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Extensive studies on tumor suppressor genes (TSGs) are helpful
to understand the pathogenesis of cancer and design effective
treatments. However, identifying TSGs using traditional exper-
iments is quite difficult and time consuming. Developing
computational methods to identify possible TSGs is an alterna-
tive way. In this study, we proposed two computational methods
that integrated two network diffusion algorithms, including
Laplacian heat diffusion (LHD) and random walk with restart
(RWR), to search possible genes in the whole network. These
two computational methods were LHD-based and RWR-based
methods. To increase the reliability of the putative genes, three
strict screening tests followed to filter genes obtained by these
two algorithms. After comparing the putative genes obtained
by the two methods, we designated twelve genes (e.g.,
MAP3K10, RND1, and OTX2) as common genes, 29 genes
(e.g., RFC2 and GUCY2F) as genes that were identified only by
the LHD-based method, and 128 genes (e.g., SNAI2 and FGF4)
as genes that were inferred only by the RWR-based method.
Some obtained genes can be confirmed as novel TSGs according
to recent publications, suggesting the utility of our twoproposed
methods. In addition, the reported genes in this study were quite
different from those reported in a previous one.
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INTRODUCTION
Tumor, also named as neoplasm, generally refers to amalignant tissue
with malignant proliferative capacity, which usually but not always
forms a solid mass with invasive and metastatic tendency as a
space-occupying systematic disease.1 According to World Health Or-
ganization (WHO) statistics, more than 8.8 million people around the
world directly die from cancer, taking nearly one-sixth of all global
deaths, indicating that cancer may be one of the most significant
threats for human health nowadays. Every year, direct economic
loss on cancer prevention, diagnosis, and treatment has been vali-
dated to reach up to 1.16 trillion dollars.2 After a century of research,
the main pathogeneses of cancers have been partially revealed, con-
firming both genetic background and environmental factors,
inducing genomic abnormality that may initiate and promote the
tumorigenesis.3 However, the detailed genes that contribute to such
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malignant processes in different tumor subtypes have not been fully
discovered.3

Genes that directly contribute to tumor-associated malignant pro-
cesses can be simply divided into two groups: oncogenes and tumor
suppressor genes (TSGs), with reverse biological functions in normal
conditions.4 Generally, oncogenes turn out to be genes that have the
potential to induce tumor, while tumor suppressors turn out to be
genes that protect cells frommalignant alterations.4,5 During the initi-
ation and progression of tumor, genetic variants may motivate the
activation of oncogenes and the silencing of tumor suppressors,
further inducing the abnormal proliferation and invasion of malig-
nant cells.5 Therefore, oncogenes and tumor suppressors may be
equally significant for tumorigenesis. During the century of research
on tumor-associated genes, various studies have paid attention to two
such different groups of genes, revealing that two such groups of
genes may play different biological roles during tumorigenesis.
Two-hit hypothesis emerges to be one of the mainstream theories ex-
plaining the genetic contribution on tumor initiation.6,7 Based on
two-hit hypothesis, both or at least one of two such alleles encoding
specific proteins may be affected before the phenotype appears.6

The accumulation of variants in both alleles turns out to be a specific
biological characteristic of TSG, but not oncogene, because of the
recessive status ofmost mutant TSGs, indicating that only onemutant
allele is not functional enough to induce tumorigenesis.

The exceptions to the two-hit roles have been further identified, per-
fecting the existing regulatory and pathological mechanisms of tumor
ical Development Vol. 10 September 2018 ª 2018 The Authors. 57
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suppressors. Two groups of TSGs have been confirmed to be the ex-
ceptions of the two-hit rule: (1) genes that containing dominant-
negative mutations, and (2) genes exhibiting haploinsufficiency,
both of which allow the expression and function of mutants in one
single allele.8 TP53, which encodes p53 protein, is one of the famous
exceptions.9 Considering that a mutant TP53 allele may prevent the
function of the non-mutant one, therefore, only one mutant allele
of TP53 may directly contribute to tumorigenesis.8 Apart from genes
that contain dominant native mutations like TP53, another group of
TSGs that escapes the two-hit rule turns out to exhibit haploinsuffi-
ciency.10 Usually caused by loss-of-function mutations, haploinsuffi-
ciency emerges to be a common genetic mechanism explaining the
abnormal phenotype induced by only one functional copy of a certain
gene with the other allele as dysfunctional.11,12 Recessive genes, like
most TSGs, can perform their potential biological functions when
they exhibit haploinsufficiency.12 PTCH in medulloblastoma and
NF1 in neurofibroma are two typical examples of functional recessive
TSGs induced by haploinsufficiency.13,14 Although such functional
TSGs that escape the two-hit theory are generally functional and com-
mon TSGs, they only account for a small part of all TSGs, remaining
the most of which obey the two-hit hypothesis.

Considering that most TSGs obey the two-hit hypothesis, we find it
harder to identify TSGs than oncogenes while comparing the tumor
and normal samples (normal samplesmay also have dysfunctional mu-
tations in only one allele of the TSGs).6,7 It is hard and time consuming
to identify TSGs based on current experimental conditions. In recent
years, developing computational methods, which were constructed
based on known data, is an alternative way to investigate cancer-related
problems.Thesemethods can always yield goodperformanceonknown
data and may give useful clues for extending current knowledge. For
example, several computational models have been built for the identifi-
cation of cancer-related non-coding RNAs (ncRNAs),15–20 which can
further give help to recognize potential cancer-related ncRNAs. For
TSGs, with the development of high-throughput sequencing and the
accumulation of experimentally identified TSGs, identifying potential
TSGs based on computational methods and current databases, which
are faster and cheaper compared with experimental ones, is possible.
Recently, Chen et al. proposed a computational method to identify po-
tential TSGs based on known ones.21 Their method applied the shortest
path (SP) algorithm to a protein network and searched for SPs connect-
ing any two known TSGs. Genes lying on the obtained paths were ex-
tracted as candidate TSGs, which were further filtered by a permutation
test. However, this method cannot fully use the network because the SP
algorithm can only identify genes with limited distance to known genes.
This study employed two network diffusion algorithms, which can
make full use of the whole network and design stricter screening tests
to extract more reliable potential TSGs.

In this study, we proposed two computational methods based on two
network diffusion algorithms, including Laplacian heat diffusion
(LHD) algorithm and random walk with restart (RWR) algorithm.
By executing these two algorithms on a protein-protein interaction
(PPI) network using known TSGs as seed nodes, several potential
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TSGs were accessed. Then, three screening tests, including permuta-
tion, association, and function tests, followed to control false-positive
genes and extract important ones. As a result, the LHD-basedmethod,
using the LHD algorithm as the network diffusion algorithm, yielded
41 putative genes, and the RWR-based method, using the RWR algo-
rithm as the network diffusion algorithm, produced 140 putative
genes. By comparing the putative genes yielded by the two methods,
only a few genes were identified by both methods, indicating that
both methods have their respective prediction advantages and the
combined application of two such methods may further improve the
prediction effects. In addition, our putative genes were quite different
from those reported in a previous study,21 suggesting that putative
genes obtained in this study can be essential supplements for the study
of TSG. Finally, based on recent publications, several putative genes
yielded by either the LHD-based or RWR-based method can be
confirmed to be novel TSGs, validating the reliability of the results.

RESULTS
In this study, we built two computational methods to infer novel
TSGs: one was based on the LHD algorithm (LHD-based method),
and the other one was based on the RWR algorithm (RWR-based
method). These two methods integrated three screening tests. The
procedures of these two methods are illustrated in Figure 1. The
detailed description of these two methods can be found in the
Materials and Methods. This section provides the detailed results
yielded by them and makes some comparisons.

Putative Genes Yielded by the LHD-Based Method

The LHD-based method applied the LHD algorithm to the PPI
network G using Ensembl IDs of TSGs as seed nodes, yielding large
numbers of LHD genes. Then, the obtained LHD genes were evalu-
ated by three tests (permutation test, association test, and function
test), thereby extracting important putative genes.

By applying the LHD algorithm to the PPI network G using Ensembl
IDs of TSGs as seed nodes, each node in G was assigned with a heat
value. We set the threshold 10�4 to the heat value, obtaining 2,874
LHD genes. Next, these genes were evaluated by the permutation test
with 500 randomly produced sets, yielding a p value for each of
them. Moreover, 443 genes with p values less than 0.05 were selected.
Then, these 443 genes were measured by maximum interaction scores
(MISs) in the association test. Because 900 is set as the cutoff of thehigh-
est confidence in STRING, itwas set as the threshold ofMIS. Finally, for
each of 85 genes that remained, we calculated their maximum function
scores (MFSs) in the function test. By setting 0.9 as the threshold of
MFS, we accessed 41 putative genes. All measurements mentioned
above for each LHD gene are listed in Table S1, and the number of
candidate genes passing each stage in the LHD-based method is listed
in Table 1. The obtained 41 putative genes can be found in Table S2.

Putative Genes Yielded by the RWR-Based Method

Similar to the LHD-based method, the RWR-based method first
adopted the RWR algorithm to search candidate genes in the PPI
network G using validated TSGs as seed nodes. A great deal of
ber 2018



Figure 1. The Procedures of the LHD-Based and

RWR-Based Methods

The LHD-based method first applied the LHD algorithm

on a PPI network using validated TSGs as seed nodes,

producing a large number of LHD genes. Then, these

genes were filtered by three screening tests. The RWR-

based method followed similar procedures. The only dif-

ference was the application of the RWR algorithm on the

PPI network rather than the LHD algorithm.
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RWR genes can be selected, which were further filtered via permuta-
tion, association, and function tests. The remaining genes were
termed as the putative genes of this method.

The RWR algorithm was executed on the PPI network G by setting
validated TSGs as seed nodes. Each node (gene) received a probabil-
ity. By setting 10�5 as the threshold of probability, we obtained
5,889 RWR genes. Then, these genes were also filtered by a permu-
tation test (with 1,000 randomly produced sets), an association test,
and a function test, yielding a p value, an MIS, and an MFS for each
RWR gene, which can be found in Table S3. By setting 0.05 as the
threshold of p value, 900 as the threshold of MIS, and 0.98 as the
threshold of MFS, the number of RWR genes gradually decreased
(see Table 1 for the number of RWR genes passing each stage in
the method). Finally, 140 putative genes were accessed, which are
provided in Table S4.

Comparison of Putative Genes Yielded by the Different Methods

The LHD-based and RWR-based methods yielded 41 and 140 puta-
tive genes, respectively. For convenience, we denoted two sets consist-
ing of these genes as GLHD and GRWR, respectively. After taking the
union operation of these two gene sets, we obtained 169 putative
genes in which 12 were identified by both of the methods, 29 were
identified only by the LHD-based method, and 128 were yielded
only by the RWR-based method. The distribution of 169 putative
genes is illustrated in Figure 2A. To elaborate the difference of
GLHD and GRWR, the Jaccard coefficient of these two sets, which is
defined as the proportion of members in their intersection among
those in their union, i.e., jGLHDXGRWR j =jGLHDWGRWR j , was calcu-
Molecular Therapy: Methods & Clinical Development Vol. 10 September 2018 59
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lated, resulting in 7.101%. If these two methods
can be proven to be effective, which is addressed
in the Discussion, the putative genes obtained by
one method can be essential supplements for
those obtained by another method. The simulta-
neous usage of these two methods can provide
more potential TSGs.

To further elaborate the reliability of the 169 pu-
tative genes, the subnetwork, consisting of the
linkages between them and validated TSGs,
was extracted from the PPI network G and is
shown in Figure 3A. Clearly, the associations be-
tween putative genes and validated genes are
quite strong. In addition, we extracted the most important linkages
(with highest confidence) from this subnetwork to construct another
subnetwork, as shown in Figure 3B, from which we can observe that
several putative genes have several strong associated TSGs, implying
that they can be novel TSGs with high probabilities. In the Discussion
extensive analyses of several important putative genes are given.

In Chen et al.’s study,21 205 putative TSGs were reported, which
comprised gene set GSP. Among these genes, one gene (EPHA7)
was in bothGLHD andGRWR, one gene was only inGLHD, and 11 genes
were only in GRWR (see Figure 2B). As shown in Figure 2B, 156 genes
identified by either the LHD-based or RWR-based method were not
in GSP, that is, they were not reported in Chen et al.’s study. If we can
prove the utility of our two methods, which is elaborated upon in the
Discussion, putative genes reported in this study can help us improve
the comprehension of TSGs. To quantify the difference between pu-
tative genes in our study and Chen et al.’s study, we further calculated
the Jaccard coefficients of GSP and GLHD, GSP and GRWR, and GSP and
GLHDWGRWR; they were 0.820%, 3.604%, and 3.601%, respectively
All of these indicated that our reported genes can be essential supple-
ments for those in Chen et al.’s study. In addition, we list putative
genes in at least two sets ofGSP, GLHD, and GRWR in Table 2, i.e., these
genes were identified by at least two different methods, implying they
can be novel TSGs with high probabilities.

DISCUSSION
As mentioned in the previous section, comparing to putative genes
reported in Chen et al.’s study,21 one specific gene (EPHA7) has
been identified by all three computational methods, implying its
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Table 1. Number of Candidate TSGs in Different Stages of LHD-Based and

RWR-Based Methods

Network
Diffusion
Algorithm

Permutation
Test

Association
Test

Function
Test

LHD-based
method

2,874 443 85 41

RWR-based
method

5,889 1,364 980 140

Figure 2. Venn Diagrams to Illustrate Putative Gene Sets Yielded by the

Different Methods

(A) A Venn diagram to illustrate the distribution of 169 putative genes that were

identified by either the LHD-based method or the RWR-based method. The red and

blue circles represent the gene sets consisting of the putative genes yielded by the

LHD-based method and the RWR-based method, respectively. 12 genes were

identified by both of the two methods. (B) A Venn diagram to illustrate three putative

gene sets yielded by three methods. The purple circle represents the gene set

yielded by the LHD-based method, the yellow circle represents the gene set yielded

by the RWR-basedmethod, and the green circle represents the gene set reported in

a previous study (SP-based method).
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specific biological function as a potential TSG. According to recent
publications, EPHA7 has been confirmed to act as a tumor suppressor
in multiple tumor subtypes, including follicular lymphoma,22 small
cell lung cancer,23 gastric cancer,24 renal cell carcinoma,25 prostate
cancer,26 and osteosarcoma,27 validating its effective anti-tumorigen-
esis contributions. Take follicular lymphoma as an instance for
detailed demonstration. In 2011, a specific study22 on follicular lym-
phoma confirmed that the knockdown of EPHA7may directly induce
tumorigenesis in a mouse model, implying the specific tumor sup-
pressor role of such gene.

We identified two potential TSG sets via the LHD-based and RWR-
basedmethods. As shown in Figure 2A, we clustered all putative genes
into three groups: (1) putative genes identified by both of the two
methods, (2) those identified only by the LHD-based method, and
(3) those identified only by the RWR-based method. According to
recent publications, some genes in these three groups can be
confirmed to definitely contribute to tumorigenesis as functional
TSGs, indicating that the two proposed methods are quite efficient
and accurate to predict novel TSGs, whether used alone or combined.
The detailed analysis is given below.
Putative Genes Identified by Both of the Two Methods

Twelve genes were predicted by the two methods to be putative TSGs.
Here, we analyzed five of them, listed in Table 3.

MAP3K10 has been predicted to be a specific TSG. Based on
recent publications, MAP3K10 has been widely reported to partic-
ipate in auto-phosphorylation and subsequent activation via the
JUN N-terminal pathway as a homodimer.28,29 A recent study
on integrative genomic analyses in embryonic stem cell (ESC)
and NT2 cell lines (normal cells) revealed that MAP3K10 induced
DYRK2 phosphorylation combined with SUFU inhibition. This
revelation may directly affect the normal biological function of
the stem cell-signaling network interacting with TP53, a famous
TSG contributing to the downstream proliferation and cell adhe-
sion associated in biological processes.30 Although no direct evi-
dence confirmed that such gene acts as a tumor suppressor gene
during tumorigenesis, such evidence in ESC lines confirmed that
our predicted gene may cooperate with TP53, a famous tumor sup-
pressor, implying its potential tumor suppressor functions. There-
fore, it is reasonable to forecast such gene as a potential tumor
suppressor.
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Apart fromMAP3K10, the gene RND1 has also been predicted to be a
potential TSG. RND1 lacks intrinsic GTPase activity and controls the
rearrangement of actin cytoskeleton and the Rac-dependent neuritic
process formation independent of GDP binding in normal cells.31,32

Furthermore, Rnd subfamily members, including RND1, RND2,
and RHOH, may participate in p53-mediated regulatory pathways
resistant to certain endogenous and exogenous stimuli like tumori-
genesis in human osteosarcoma cell lines, U2OS and SAOS2,
implying that RND1 may definitely contribute to the identification
and elimination of tumor cells.33 Such gene may also directly control
the balance between cell survival and malignant transformation, vali-
dating that RND1 itself may be enough to act as a functional tumor
suppressor.34

OTX2, as another predicted TSG, participates in the early specifica-
tion of neuroectoderm in the developmental processes of brain based
on amouse model.35 As for the potential anti-tumor functions of such
gene, recent publications confirmed that OTX2 plays a specific role
during tumorigenesis and acts as a core factor in c-myc, CRX, and
phosphorylated RB pathways.36 Although OTX2 promotes the malig-
nant transformation of tumor cells as a traditional oncogene, a recent
study on retinal detachment confirmed that OTX2 may contribute to
the regulation of the p53-signaling pathway and can also act as a po-
tential TSG in multiple cell lines and animal models, like childhood
brain tumor medulloblastoma cell line D425MED and patient-
derived mouse xenograft models.37

Genes like RET and GLI2 are both potential TSGs that were identified
by both of the two methods. These two genes have been identified as
quite effective tumor suppressors in common cell lines like mouse
NIH 3T3 cell lines. RET, as a member of the cadherin superfamily,
participates in the regulation of cell proliferation, migration, and dif-
ferentiation.38,39 As for its contribution to tumor suppression, at least
in colorectal cancer and medullary thyroid carcinoma, RET acts as a
ber 2018



Figure 3. The Subnetwork of PPI Network Containing the Linkages between Putative Genes and Validated TSGs

Pink nodes represent validated TSGs, while green, blue, and red nodes represent putative genes yielded by the LHD-based method, the RWR-based method, and both

methods, respectively. The sizes of nodes in green, blue, and red represent their degrees. (A) The subnetwork containing all linkages between putative genes and validated

TSGs. Edges in black, blue, green, and red represent PPIs with low, medium, high, and highest confidence, respectively. (B) The subnetwork only containing linkages

between putative genes and validated TSGs with highest confidence.
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specific TSG in respective cell lines and mouse models.40 As for GLI2,
such gene is a development-associated gene contributing to the for-
mation of lung, trachea, and esophagus, which is further validated
in gli3-null and gli3Delta699 mouse models.41

Putative Genes Identified Only by the LHD-Based Method

29 genes were identified only by the LHD-based method. We
analyzed seven of them, listed in Table 4, to validate the effectiveness
of the LHD-based method.

RFC2 was predicted to be a potential TSG in this study. As a member
of the activator 1 small subunits family, such gene contributes to the
assembly of PCNA and polymerase delta on the DNA template, pro-
moting cell survival.42 Although various data have been reported to
confirm the relationship between RFC2 and tumorigenesis by cell
lines or mouse models, only some reports validated the potential tu-
mor suppression function of such gene.43,44 A specific study on renal
cell carcinoma confirmed that, during the initiation and progression
of such tumor, RFC2 has a specific rearrangement, partially losing the
normal biological function of such gene and indicating that RFC2
may be a potential TSG at least in cell lines.44

GUCY2F was also predicted to be a potential TSG. Encoding a gua-
nylyl cyclase predominantly expressed in the retina, such gene con-
tributes to re-synthesis of cGMP required for recovery of the dark
Molecular Th
state after phototransduction.45 GUCY2F may also participate in
the development of various tumor subtypes, including Japanese colo-
rectal cancer and myeloma, as a negative regulator, validated by
mouse models and related cell lines.46

The following two genes, namely, GSC and TNFSF10, were also pre-
dicted to be functional potential TSGs. GSC, as a homeodomain-en-
coding gene, is expressed and involved in a gastrulation process.47 In
concert with another functional gene NKX3.1, GSC contributes to
resistance against malignant transformation and cell proliferation.48

Similarly, TNFSF10, as a member of the tumor necrosis factor super-
family, mainly contributes to the TNF-related apoptosis in spleen,
lung, and prostate.49,50 TNFSF10, as a p53 target gene, contributes
to the regulation of p53-dependent cell death, and, during tumorigen-
esis, it acts as a resistant regulator of abnormal cell proliferation.51

Therefore, TNFSF10 may definitely be a potential TSG.

LHX5 is another functional gene, which was also predicted as a poten-
tial TSG. Involving the control of differentiation and development,
such gene contributes to the regulation of neuronal differentiation
and migration during development of the CNS.52 As for its specific
contribution to tumorigenesis, this gene may indicate better prog-
nosis of patients with breast cancer by inhibiting the undifferentiated
processes of malignant tumor cells, implying its potential contribu-
tion as a tumor suppressor.53
erapy: Methods & Clinical Development Vol. 10 September 2018 61
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Table 2. 24 Putative Genes Identified by at Least Two Methods

Ensembl ID Gene Symbol
LHD-Based
Method

RWR-Based
Method

SP-Based
Methoda

ENSP00000020945 SNAI2 �b Oc O

ENSP00000222330 GSK3A � O O

ENSP00000228682 GLI1 � O O

ENSP00000233948 WNT6 � O O

ENSP00000253055 MAP3K10 O O �
ENSP00000254480 SMARCC1 � O O

ENSP00000262158 SMAD7 � O O

ENSP00000287934 FZD1 � O O

ENSP00000293549 WNT1 � O O

ENSP00000308461 RND1 O O �
ENSP00000341032 WNT7B � O O

ENSP00000343819 OTX2 O O �
ENSP00000347942 RET O O �
ENSP00000354586 GLI2 O O �
ENSP00000358309 EPHA7 O O O

ENSP00000361892 STK4 � O O

ENSP00000362139 EPHA10 O O �
ENSP00000363115 FGR O O �
ENSP00000364895 ZBTB17 O � O

ENSP00000365012 HCK O O �
ENSP00000368686 E2F4 � O O

ENSP00000370912 TEC O O �
ENSP00000381097 EPHB1 O O �
ENSP00000390500 STK3 O O �
�, the putative gene cannot be identified by the method; O, the putative gene can be
identified by the method.
aThe computational method proposed in Chen et al.’s study.21
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Genes VSX2 and SLIT1 were also predicted as potential TSGs.
VSX2, as a specific regulator in specification and morphogenesis,
controls the cell fate specification and differentiation in the devel-
oping retina.54 In retinal tissues, such gene may inhibit the
malignant transformation of normal cells to malignant ones.55

SLIT1 contributes to the histogenesis of the CNS physically or
pathologically.56

Putative Genes Identified Only by the RWR-Based Method

The RWR-based method identified 128 putative genes. Five of them,
which are listed in Table 5, are analyzed here.

SNAI2 has been confirmed to be a transcriptional repressor that mod-
ulates both activator-dependent and basal transcription, involving
neural crest cell generation and migration.57 This gene is silenced
in prostate cancer and serves as a direct transcriptional regulator of
breast tumor cell metastasis targeting BIM (BCL2-Like 11).58

Although there is a lack of direct evidence, such gene may be a func-
tional potential TSG.
62 Molecular Therapy: Methods & Clinical Development Vol. 10 Septem
FGF4 is a member of the fibroblast growth factor (FGF) family,
participating in cell growth, morphogenesis, and invasion.59 Interact-
ing with the tumor microenvironment, protein FGF4 encoding pro-
motes the proliferation of tumor cells, indicating that the potential
anti-tumor function of such gene still remains to be revealed.60

GSK3A is a functional regulator of glycogen synthesis in skeletal mus-
cle.61 As for the tumor suppressor functions, GSK3A participates in
the APC/beta-catenin/Tcf. pathway and modulates drug resistance
and chemotherapy-induced necroptosis.62 Considering that the
APC/beta-catenin/Tcf.-signaling pathway is involved in various tu-
mor suppression biological processes, we regard GSK3A as a potential
TSG.63

WNT16, as another putative gene, participates in the regulation of
p53 activity and the phosphoinositide 3-kinase/AKT pathway, vali-
dating its potential contribution to tumor suppression processes.64

Similarly, DLX5 is a member of a homeobox transcription factor
gene, expressed in brain and skeleton.65 Interacting with TP63,
such gene contributes to the negative regulation of tumorigenesis,
validating its potential tumor suppression function.66,67

As analyzed above, several putative genes inferred by either the LHD-
based or the RWR-based method can be confirmed to be novel TSGs
by recent publications, indicating the usefulness of these two
methods. For the rest of the putative genes that were not analyzed
in this study, we believe that many of them can be validated. We leave
them to readers for further study.

MATERIALS AND METHODS
Validated TSGs

The validated human TSGs were retrieved from a previous study,21 in
which 716 human TSGs were collected from the TSGene database
(https://bioinfo.uth.edu/TSGene/).68 In this study, these genes were
employed to infer novel TSGs with some advanced network diffusion
algorithms. Because the diffusion algorithms would be executed on a
PPI network, the above 716 genes were mapped into the Ensembl IDs
of proteins encoded by them. Also, IDs that did not occur in the PPI
network were discarded. Finally, 631 Ensembl IDs were obtained,
which are provided in Table S5.

PPI Network

Interacting proteins always share similar functions.21,69–76 The 631
proteins encoded by TSGs share some common functions because
they can protect cells from one step on the path to cancer. Interacting
proteins may also have these types of functions but with lower prob-
abilities. This can be done for proteins with longer distances to those
encoded by TSGs. Thus, inferring novel TSGs using PPIs based on
validated ones is feasible.

In this study, we employed the PPIs reported in STRING (https://
string-db.org/, version 10.0),77 a well-known public database collect-
ing known and predicted PPIs from various sources, such as genomic
ber 2018
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Table 3. Important Putative Genes Yielded by Both LHD-Based and RWR-Based Methods

Ensembl ID Gene Symbol

LHD-Based Method RWR-Based Method

MIS MFSHeat p Value Probability p Value

ENSP00000253055 MAP3K10 1.8567E�04 0.036 2.7819E�05 0.029 925 0.9954

ENSP00000308461 RND1 1.2137E�04 0.040 5.2943E�05 <0.001 982 0.9942

ENSP00000343819 OTX2 4.1770E�04 0.028 3.7524E�05 0.024 984 0.9855

ENSP00000347942 RET 1.3647E�04 0.048 1.1216E�04 <0.001 984 0.9867

ENSP00000354586 GLI2 2.1655E�04 0.032 5.4405E�05 <0.001 999 0.9847

MIS, maximum interaction score; MFS, maximum function score.
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context predictions, high-throughput lab experiments, (conserved)
co-expression, automated textmining, and previous knowledge in
databases. To access human PPIs, a file named “9606.protein.
links.v10.txt.gz” was downloaded from the download page of the
STRING website. This file contained 4,274,001 interactions, each of
which consisted of two proteins, represented by Ensembl IDs, and
one score with a range between 150 and 999. A high score indicated
that the corresponding interaction had a high probability to occur.
For later formulation, we denoted the score of the interaction between
proteins, p1 and p2, as Iðp1;p2Þ. Ensembl IDs at 19,247 were involved
in the above interactions.

Based on the aforementioned PPIs, a large PPI network can be con-
structed. Ensembl IDs at 19,247 were defined as nodes in the network,
and two nodes were connected by an edge if and only if they could
comprise a PPI. In addition, the interaction score was assigned to
the edge as its weight. As a result, we constructed a PPI network
with 19,247 nodes and 4,274,001 edges. For formulation, we denoted
this PPI network as G.

Searching Candidate Genes Using the LHD Algorithm

Heat diffusion is a type of network diffusion algorithm that always
transmits heat on some seed nodes to other nodes in a network
following some rules. The heat assigned to a node indicates its obscure
associations to seed nodes. One study78 has suggested that heat diffu-
sion has good performance to identify disease genes. In this study, one
type of heat diffusion algorithm, LHD algorithm, was employed as a
basic searching algorithm to infer novel TSGs.

For the PPI network G constructed in the previous section, let A be its
adjacent matrix, fromwhich a column-wise normalizedmatrixA0 was
built as follows:

A0½i; j�= A½i; j�Pn
k= 1

A½k; j�
: (Equation 1)

From 631 Ensembl IDs of TSGs, an initial heat distribution, H0, was
formulated as a column vector, which contained 19,247 components.
Each component indicated the heat on one node in the PPI network
G. The components of the Ensembl IDs of TSGs were set to 1/631,
Molecular Th
others were set to 0. Then, this vector was updated in the follow
manner:

Ht ½i�=H0½i�expð�litÞ; (Equation 2)

where Ht represented the heat distribution at time t, and li was the
i-th eigenvalue of matrix A0. When the later heat distribution vector
and the former one were quite similar, the updating procedures
stopped. As a result, each node was assigned with a heat value.
Clearly, a node with a high heat value was more important than
that with a low heat value. By setting a threshold to heat value,
we extracted nodes that were assigned to heat values larger than
the threshold and mapped obtained nodes to corresponding genes.
Certainly, the TSGs mentioned above in Validated TSGs should not
be included. For convenience, genes yielded by the LHD algorithm
were called LHD genes.

In this study, we downloaded the program of LHD algorithm from
https://cran.r-project.org/web/packages/diffusr/index.html, and we
executed it with default parameters on the PPI network G, obtaining
several LHD genes.

Searching Candidate Genes Using the RWR Algorithm

The RWR algorithm is a classic ranking algorithm.79 This algo-
rithm is also a type of network diffusion algorithm that has been
successfully applied to identify novel genes, proteins, or chemicals
in different networks.71,72,80,81 The RWR algorithm simulates a
walker starting from one seed node or a set of seed nodes and
walking randomly on the network. Similar to the LHD algorithm,
an initial probability distribution vector, H0, was constructed,
which was the same as that in the LHD algorithm, and was
repeatedly updated. Let Ht + 1 denote the probability vector
after executing (t + 1)-th step, which can be updated from Ht as
follows:

Ht + 1 = ð1� rÞA0THt + rH0; (Equation 3)

where A0 was the same as that defined in Equation 1, and r was set to
0.8 as suggested in some previous studies.71,72,80 When Ht + 1 and Ht

were quite similar, measured by the L1 norm of their difference less
than 10�6, the updating procedures stopped. Ht + 1 was output as
erapy: Methods & Clinical Development Vol. 10 September 2018 63
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Table 4. Important Putative Genes Yielded Only by the LHD-Based Method

Ensembl ID Gene Symbol

LHD-Based Method RWR-Based Method

MIS MFSHeat p Value Probability p Value

ENSP00000055077 RFC2 3.1496E�04 0.036 1.8028E�05 0.316 999 0.9146

ENSP00000218006 GUCY2F 2.1541E�04 0.044 1.8699E�05 0.544 904 0.9930

ENSP00000238558 GSC 9.4478E�04 0.030 1.1429E�05 0.170 977 0.9595

ENSP00000241261 TNFSF10 4.9214E�04 0.010 3.9617E�05 0.005 999 0.9460

ENSP00000261731 LHX5 6.8836E�04 0.018 1.4245E�05 0.082 914 0.9436

ENSP00000261980 VSX2 1.0335E�03 0.016 1.6524E�05 0.055 910 0.9491

ENSP00000266058 SLIT1 3.3237E�04 0.012 4.0380E�05 <0.001 959 0.9608

MIS, maximum interaction score; MFS, maximum function score.
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the results of the RWR algorithm. Accordingly, each node was as-
signed to a probability, indicating its associations with seed nodes.
We clearly selected nodes with high probabilities, and their corre-
sponding genes were extracted as candidate TSGs. Similarly, a
threshold was set to the probability. The obtained genes were termed
as RWR genes.

Here we used the program developed by Li and Patra82 to quickly
implement the RWR algorithm.

Screening Tests

Based on validated TSGs, the LHD and RWR algorithms can sepa-
rately produce some candidate TSGs, namely, LHD genes and RWR
genes, respectively. However, the utility of these two algorithms
highly relied on the structure of the PPI network G. Some nodes
(genes) may have special positions in G, suggesting that they were
more likely to be selected by the LHD or RWR algorithm. However,
these nodes had little and even no associations with the biological
processes of protecting cells from malignant alterations, that is,
they were false-positive genes. Thus, controlling this type of candi-
date TSG is necessary. In addition, to increase the reliability of the
obtained genes, we should select the most important candidate
TSGs. Therefore, three screening tests were proposed as follows:
(1) permutation test, (2) association test, and (3) function test.
The first test was to control false-positive genes, and the other
two tests helped us to extract important genes. Their descriptions
are given below.
Table 5. Important Putative Genes Yielded Only by the RWR-Based Method

Ensembl ID Gene Symbol

RWR-Based Method

Probability p Value

ENSP00000020945 SNAI2 5.3473E�05 0.002

ENSP00000168712 FGF4 3.8685E�05 <0.001

ENSP00000222330 GSK3A 6.2092E�05 0.010

ENSP00000222462 WNT16 3.6751E�05 <0.001

ENSP00000222598 DLX5 2.9495E�05 0.028

MIS, maximum interaction score; MFS, maximum function score; –, the corresponding gene
selected as LHD genes. Thus, the p value was not available for this gene.
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Permutation Test

The idea of a permutation test is to evaluate the heat or probability
values, produced by the LHD or RWR algorithm, respectively, of
candidate TSGs under several gene sets and to compare them with
actual ones. In detail,m Ensembl ID sets with size 631 were randomly
produced, denoted as E1;E2;.;Em. Each set, such as Ei, executed the
LHD algorithm or RWR algorithm on the PPI network G with mem-
bers in this set as seed nodes. Then, each LHD gene or RWR gene (g)
received a heat or a probability value. After all 1,000 sets had been
tested, each g received one actual heat or probability and 1,000 heat
values or probabilities, based on which a measurement, p value, can
be calculated as follows:

p� valueðgÞ=U

m
; (Equation 4)

where U represented the number of randomly produced sets on
which g received higher heat values or probabilities than its actual
one. Clearly, a candidate TSG with a high p value was less likely to
be an actual TSG because it has strong associations with several
randomly produced sets. Considering the fact that 0.05 is always
deemed as the important cutoff for the significance level of the test,
we selected LHD or RWR genes with p values less than 0.05.

Association Test

With regard to the candidate TSGs passing the permutation test,
some have strong associations with validated TSGs and should be
selected. As mentioned above in PPI Network, interacting proteins
LHD-Based Method

MIS MFSHeat p Value

3.9529E�05 – 998 0.9825

4.1323E�05 – 936 0.9836

1.0955E�04 0.076 999 0.9921

4.0873E�05 – 919 0.9854

4.7228E�05 – 936 0.9853

received a heat lower than the threshold of heat in the LHD-based method, i.e., it was not

ber 2018
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always share similar functions.21,69–76 Thus, for each candidate gene g,
we linked them to validated TSGs and extracted the MIS as a mea-
surement, named MIS, which was formulated as follows:

MISðgÞ=max
�
I
�
g; g ’

� �� g ’ is a validated TSG
�
: (Equation 5)

Clearly, candidate genes assigned with high MISs were more likely to
be actual TSGs. By setting a threshold, we can select important candi-
date TSGs.
Function Test

The validated TSGs must be highly related to some biological pro-
cesses. To date, gene ontology (GO) terms and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways are two popular types of
information to describe biological processes. By having an insight
into the relationships between TSG (candidate TSGs) and GO terms
(KEGG pathways), we can further extract important candidate TSGs
that exhibit similar relationships with GO terms and KEGG pathways
to at least one validated TSG. To quantify the relationship between
one gene and GO terms or KEGG pathways, the enrichment the-
ory83–86 was employed in this study. For one gene g and one GO
term or KEGG pathway T, their relationship defined by enrichment
theory was calculated by the following:

Sðg;TÞ= � log10

0
BB@

Xn

k=m

�
M
k

��
N �M
n� k

�
�
N
n

�
1
CCA; (Equation 6)

where N is the total number of proteins in humans, M is the number
of proteins annotated to T, n is the number of proteins in H that
consist of g and its direct neighbors in the PPI network reported in
STRING, andm is the number of proteins that are inH and annotated
to T. Our in-house program using R function phyper was developed
to calculate this value. Accordingly, each gene can be encoded into a
vector by collecting all outcomes of this function. For gene g, the ob-
tained vector was formulated as EðgÞ. Accordingly, the relationship
between two genes on their GO terms and KEGG pathways can be
measured by the following:

Qðg; g 0Þ= EðgÞ,Eðg 0Þ
kEðgÞ k ,kEðg 0Þ k : (Equation 7)

Similar to MIS, another measurement, MFS, was calculated for each
gene g, which was defined as follows:

MFSðgÞ=maxfQðg; g 0Þ j g 0 is a validated TSGg: (Equation 8)

Clearly, we should select candidate TSGs with highMFSs. By setting a
threshold to MFS, important candidate TSGs can be extracted.
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