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Traveling waves have been well documented in the ongoing, and more recently also in
the evoked EEG. In the present study we investigate what kind of physiological process
might be responsible for inducing an evoked traveling wave. We used a semantic
judgment task which already proved useful to study evoked traveling alpha waves that
coincide with the appearance of the P1 component. We found that the P1 latency of
the leading electrode is significantly correlated with prestimulus amplitude size and that
this event is associated with a transient change in alpha frequency. We assume that
cortical background excitability, as reflected by an increase in prestimulus amplitude, is
responsible for the observed change in alpha frequency and the initiation of an evoked
traveling trajectory.

Keywords: traveling waves, P1 latencies and topography, alpha waves, background excitation, frequency change

Introduction

Brain oscillations as measured by the EEG are manifested by rhythmic fluctuations in amplitude
size that show a relation to membrane currents of masses of neurons (for a review, cf. Buzsáki et al.,
2012). They reflect phases of low and high excitability which are associated with phases of decreased
and increased firing rate. This basic timing mechanism of oscillations has been well described for a
variety of different rhythms (Buzsáki, 2006; Steriade, 2006). The general hypothesis is that temporal
aspects of neuronal firing, which are crucial for information transmission, are largely and causally
organized by oscillations (Buzsáki andDraguhn, 2004; Romei et al., 2010). Because cortical neurons
form large networks (Hagmann et al., 2008), information transfer between neurons implies a
spatiotemporal distribution of oscillations which is manifested by traveling waves (Wu et al., 2008).

Traveling waves have been observed very early in electrophysiological research (Adrian and
Matthews, 1934; Petsche and Marko, 1955; Hughes, 1995) and have been documented on all levels
of measurements, including the synaptic level (Williams, 1992;Wu et al., 2008; Nadasdy, 2009), the
local field potential recorded from microelectrodes in animals and humans (Rubino et al., 2006;
Takahashi et al., 2011; Nauhaus et al., 2012), the ECoG, EEG, andMEG (Freeman and Barrie, 2000;
Alexander et al., 2013) in a large variety of studies focussing, e.g., on sensory encoding processes
(Ermentrout and Kleinfeld, 2001; Dong and Olson, 2008), information transfer between cortical
regions (Rubino et al., 2006) andmethodological aspects (Alexander et al., 2006; Hallatschek, 2010).
They have been observed in the ongoing EEG (Bahramisharif et al., 2013), in evoked potentials

Abbreviations: NOF+, high number of features; NOF−, low number of features.
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(Alexander et al., 2006, 2013; Klimesch et al., 2007a), in the
flicker induced steady state evoked potential (Silberstein et al.,
1990; Burkitt et al., 2000), and in the sleep EEG (Massimini
et al., 2004). The physiological process underlying traveling waves
represents a crucial feature for theories on encoding (Nadasdy,
2010) and for brain theories describing the functional interplay
between different neuronal networks (Nunez, 2000; Nunez and
Srinivasan, 2014). Themost general finding is that traveling waves
are ubiquitous in the ongoing EEG, but occur intermittently
in episodes (Patten et al., 2012). A special and important
phenomenon are evoked traveling waves (Alexander et al., 2006,
2009; Klimesch et al., 2007a) because they link the ongoing
EEG with properties of the event-related potential (ERP). In a
study, focusing on the within trial spatial phase distribution,
Alexander et al. (2013) have demonstrated that the trial
averages of traveling waves reproduced the topography of ERPs.
Particularly interesting is the observation that topographical
latency differences of the P1 component can be described in
terms of an evoked traveling alpha wave with a posterior lateral
to medial traveling movement in lexical and semantic decision
tasks (Klimesch et al., 2007a; Fellinger et al., 2012; Zauner et al.,
2014). This means that the phase topography of evoked alpha,
but not that of other EEG frequencies, (Gruber et al., 2005;
Klimesch et al., 2007a) coincides with the topography of the P1
components. Since the pioneering work of Berger (1929), alpha
waves are known as an important phenomenon of the ongoing
EEG. An interesting question, arising from these observations is
which processes underlie the transition from an ongoing to an
evoked traveling wave. This is the question, we ask in the present
study.

A simple method for detecting an evoked traveling wave is
based on two requirements. First, an evoked component must
exhibit a spatiotemporal distribution that allows for determining
a leading and trailing electrode site. Second, the evoked
component must have a dominant frequency characteristic
within a typical frequency range (such as e.g., alpha). The
P1 component fulfills these requirements. Several studies have
shown that the P1 has a typical spatiotemporal distribution and
a characteristic frequency in the alpha frequency range (Gruber
et al., 2005; Klimesch et al., 2007b; Fellinger et al., 2012). The
leading site is that site with the shortest P1 latency, whereas
the trailing site is that with the longest P1 latency. An evoked
traveling wave has – by definition – a clear onset of traveling
movement peri- or poststimulus.

What kind of physiological process would be capable of
inducing a topographical specific frequency change at the
leading site? To our knowledge, this question has not yet been
addressed in an empirical study. In an attempt to answer this
question, we proceed from the idea that a traveling trajectory
can be induced by a transient frequency change. When we have
exactly the same oscillatory frequency at two recording sites,
the spatiotemporal phase relationship will remain constant. If,
however, the oscillatory frequency exhibits a transient change
at one of the two sites, a clear traveling trajectory may emerge
as illustrated in Figure 1A. This transient change in frequency,
which is manifested by a change in the period of one or more
oscillatory cycles, can be understood as a special type of phase

‘reset’ (cf. Cases 2a,b in Figure 1A). We assume that this
frequency change occurs at the leading site, because it is that site
from where the traveling wave spreads to other sites.

What could be the physiological mechanism underlying a
transient frequency change? We proceed from the idea that
a change in ‘background’ excitation and/or inhibition might
be related to a change in oscillatory frequency (Nunez and
Srinivasan, 2014). For slow EEG fluctuations (with a frequency
of about 1 Hz and slower) there is good evidence that they
reflect cyclical variations in the excitability of neuronal ensembles
(e.g., Bishop, 1933; Steriade et al., 1993; Contreras et al.,
1996; Sanchez-Vives and McCormick, 2000). This research has
shown that action potentials are generated during an excitatory
up state but not during an inhibitory down state (Amzica
and Steriade, 1997). The scalp surface polarity of such an
up and down state is difficult to predict, because it depends
(beside other factors) on the exact location of the source.
Nonetheless, based on these findings one may speculate, that
the magnitude of a slow deflection (in the sub-delta or delta
frequency range) reflects a change in background excitation
and is correlated with P1 latency in a sense, that a large
deflection is related to a large frequency change and a large
change in P1 latency. There is yet another, additional, possibility
that must be considered. Research on rat hippocampus gamma
oscillations has shown that instantaneous oscillatory frequency
(as measured in terms of the duration of the gamma period
in single trials) depends on the extent of excitation and
inhibition (Whittington et al., 1995; Traub et al., 1996; Atallah
and Scanziani, 2009). In an interesting study by Atallah and
Scanziani (2009) clear evidence was found that fluctuations in
(instantaneous) gamma amplitude reflect changes in synaptic
excitation and are associated with fluctuations in (instantaneous)
gamma period. The basic finding was that an increase in
amplitude is closely associated with a lengthening in the
immediately following period, and – vice versa – a decrease in
amplitude is associated with a shortening in the immediately
following period. We refer to this finding as ‘cycle to cycle
fluctuations in amplitude and period.’ It is manifested by a
significant positive correlation between amplitude and period on
a cycle per cycle basis.

These two mechanisms, slow waves (associated with up
and down states) and cycle to cycle fluctuations in oscillatory
amplitude size and period length must not be considered
mutually exclusive interpretations. It might well be possible that
slow wave components are associated with increased oscillatory
cycle to cycle fluctuations in different frequency ranges.

The measurement of cycle to cycle fluctuations of a frequency
of interest – in our case the alpha band - requires a specific
analyzing procedure. First, for single trials, the time points of
peaks and troughs are identified for the band pass filtered data.
Then, and most importantly, these time points are used to
determine the amplitudes of peaks and troughs in the raw data.
The reasons for this procedure is, that alpha band pass filtering
abolishes the influence of (and a possible interaction with)
slow components and in addition tends to reduce asymmetric
and short lasting amplitude fluctuations. This method, which
determines the amplitudes of peaks and troughs in the raw data,
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FIGURE 1 | Evoked traveling alpha waves: theoretical considerations
and empirical findings. (A) The crucial factor for the appearance of a traveling
wave is frequency. If at different sites alpha oscillates with slightly different
frequencies (left), a topographic phase gradient – indicating a traveling wave –
will appear (left). In such a case, however, if the peri- and or poststimulus wave
lacks any (stimulus and/or event related) modulation, the phase gradient will
vary randomly (with respect to stimulus onset) and averaging over trials will not
exhibit an evoked traveling wave. The next two examples (middle and left) reflect
cases, where oscillatory frequency is identical at different sites during the
prestimulus period, but is modulated during or after stimulus presentation. Either
a transient increase (middle) or decrease (right) is capable of inducing a
systematic traveling trajectory that appears as systematic evoked phase

gradient after averaging over trials. (B) ERPs at the most frequent leading and
trailing electrode. Note the large prestimulus wave and short P1 latency at the
leading site. (C) Map of electrodes and the color coded frequencies, reflecting
the number of cases each electrode was classified as leading or trailing.
(D) Significant correlation (r = −0.56) between prestimulus power and P1
latency at the most frequent leading electrode Po8. (E) Average period
durations of individual alpha frequency for the most frequent leading and trailing
sites estimated for a pre-, peri-, and poststimulus interval. Note the significant
increase in alpha period (reflecting a transient decrease in frequency) in the
peristimulus period. This finding agrees with the situation described in the
middle of (A) and suggests that a transient slowing in alpha is responsible for
the poststimulus traveling trajectory.
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was suggested by researchers who found evidence for asymmetric
alpha amplitude fluctuations (e.g., Nikulin et al., 2007; Mazaheri
and Jensen, 2008) will be applied here in addition to traditional
ERP analyses.

In the present study, we used a semantic (living vs. non-living)
judgment task that already proved useful to investigate evoked
alpha waves (Zauner et al., 2014). One of the basic findings
was that words with many semantic features tend to reduce the
latency difference between leading and trailing sites but for yes
response trials (to living objects) only. Here, we want to test the
above described hypotheses regarding the predicted association
between the amplitude of a slow prestimulus ERP deflection on
the one hand and a change in P1 latency at the leading site on
the other hand. In addition, we want to test, whether a transient
frequency change in alpha can be observed at the subject level
(i.e., for the averaged EEG data as reflected by the ERP) but also
on the single trial level (i.e., for the not averaged data). This latter
method aims to detect the single trial P1 and to analyze alpha
amplitude to period fluctuations for several cycles immediately
preceding the P1.

Materials and Methods

Subjects
A sample of 34 subjects (all different from those, used in Zauner
et al., 2014), students of the University of Salzburg, participated
in the present study after giving informed consent. The sample
consisted of 14 male (mean age = 25.1 ± 2.5 years) and 20
female subjects (mean age = 23.2 ± 3.4 years). These subjects
had normal or corrected-to-normal vision, did not report
neurological diseases and were not on psychotropic medication.
All subjects were compensated by course credits. The experiment
was conducted according to the code of ethics (World Medical
Association, 1996) and was approved by the Ethics Committee of
the University of Salzburg.

Stimulus Material and Task
The stimulus material and task was identical with a previously
published study by Zauner et al. (2014). Here we give just a
brief outline of the most important features of the stimulus
material and task design. Subjects performed a semantic (living
vs. non-living) judgment task. A total of 280 German words were
presented in a randomized sequence. For each word, subjects had
to decide, whether it represents a living or non-living object. The
living and non-living category consisted of 140 words each, which
were subdivided into 70 words with a large number of visual-
semantic features (NOF+) and 70 words with a small NOF−.
An example for a NOF+ word is eagle, an example for a NOF−
word is hamster. The words were taken fromMcRae et al.’s (2005)
“semantic feature production norms” and were translated into
German.

Subjects were seated in a comfortable chair in front of a
computer monitor (75 Hz refresh rate) at a distance of about
130 cm. The fixation cross was replaced by a word written in
upper-case-letters either belonging to the living or non-living
category. The word was presented for 1000 ms in dark gray

(horizontal angle: 2,8◦–4,3◦; vertical angle = 0,66◦) within a
bright gray box (9,7◦ × 2,6◦) to ensure comfortable reading
and to hold visual surface features constant between trials. The
interval between the onset of the fixation cross and the onset of
the word varied between 400 and 600 ms in 50 ms intervals in
order to reduce onset expectations. The intertrial interval varied
between 1900 and 2100 ms. Subjects indicated by button press on
the keyboard with their left index finger when the word denoted
a living (yes-response) and the right index finger when the word
denoted a non-living object (no-response).

EEG Recordings
We used a 64-channel BrainAmp amplifier (BrainProducts,
Inc., Gilching, Germany) for EEG recording. Signals were
online referenced against the nose and subsequently (off-line)
re-referenced to digitally averaged [(A1 + A2)/2] ear lobes.
Recording bandwidth was set from 0.016 to 100 Hz and a
notch filter at 50 Hz. Signals were digitized at a sampling
rate of 1000 Hz 60 Ag–AgCl-electrodes were mounted using
an EasyCap. For the present study we used only 17 posterior
electrodes (P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO3, POz,
PO4, PO8, O1, Oz, O2) for data analysis. Impedances were
kept below 8 k�. To control for vertical and horizontal eye
movements two bipolar EOG-channels were mounted. After re-
referencing, epochs containing eye artifacts were corrected by
the Gratton et al. (1983) and muscle artifacts were rejected.
BrainVisionAnalyzer (BrainProducts, Inc.) was used for data
analyses. Epochs consisted of EEG segments ranging from −600
to 1000 ms relative to the stimulus.

Data Analysis: ERPs, Prestimulus Power, and
Transient Changes in Evoked Alpha Frequency
For the calculation of ERPs we used two different filters, a broad
band filter between 0.5 and 70 Hz. For alpha bandpass filtering
we used an equiripple filter (7.5–12 Hz passband, 24 db at cutoff
frequencies of 6 and 14 Hz). Prestimulus power was determined
as the average of rectified voltage within a time window of – 100
to 200 ms relative to stimulus onset (0 ms) for the broadly filtered
data (i.e., the raw data), a subdelta band (0.5–2.5 Hz), and the
alpha band.

The alpha filtered data were used to calculate P1 peak latencies
and amplitude. This was done because the P1 peak is easier to
detect in the filtered data. In the ERPs of the broadly filtered
data, evoked beta activity can be observed that leads to double
peaks in the P1 time window and makes the detection of the P1
ambiguous. For the calculation of evoked frequency changes we
used a narrow alpha band pass filter (with a width of 2 Hz) that
was adjusted to individual alpha peak frequency (IAF) as center
frequency (IAF ± 1 Hz). IAF was determined as the spectral
component within an extended alpha frequency range of 7–14 Hz
which showed the largest power during a pre-task eyes closed
resting period of 5 min. The obtained IAF’s were averaged over
four electrodes (P3, P4, Po3, and Po4). The segmented data were
averaged and peaks were detected semi-automatically.

The typical latency of the visual P1 is between 80 and 120 ms
post-stimulus (cf. Figure 1B for an illustration of the P1 latency
differences). The semi-automatic algorithm detects positive peaks
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within a defined time window. We used a window of 70–185 ms
because we expected a large variation in P1 latency due to a
traveling movement. The algorithm defines any positive going
deflection as positive peak even if the absolute amplitude has
a negative voltage. By visual inspection we accepted only those
peaks which had a positive amplitude larger than 0.5 μV. This
procedure was done separately for each of the four conditions
(living NOF+, NOF− and non-living NOF+, NOF−). In cases
of missing values we used the respective values of the remaining
condition(s). For each subject, response type (yes and no response
to words denoting a living or non-living object) and semantic
feature condition (NOF+ and NOF−), we determined that
electrode with the shortest P1 latency and that with the longest
P1 latency. These electrodes are referred to as leading and trailing
sites in the following. As depicted in Figure 1C, PO8 was the
most frequent leading site and Pz the most frequent trailing site.
We then calculated the latency differences between the leading
and trailing sites as a gross measure of the traveling movement of
the evoked alpha wave for each subject, response type and feature
condition.

We also used a peak detection procedure to determine
transient changes in alpha period (as measure of ‘instantaneous’
alpha frequency) around stimulus onset. For this purpose
we used the averaged alpha filtered data for the leading
electrode and determined the interpeak latencies between six
consecutive positive peaks. As starting point, we used the
second positive alpha peak that occurred poststimulus. From
this peak we calculated the interpeak latencies between six
consecutive positive peaks (i.e., comprising the second positive
peak poststimulus plus five consecutive peaks) going backward
in time into the prestimulus interval. This procedure yielded
five different period estimates for each subject, averaged over
all conditions. In the following, the first period value is
referred to as poststimulus period. The next following value
was termed peristimulus period. The last three values were
averaged and termed prestimulus period. This was done to
reduce differential influences of the filter stemming from evoked
components.

Single Trial Data Analysis: Prestimulus
Amplitude and Transient Changes in Alpha
Frequency
To test, whether fluctuations in prestimulus amplitude in single
trials are associated with fluctuations in P1 latency, we used a
recently suggested method for the detection of single trial P1
components (Gruber et al., 2014). This method is based on the
hypothesis that ongoing alpha develops more or less seamlessly
(but with some jitter) into the P1 component. It selects those
trials, where a positive alpha peak can be observed within the time
window of the P1 component of the ERP. The selection algorithm
comprises four steps. First, we define a selection window as an
interval of ±32 ms around the individual ERP P1 latency at the
leading electrode PO8. This window – referred to as window 1
in the following – was chosen to be long enough to cover a half
cycle of slow alpha of about 8 Hz. Second, within this window,
we search for a positive voltage alpha peak (the single trial P1)
in the alpha filtered data. The search criterion is a positive peak

with positive amplitude in the individually determined 64 ms
time window. Third, those trials for which the peak detection
yielded a positive result constitute the subset of selected trials. It
comprises those trials, in which ongoing alpha develops more or
less seamlessly (within the defined selection window) into the P1.
For these trials – which are simply termed selected trials in the
following – the single trial P1 latencies (the latency of the selected
positive alpha peak) were determined. The average number of
selected trials per subject was 172 out of 206. This means that
83% of all trials were alpha phase aligned to the individual P1
component. This subset of trials constitutes the selected trials.
The remaining 17% of trials are those that are not phase aligned
to the P1. They are termed rejected trials. For the investigation
of fluctuations in alpha frequency in single trials, we used the
selected trials, obtained in step three as described above. In these
data, we used the single trial P1 as starting point for determining
the interpeak latencies between five consecutive positive peaks
going backward in time into the prestimulus interval as illustrated
in Figure 2A. This procedure allowed us to measure the length of
five consecutive alpha periods by going backward in time from
the single trial P1 to the prestimulus period. These are termed
p+(1) . . . p+(5) for the periods between positive alpha peaks
and p−(1) . . . p−(5) for the respective periods between negative
alpha peaks starting from the first negative amplitude preceding
the single trial P1 (cf. Figure 2A).

To study fluctuations in instantaneous EEG, amplitudes that
are phase locked to the positive alpha peaks of each of the five
cycles (preceding the single trial P1), we determined for each trial
the time points of these peaks. At each of these five time points
we determined the amplitude of the raw EEG data and the alpha
filtered data. For the raw (r) data, the five amplitude estimates
are termed ar+(1) . . . ar+(5), denoting the first . . . fifth raw
amplitude (coinciding with the positive alpha peak) preceding the
single trial P1. For the alpha filtered data (a), the five amplitude
estimates are termed aa+(1) . . . aa+(5), denoting the first . . . fifth
positive alpha amplitude preceding the single trial P1. The same
procedure was applied for the amplitudes at the negative alpha
peaks and the respective values are termed ar−(1) . . . ar−(5) and
aa−(1) . . . aa−(5), respectively.

Single Trial Data Analysis: Control Analysis
The above described procedure aims at identifying those trials
that exhibit a more or less seamless development of alpha phase
with respect to the P1 component of the ERP. As a consequence,
trials not meeting this criterion (which depends on the width
of the selection window) are rejected. In order to test, whether
the expected cycle to cycle fluctuations in amplitude and period
depend on the width of the selection window, we ran a control
analysis with an extended selection window (of ±50 ms), which
was chosen to be long enough to cover more than a half cycle of
slow alpha of about 8 Hz. This selection window of the control
analysis is referred to as window 2 in the following. Because
with this broad window more than one positive peak can appear,
we selected that positive peak as single trial P1 which is closest
to the individual P1 of the ERP. In contrast to the selection
procedure with time window 1, which yielded 17% rejected trials,
the percentage of rejected trials with time window 2 was only 2%.
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FIGURE 2 | The single trial analysis focuses on consecutive cycles
preceding the P1. (A) The interpeak latencies between positive alpha
peaks and negative alpha peaks were measured. Note that this procedure
yields different values for cycles determined for positive and negative
peaks. The notation of the different variables that were measured are
depicted. (B) Due to the fact that interpeak latencies (i.e., the length of a

period of an alpha cycle) are measured relative to the single trial P1, but
P1 latencies relative to stimulus onset, a correlation between amplitude
size and the two latency measures go into different directions: An increase
in oscillatory period in cycle 1 is associated with a shortening of the P1
latency (left), whereas a decrease in the period is associated with a
lengthening of the P1 latency (right).

Statistical Analysis
We first wanted to determine, whether the present study
replicates the findings from Zauner et al. (2014). For this purpose,
we used a two way ANOVA with the factors response type
(yes and no responses) and semantic condition (NOF+/−).
The dependent measure was latency difference between leading
and trailing sites. Across subjects, correlations were calculated
between prestimulus power and mean P1 latency (averaged over
all conditions) for the most frequent leading electrode PO8.
To test for transient changes in instantaneous alpha frequency,
we calculated a priori t-tests to test the hypothesis that the
predicted transient change in alpha period occurs selectively
for the peristimulus period. In addition, we performed a two
way repeated measures ANOVA with electrode (Pz, PO8) and
time (pre-, peri-, and poststimulus period) as factors. The three
levels of factor time represent (i) the first poststimulus alpha
period (measured from the second positive evoked peak that
appears after stimulus onset to the next positive peak, by going
backward in time), (ii) the next period (backward in time)
constitutes the peristimulus period. (iii) The prestimulus period
is the average of the three consecutive periods that follow the

peristimulus period (again determined by going backward in
time). The dependent measure was the duration of the alpha
period determined for IAF.

For the single trial analysis, we calculated correlations between
the single trial P1 latencies, the five preceding amplitude
estimates at the positive and negative alpha peaks, and between
the amplitude estimates and the immediately preceding periods.
Because our hypothesis predicts a positive association between
amplitude size and period, we used one-sided significance
values at the 5% level. We also calculated one way ANOVA’s
with factor TIME (with five levels, denoting the first . . . fifth
cycle preceding the P1) and amplitude/period as dependent
measures.

Results

Behavioral Data and Replication Analysis
The overall mean RT was 688.94 ms and the mean percentage
of correct responses was 96%. The RT’s in the four conditions,
yes responses NOF+/−, and no responses NOF+/−, were in that

Frontiers in Human Neuroscience | www.frontiersin.org 6 May 2015 | Volume 9 | Article 302

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Himmelstoss et al. Prestimulus amplitudes modulate P1 latencies

order: 648.9 (SD = 58.4), 677.5 (SD = 63.9), 704.3 (SD = 79.0),
725.1 (SD = 86.4). IAF varied between 8.1 and 12.9 Hz around a
mean of 10.3 Hz (SD = 1.01).

The two way ANOVA with semantic condition (NOF+/−)
and response type (yes vs. no response) as factors and latency
difference (between leading and trailing sites) as dependent
measure yielded a significant interaction [F(1,33) = 4.987,
p < 0.05). The main effects did not reach significance. Inspection
of the respective means indicates that a large number of features
(NOF+) tends to increase latency differences for no responses,
but tends to decrease latency difference for yes responses. These
findings replicate the basic aspects of the Zauner et al. (2014)
study.

Prestimulus Power, P1 Latency, and
Peristimulus Changes in Alpha Period
Visual inspection of the ERPs at the most frequent leading
and trailing sites reveals large differences in prestimulus power
(for the raw data) and P1 latency as depicted in Figure 1B.
The average P1 latencies are 116.0 ms (SD = 16.3 ms) for
PO8 and 135.8 ms (SD = 10.4 ms) for Pz. The calculation
of correlations between the respective variables showed a
highly significant association for the leading electrode (PO8;
r = −0.56, p < 0.01) but not for the trailing electrode
(Pz; r = −0.12). As shown in Figure 1D, at PO8, large
prestimulus power is significantly associated with short P1
latencies. The correlations between PO8 P1 latency and
the subdelta and alpha filtered prestimulus power yielded a
significant result for the subdelta power only (r = −0.53;
testing for symmetrical distributions of both variables, using
the Kolmogorov–Lillieforce procedure, yielded no significant
deviation). This finding suggests that the critical component for
the correlation is a slow wave in the subdelta frequency range.
Furthermore, dependent t-tests revealed a larger P1-amplitude
for Po8 electrode compared to Pz electrode [t(33) = 3.198,
p = 0.003).

Changes in alpha period are depicted in Figure 1E. A priori
t-tests showed that only the peristimulus alpha period was longer
for Po8 as compared to Pz [t(33) = 2.274, p = 0.030]. The pre-
and poststimulus alpha- period length did not differ significantly.
The two-way repeated measures ANOVA yielded a significant
main effects for electrode site [leading vs. trailing, F(1,33) = 9.178,
p = 0.005] and time [F(2,66) = 3.864, p = 0.027]. The interaction,
however, did not reach significance. The significant main effect
suggests slightly different frequencies at the two electrodes.
However, the calculation of a t-test between IAF at Pz and PO8
(as measured during the resting period) did not show significant
differences.

Single Trial Analysis of Peri-/Prestimulus
Amplitude
The single trial analysis focused on two different, but
closely interrelated questions. One question refers to the
association between single trial P1 latency and the magnitude of
peri-/prestimulus amplitude, another to single trial fluctuations
in amplitude and period.

Peri-/Prestimulus Amplitude and Single Trial P1
Latency
The correlations between the single trial P1 latencies and the
amplitude estimates of the raw EEG [ar+(1) . . . ar+(5); ar−(1)
. . . ar−(5)] at the time points of the five preceding positive
and negative alpha peaks are summarized in Table 1A. The
results for positive peaks show that 22 of the 34 subjects exhibit
significant negative correlations between latency and ar+(1).
These correlations indicate that an increase in ar+ is associated
with a decrease in the single trial P1 latency. The respective
correlations with the amplitudes at the negative alpha peaks are
somewhat weaker, but exhibit an analogous relationship. The
larger the magnitude of the negative amplitude [ar−(1)], the
shorter is P1 latency.

Single Trial Fluctuations in Amplitude and Period
When we focus on the cycle per cycle correlations between
amplitude estimates [(ra+(1) . . . ra+(5) and ra−(1) . . . ra−(5)]
and the respective, corresponding single trial periods [p+(1)
. . . p+(5) and p−(1) . . . p−(5)] we see primarily positive
correlations for positive amplitudes and negative correlations for
negative amplitudes. These findings provide evidence for single
trial fluctuations in amplitude and period and show that an
increase in the magnitude of the raw amplitude tends to increase
the period for the immediately following cycle.

It must be noted that the positive association between
amplitude and period as depicted in Table 1B does not contradict
the negative association between amplitude and single trial P1
latency as shown in Table 1A. The reason lies in the different
ways P1 latency and period are measured. Latency is measured
in relation to stimulus onset, but period is measured from the
single trial P1 to the preceding amplitudes. Thus, as illustrated
in Figure 2B, a long period preceded by a large amplitude is
associated with a comparatively short latency, whereas a short
period preceded by a small amplitude is associated with a long
P1 latency.

The correlations for the alpha filtered single trial amplitudes
exhibit a very similar pattern of results. However, the number of
significant correlations is much smaller than for the raw data.

Single Trial Analysis: ANOVA Results
The results of the two ANOVA’s with TIME as factor and
the subject averages for p+ and ar+ as dependent measures
yielded significant effects [F(2.10,69.44) = 12.63, p < 0.001 and
F(2.39,78.77) = 35.48, p< 0.001; the Greenhouse Geisser corrected
df-values are depicted]. The findings show two different aspects.
First, fluctuations in amplitude and period are highly significant
between cycles. Secondly, the fluctuations in both variables, as
depicted in Figure 3, co-vary in the same way, as was statistically
documented by the correlational analysis as summarized in
Table 1B. Amplitude size and the length of the immediately
following period are perfectly associated: a large amplitude is
followed by a long period and a small amplitude is followed
by a short period. Most interestingly, the ANOVA with the
subject averages for p− did not show significant differences. This
suggests that the association between amplitude size and period
is stronger for positive cycles.
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TABLE 1A | Correlations between single trial P1 latencies and peri-/prestimulus amplitudes.

Positive alpha peaks Negative alpha peaks

ar+(1) ar+(2) ar+(3) ar+(4) ar+(5) ar−(1) ar−(2) ar−(3) ar−(4) ar−(5)

Window 1

Negative 22 0 8 8 5 1 1 2 1 3

Positive 0 1 1 1 0 11 5 4 2 3

Window 2

Negative 27 0 12 6 3 1 4 3 3 4

Positive 0 5 0 2 1 12 5 0 3 1

Number of significant negative and positive correlations with single trial raw EEG amplitudes at positive alpha peaks [ar+(1) . . . ar+(5)] and negative alpha peaks [ar−(1)
. . . ar−(5)].

TABLE 1B | Cycle to cycle fluctuations in amplitude and period.

Positive alpha peaks Negative alpha peaks

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Window 1

Negative 1 0 0 0 0 7 4 1 5 8

Positive 10 13 11 13 7 2 1 2 1 0

Window 2

Negative 1 0 0 0 0 10 8 1 7 12

Positive 15 13 14 15 10 0 1 0 1 0

Number of significant negative and positive correlations between raw EEG amplitudes at positive alpha peaks [ra+(1) . . . ra+(5)] and negative alpha peaks [ra−(1) . . .

ra−(5)] and single trial periods measured between positive alpha peaks [p+(1) . . . p+(5)] and negative alpha peaks [p−(1) . . . p−(5)] for the first, second . . . fifth cycle
preceding the P1.

FIGURE 3 | The relationship between the length of the alpha period
(measured between positive peaks) and the size of the amplitude (in
the raw EEG, measured at the time point of positive alpha peaks)
preceding the respective period, are depicted for each of the five
cycles preceding the single trial P1. Note the close association between
both variables.

Control Analysis
The control analysis showed very similar results, with a
tendency to exhibit somewhat more significant correlations as
a comparison of the findings for window 1 and window 2 in
Tables 1A,B reveals. Also, the respective ANOVA’s with TIME
as factor and the subject averages for p+ and ar+ as dependent
measures yielded very similar effects [F(2.04,67.33) = 8.96,
p < 0.001 and F(2.29,75.67) = 33.84, p < 0.001; the Greenhouse
Geisser corrected df-values are depicted]. Again, the ANOVA
with the subject averages for p− did not show significant
differences.

Discussion

The most important findings are the significant correlations
between prestimulus power and P1-latencies and the
peristimulus increase in the alpha period at the leading
electrode PO8 (cf. Figures 1B,D,E). In the ERP analysis,
the latter effect is weak, because only a priori t-tests showed
significant results. In the single trial analysis, however, highly
significant differences in the magnitude of amplitudes and the
length of alpha periods preceding the P1 were observed at the
leading electrode as depicted in Figure 3. Most importantly,
the fluctuations in alpha period are associated with amplitude
(in the raw EEG, measured at the time point of alpha peaks)
in a way that, a large amplitude is associated with a prolonged
period in the immediately following cycle (cf. Figure 2B for
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a paradigmatic illustration of this finding). As an example, let
us consider the first positive amplitude preceding the P1 and
the first period (i.e., interpeak latency between the P1 and that
first positive amplitude) as depicted in Figure 3. These two
values are reflected by the first data points of the red and blue
lines at time point 1 (i.e., at the time of the first positive alpha
peak in the first cycle). As shown in Figure 3, amplitude size
and period length co-vary over time (over cycles). It should be
noted that the association between amplitude and alpha period is
much weaker, if amplitudes are measured at the time points of
the negative alpha peaks and interpeak latencies are calculated
between the negative peaks (cf. Figure 2A for an illustration for
the measurement of positive and negative cycles). We consider
this an important finding, suggesting that amplitudes at positive
and negative alpha peaks may be modulated differentially (cf.
Nikulin et al., 2007; Mazaheri and Jensen, 2008) and that the
modulation of the positive peaks is the critical factor that is
associated with changes in P1 latency. We also have to emphasize
that the results obtained for alpha amplitude size (instead of
the amplitude of the raw EEG measured at the alpha peaks) are
similar but much weaker as compared to the raw data. This latter
finding most likely is due to the influence of the alpha band
pass filter which abolishes slow drifts and tends to reduce the
magnitude of short lasting, transient fluctuations in positive or
negative peak amplitudes.

Taken together, these findings suggest that, in general, an
increase in prestimulus amplitudes (of the raw EEG) is associated
with a shortening of the P1 latency. The single trial analysis shows
that amplitudes decrease from cycle 5 to cycle 2 (cf. Figure 3)
in a similar way as power decreases (from about – 400 ms
prestimulus) in the grand average ERP (cf. Figure 3). Because
cycles (with a period around 100 ms) are counted relative to the
P1, cycle 5 represents – in terms of time prestimulus – a time
window around 400 ms. Thus, the time course of prestimulus
amplitudes as measured at the positive alpha peaks in the single
trial analysis and the time course of the slow component in the
ERP match each other. In addition, the single trial analysis has
revealed that an increase in the amplitude in cycle 1 (immediately
preceding the P1) is associated with a lengthening in the alpha
period (in that cycle) and a decrease in P1 latency. This latter
finding resembles closely Case 2b (illustrated in Figure 1A) which
describes a situation, where a peristimulus lengthening of the
alpha period leads to a shortening in the P1 latency. Thus, as
illustrated by Case 2a in Figure 1, a transient frequency change –
elicited by a transient increase in the alpha period – may be the
key factor for triggering a traveling wave with a well defined
trajectory and that a topographical specific amplitude increase
triggers that change.

It is also important to note that the results of the single
trial analysis contradict the evoked model of ERP generation
but also the phase reset model (at least in its most radical
formulation). The reason is that 83% of all trials were found
to be already aligned in phase in a way that voltage positive
alpha peaks develop more or less seamlessly into the P1 (with
a maximal jitter of ±32 ms). These findings replicate those of
a visual target detection study (Gruber et al., 2014), which in
addition has shown that phase aligned trials (i.e., selected trials)

are associated with shorter detection times. We cannot rule out
that the appearance of the fixation point, preceding the stimulus
word, may play a role for the observed phase alignment. Because
the interval was jittered (randomly between 400 and 600 ms) a
direct influence of the fixation point seems unlikely. Seamless
alpha is one argument against the evoked and phase reset model.
An additional argument is that the rejected trials exhibit a single
trial P1 that is counter phase to the positive peak in the P1 time
window. This fact is in part due to the width of the selection
window (±32 ms) which is close to a half period of slow alpha
(with a frequency of about 8 Hz). If the P1 would be generated
by fixed latency fixed polarity components, opposite polarities in
single trials should not emerge within the time window of the
P1. A reformulation of the phase reset model in the sense that
phase is not abruptly reset but ‘reorganized’ in most trials (for a
review cf. Klimesch et al., 2007c) would be very well in line with
the results of the present study and those reported by Gruber et al.
(2014).

Although the evokedmodel is not in line with the results of the
single trial analysis of the leading site, the evokedmodel is capable
of explaining latency differences between PO8 and Pz which we
have interpreted in terms of a traveling wave. The theoretical basis
for the evoked traveling wave model and that of the traditional
evoked model are radically different. The former assumes that
an event related phase reorganization at the leading site triggers
an evoked traveling wave of different evoked components that
move to the trailing site. In contrast, the traditional ERP model-
based on the fixed polarity, fixed latency concept – assumes
that different evoked components are generated at different sites
within typical latency windows. As an example, according to the
evoked traveling wave model, the C1 component (the negative
peaks preceding the P1 at PO8 and Pz; cf. Figure 1) would
be considered the negative peak of an evoked alpha wave that
develops into the P1, and topographical latency differences are
the result of the traveling movement. According to the evoked
model topographical latency differences of one component may
be due to a superposition with another component. With respect
to our example it may be argued that the long latency of the P1
at Pz may be due to the influence of a pronounced C1 which
delays the appearance of the P1. Because the C1 is usually larger
at midline as compared to lateral sites (e.g., Clark et al., 1995),
the delaying influence of the C1 on the P1 would be larger at
midline as compared to lateral topographies. On the basis of our
findings, we cannot rule out this alternative interpretation of the
observed P1 latency differences between PO8 and Pz, although in
an earlier study, we could show that the traveling movement also
comprises the negative polarity peak preceding the P1 (Klimesch
et al., 2007a). An empirical evaluation of these two conflicting
interpretations would be possible in an experiment that aims to
vary the C1 component according to the cruciform model which
considers the different polarities stemming from activations of
the lower versus upper banks of the calcarine fissure (e.g., Clark
et al., 1995; Di Russo et al., 2002). For lower field presentations
with a positive polarity C1, the evoked traveling model would
predict a negative component within a half cycle of alpha. The
evoked model would predict a superposition with a positive
component within the typical latency window of the P1. A single

Frontiers in Human Neuroscience | www.frontiersin.org 9 May 2015 | Volume 9 | Article 302

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Himmelstoss et al. Prestimulus amplitudes modulate P1 latencies

trial analysis of the C1 component – in an analogous way as we
have performed for the P1 – could clarify this question if lower
and upper field presentations are compared.

Our findings are in perfect agreement with predictions of the
global wave model, suggested by Nunez and Srinivasan (2014).
One of the central assumptions is that the modulation density of
action potentials is a function of cortical background excitability
and inhibitory feedback strength. Quantification of the model
predicts that an increase in parameter β (reflecting the degree of
cortical background excitability) is associated with an increase in
oscillatory amplitude but a decrease in frequency. This is exactly
the pattern of results, we found for the peri- and poststimulus
interval at the leading electrode. Our findings are to our
knowledge the first for the human scalp EEG, showing cycle per
cycle fluctuations of amplitude and period in alpha, resembling
closely findings on rat hippocampal gamma (Whittington et al.,
1995; Traub et al., 1996; Atallah and Scanziani, 2009).

For the physiological interpretation of traveling waves,
different conceptualisations have been used. As an example,
spatial phase shifts may originate from a phase lag between
neighboring, coupled neuronal oscillators (Ermentrout and
Kleinfeld, 2001; Wu et al., 2008). Here, however, we refer to
the water wave analogy, Nunez (2000) uses to illustrate the
dynamics of cortical traveling waves, spreading via myelinated
fibers that connect neighboring cortical regions. This model has
the advantage that it has a strong emphasis on large scale white
matter connectivity, which presumably plays also an important
role for cognitive processes and the scalp EEG as well (Hipp
et al., 2012). It should be noted, however, that this model,
which assumes fast intercortical propagation has been challenged
recently. Hindriks et al. (2014) point out that local field potential
recordings in animal studies show slow propagation velocities
that suggest intra- instead of intercortical propagation. Using
a combination of EEG analysis and biophysical modeling,
the authors demonstrate that the fast scalp velocities can
be accounted for by slow traveling oscillations. The central
idea is that a slow traveling movement in a small cortical
region may ‘project’ via volume conduction to a large scalp
region, thereby mimicking a fast traveling movement. For
our results, this would mean that the evoked traveling alpha
movement would be restricted to a comparably small cortical
region.

With respect to the functional meaning of the evoked traveling
alpha wave, we have suggested that it may reflect a top down
controlled process that is associated with an early categorization

of the presented stimulus (Klimesch, 2011). Because for words,
topographical P1 latencies are sensitive to lexical and (possibly
already) semantic features (Zauner et al., 2014), it was suggested
that the evoked traveling alpha wave reflects early stages of access
to lexical and possibly also semantic memory. The posterior
topography may be associated with the processing of visual and
graphemic features that enable access to lexical and semantic
memory.

Our findings suggest a close association between alpha and the
P1. This, however, does not mean that other frequencies do not
play an important role. Higher frequencies, particularly in the
beta (e.g., Gruber et al., 2005) and gamma range (e.g., Porcaro
et al., 2011) may also transiently phase align with alpha within
the P1 latency window.

Conclusion

The important conclusion is that single trial fluctuations in
amplitude size are associated with fluctuations in the length
of alpha periods in the peri- and prestimulus period. These
fluctuations modulate alpha frequency and are capable of
inducing a traveling trajectory that may be interpreted as
a spreading activation process within a neural network that
is associated with access to memory. We assume that the
topography of prestimulus amplitude increases reflects a top
down process that controls the poststimulus flow of spreading
activation, as manifested by evoked traveling alpha waves.
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