration groups was much higher on day 3 to day 14 than on day 1. However, 
rifampicin decreased the viability of cells in a dose-dependent manner, indicating that the overdose of R-PMMA 
groups (5:1 and 2.5:1 ratio) had a negative effect on HOB proliferation. In the R-CPC groups, we showed that cell 
proliferation was inhibited from day seven in each group except for the control group (Fig. 4A,C). In Fig. 4A,D, 
the cell number increased continuously up to 3 day in each ratio group. However, the cell proliferation rate was 
similar among groups at each time point. The results indicated that the cell viability and proliferation of HOBs on 
scaffolds were not affected by R-3D scaffolds.

Discussion
The present study developed rifampicin-load scaffold by using the 3D printed with melted PCL at low tempera-
ture and also provided that manufacture of heat labile antibiotics could be possibility of osteomyelitis treatment 
via enhanced of antibacterial activity. Rifampicin-loaded scaffold manufactured using 3D printing possessed a 
porous structure that has a large surface area and controllable surface and interior features, those allowed it to 
control the rate and duration of antibiotics unlike the existing bone cement structures using PMMA and CPC. 
PCL is known to have a melting point of 60 °C and that is lower than 140 °C of PLGA and 190 °C of PLLA, so there 
is less risk of thermal damage to the materials being mixed. It is also reported that unlike PLA and PLGA, they 

Figure 1.  Fabrication of a rifampicin-loaded 3D scaffold. (A) Schematic illustration of the procedure involved 
in the fabrication of the rifampicin-loaded scaffold using our 3D printing system. (B) Photographs of the 
rifampicin-loaded scaffold at different concentrations.. Electron micrographs were analyzed using microscope 
to determine the (C) pore size and (D) strut size of the scaffolds. (E) SEM image of scaffolds with rifampicin 
concentration of (a,f) Cont, (b,g) 20:1, (c,h) 10:1, (d,i) 5:1, and (e,j) 2.5:1. The image of (f–j) indicate magnified 
view of images of (a–e), respectively. a–e: x70, f–j: x200, scale bar: 100 um.

Figure 2.  The release curve of rifampicin from scaffolds at various loading concentrations and materials for 
14 days. (A) R-PMMA group; (B) R-CPC group; (C) R-3D scaffold group. R: rifampicin, PMMA: poly (methyl 
methacrylate), CPC: calcium phosphate cement.
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Figure 3.  Antibacterial activity with the broth dilution assay. (A) R-PMMA group; (B) R-CPC group; (C) 
R-3D scaffold group. Bacterial count was monitored at 0, 1, 3, 5, 7, and 24 h after treatment with the rifampicin-
loaded scaffold in E. coli. (D) R-PMMA group; (E) R-CPC group; (F) R-3D scaffold group. Bacterial count was 
monitored at 0, 1, 3, 5, 7, and 24 h after treatment with the rifampicin-loaded scaffold in S. aureus. Results are 
the representative of three independent trials, each performed in triplicates.

Figure 4.  In vitro toxicity assay. HOBs (3 × 105) were plated and cultured for 14 days. (A) Morphology of HOBs 
incubated with R-PMMA, R-CPC and R-3D scaffold groups (×4) scale bar: 100 um. (B) Effects of R-PMMA, 
R-CPC and R-3D scaffold groupson HOB proliferation. HOB: human osteoblast cells (*denotes statistically 
difference, *P < 0.05).
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are highly stable in the body because they do not produce acidic component in biodegradations28. However, no 
report has been yet examined a PCL scaffold using heat labile antibiotics for osteomyelitis treatment. This study 
was the first to confirm the function of the scaffold by printing a 3D scaffold by mixing the heat labile antibiotic 
rifampicin with PCL (Fig. 1).

When rifampicin was loaded on PMMA, CPC and PCL 3D printed scaffolds, R-PMMA showed an antibiotic 
elution was not occurred at all concentrations except for 2.5 to 1 concentration (Fig. 2A). R-CPC showed anti-
biotics were released in all groups irrespective of a concentration of rifampicin and it proved to be inadequate to 
control the dissolution rate of rifampicin in R-CPC (Fig. 2B). Recent studies have shown that antibiotics-loaded 
biodegradable polycaprolactone (PCL) scaffold for treatment of osteomyelitis using three-dimensional (3D) 
printing can be slowly and continuously released29,30. We also confirmed that rifampicin was stably eluted from 
the R-3D scaffold in proportion to the concentration (Fig. 2C).

In the test for the antimicrobial activity of Rifampicin, R-PMMA was found to have very low antibacterial 
activity after 24 h against E. coli and S. aureus at all concentration. R-CPC was shown for antimicrobial activity 
in both E-coli and S. aureus, but rifampicin was released in a short time under all conditions. That result corre-
sponded to the initial burst release profile of Fig. 2B. Especially, For S. aureus, only the R-3D scaffold showed the 
antimicrobial activity dependent on the concentration (Fig. 3). This result means that 10:1 was a sufficient anti-
bacterial activity for S. aureus at R-3D scaffold and a high-concentration antibiotic of 5:1was required to inhibit 
the growth of E. coli.

We assumed that we could maximize the effectiveness of antibiotics inside our body by loading rifampicin 
in the 3D scaffold that can remove a bio-film generated by bacteria. S. aureus is a typical osteomyelitis causative 
bacterium known as the main causative bacterium that forms bio-film31. Ryan Trombetta et al. reported that 
the effects of rifampicin using CPC-based 3D printing techniques32. However, it was not possible to identify 
the concentration-defendant antimicrobial forces because of experiment result using one limited concentration 
group. And it was possible to see that the concentration of antibiotics was maintained continuously, because a 
large amount of antibiotics was initially eluted33. Their results showed that the control of the elution rate in vivo is 
difficult and CPC is not suitable as a local delivery material for antibiotics due to burst release. However, because 
our R-3D scaffold is based on PCL that absorbs water and is degraded, we suggested that the antibiotic release rate 
and duration can be controlled by adjusting the antibiotic loading level according to the patient’s infection level. 
And our scaffold has an additional advantage that is that a removal surgery is not required by a biodegradable 
characteristic of PCL in itself.

We conducted an in vitro experiment using human osteoblast (HOB) cells to investigate whether R-3D scaf-
fold affects bone tissue cell during the local anti-biotic therapy. The optimal antibiotic concentration could be 
investigated by comparing the survival rate of HOB cells according to the dilution concentration of antibiotics. 
When observed cell morphology, it was found that the concentration of antibiotics in favor of R-PMMA scaffold 
had little effect on 10:1, but that the concentration from 5:1 resulted in a damage to the HOB cells (Fig. 4A,B). 
The R-CPC scaffold group has already showed that cell damage was induced from a low concentration of 20:1 
(Fig. 4A). In addition, indicated that cell survival rates decreased in proportion to the levels of rifampicin over 
time and that R-CPC scaffold showed higher cell toxicity than R-PMMA scaffold (Fig. 4C). These data suggest 
that antibiotics were released much higher in the R-CPC scaffold than in R-PMMA scaffold, possibly causing cell 
damage. Contrastively, the R-3d scaffold has been confirmed not negative effected to the survival and toxicity of 
cells regardless of the antibiotic concentration (Fig. 4A,D).

Therefore, 3D printing based rifampicin eluting scaffold manufacturing technique which can control the 
degree of antibiotic leaching will have a good effect.

Conclusion
In this study, rifampicin loaded scaffold using 3D printing technique which develop the cold fabrication process 
of the thermo-sensitive antibiotics demonstrated that the drug’s effectiveness can be maximized by controlling a 
drug elution for representative bacteria, S. aureus and E. coli. Especially, by using PCL of biodegradable material 
as a carrier for delivery, which suggests that our scaffold may not require a removal surgery due to retain bio-
degradation properties. In addition, experiments at various concentration conditions allowed the optimization 
of the antibiotic loading levels to the extent possible to treat osteomyelitis while minimizing normal cell damage. 
Therefore, our developed 3D scaffold may be a new strategy to treat osteomyelitis more efficiently.

Materials and methods
Preparation of rifampicin-loaded PCL.  PCL (Mw: 45,000; Sigma-Aldrich, St Louis, MO, USA) was used 
as a base polymer in the 3D printing of an antibiotic-based scaffold. Rifampicin (Tokyo Chemical Industry Co., 
LTD., Tokyo, Japan) was chosen as the antibiotic to be loaded into the scaffolds for the therapy of osteomyelitis. 
PCL and rifampicin were blended as follows: PCL granules were fully melted in the dish of 60 °C for 30 min and 
the molten PCL was mixed with rifampicin powder. Rifampicin and PCL were mixed in different ratios (20:1, 
10:1, 5:1 and 2.5:1). The mixture was stirred until all the components were homogeneously mixed using a digital 
hotplate stirrer (Daihan scientific, Seoul, Korea) with 60 rpm rotating speed of a magnetic bar.

Manufacturing of the rifampicin-based scaffold.  We used an in-house-developed multi-head deposi-
tion system as a 3D printer (Geo technology, Incheon, Korea) (Fig. 1A). This system is equipped with a tempera-
ture and pneumatic controller with an x-y-z motion controller. Four isolated heads assembled with a heater and 
syringe were used for the fabrication of hybrid scaffolds in the presence of various combinations of biomaterials. 
The temperature and pressure of each head were individually controlled up to 300 °C and 800 KPa, respectively. 
A linear motor, linear encoder, and guide were installed to control x-axis and y-axis motions at an accuracy of 
0.5 μm and repeatability of 2 μm. In the z-axis, the accuracy and repeatability were both 5 μm. The working space 
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of this system was designed to be 400 mm × 400 mm × 250 mm to allow fabrication of relatively large volumes 
of constructs. For the formulation of a drug-releasing scaffold using 3D printing system, Solidworks software 
(Dassault Systèmes, Paris, France) was used as one of the computer-aided design (CAD) programs. The internal 
architecture of the scaffold was designed using a mesh shape, and the interconnected lines were orthogonally and 
cylindrically distributed in the X, Y, and Z directions. A 3D printer was used for disk fabrication (disk dimension: 
5 mm (φ) × 1 mm). The printing was conducted at 60 °C to maintain the stability of the antibiotic and a pneu-
matic pressure of 800 kPa. A speed of 100 mm/min was applied to dispense the PCL-antibiotic mixture through a 
nozzle with an inner diameter of 200 µm.

Rifampicin-PMMA (or CPC) disk scaffold manufacturing.  Rifampicin and PMMA or calcium phos-
phate cement (CPC) were mixed in different ratios (20:1, 10:1, 5:1 and 2.5:1). For Rifampicin-PMMA and 
Rifampicin-CPC, rifampicin was mixed PMMA using NOVOSET Cat No. BC100 (CGBio, Seongnam, Korea) 
and rifampicin was mixed CPC using simplex Bone Cement Cat No. 6191-0-001 (Stryker, Kalamazoo, Michigan, 
USA) according to the manufacturer’s instructions, respectively. And mixed with rifampicin at different ratios 
and stir thoroughly for a total of 1–2 minutes. The mixed PMMA or CPC were hardened in a 5 mm disk shaped 
scaffold frame.

Bacterial cultures.  The stability of the antibiotics in all the samples was tested with the broth dilution 
method in the presence of appropriate negative controls. S. aureus (KCTC No.3881) and E. coli (KCTC No. 2571) 
were used for experiments. Bacterial colonies were selected from agar plates and inoculated into 5 mL Luria 
Bertani (LB) broth (BD, Franklin Lakes, NJ, USA), followed by overnight incubation on a shaker incubator set at 
37 °C and 170 rpm. About 1.5 × 108 colony-forming units (CFUs)/mL were inoculated onto an LB agar plate and 
incubated overnight at 37 °C.

Broth dilution assays.  LB broths were inoculated with 50 μL of bacterial cultures and treated with speci-
mens from each group. These cultures were incubated for 24 h at 37 °C and 170 rpm on a shaker. Triplicates from 
each group were tested and compared with controls. The absorbance at 600 nm wavelength was measured with an 
enzyme-linked immunosorbent assay (ELISA) reader (Soft Max Pro5, Molecular Devices, San Jose, CA, USA).

Drug release test.  Phosphate-buffered saline (PBS; Gibco, Waltham, MA, USA) at pH 7.4 was selected as 
the release solution in this study to mimic the in vivo environment. The concentration of the released drug was 
measured using a UV spectrophotometric analysis. The rifampicin-based scaffold was soaked in 5 mL PBS at 
37 °C and the solution was collected at different time points (1 to 14 days). The amount of rifampicin released was 
verified by measuring the absorbance at 340 nm wavelength, while the release rate was calculated according to the 
standard absorbance concentration curve obtained from the rifampicin-containing PBS.

Cell culture.  Human osteoblasts (HOBs, Cat No. C-12720) were purchased from PromoCell (Heidelberg, 
Germany). The cells were cultured in an osteoblast growth medium containing 10% fetal calf serum (FCS; Promo 
cell, Heidelberg, Germany) and 100 units/mL of penicillin/streptomycin (P/S; Gibco, Waltham, MA, USA) at 
37 °C in a humidified atmosphere containing 5% CO2. The medium was changed every 2–3 days. After reach-
ing confluency, the cells were removed from the culture dish using 0.25% trypsin-ethylenediaminetetraacetic 
acid (EDTA) (Gibco, Waltham, MA, USA), centrifuged, and resuspended in osteoblast growth medium (Cat No. 
C-27001, Promo cell, Heidelberg, Germany).

Cell proliferation assay.  Before dipping the scaffold in the cell culture dish, the scaffolds were washed for 
overnight with 70% ethanol, and repeatedly rinsed with ultra-pure water and sterilized by UV light for 30 min. 
Cell proliferation rate was measured using Cell Counting Kit 8 (CCK8; Dojindo, Kumamoto, Japan). Cells were 
seeded in a 48-well plate at a density of 3 × 105 cells. And then, rifampicin-loaded PCL 3D scaffolds were added 
to each well plate. After 1 and 3 days, 100 µL of CCK8 solution was added to each well and the cells were incu-
bated at 37 °C for 2 h. The absorbance at 450 nm wavelength was measured using an ELISA reader (VERSA MAX; 
Molecular devices, San Jose, CA, USA).

Statistical analysis.  All the experiments were performed in triplicates and the representative or average 
data were presented, unless otherwise stated. The data were analyzed using Prism (ver. 7; GraphPad software, 
San Diego, CA, USA) software. The data within a given group or between groups were compared using one-way 
analysis of variance (ANOVA). Significant difference was defined as *p < 0.05.
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