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Administration of anti–PD-1 is now a standard therapy in advanced non-small

cell lung carcinoma (NSCLC) patients. The clinical application of biomarkers

reflecting tumor immune microenvironment is hurdled by the invasiveness of

obtaining tissues despite its importance in immunotherapy. This study aimed to

develop a robust and non-invasive radiomics/deep learning machine

biomarker for predicting the response to immunotherapy in NSCLC patients.

Radiomics/deep learning features were exacted from computed tomography

(CT) images of NSCLC patients treated with Nivolumab or Pembrolizumab. The

robustness of radiomics/deep learning features was assessed against various

perturbations, then robust features were selected based on the Intraclass

Correlation Coefficient (ICC). Radiomics/deep learning machine-learning

classifiers were constructed by combining seven feature exactors, 13 feature

selection methods, and 12 classifiers. The optimal model was selected using

the mean area under the curve (AUC) and relative standard deviation (RSD). The

consistency of image features against various perturbations was high (the range

of median ICC: 0.78–0.97), but the consistency was poor in test–retest testing

( the range of med ian ICC: 0 .42–0.67 ) . The opt ima l mode l ,

InceptionV3_RELF_Nearest Neighbors classifiers, had the highest prediction

efficacy (AUC: 0.96 and RSD: 0.50) for anti–PD-1/PD-L1 treatment. Accuracy

(ACC), sensitivity, specificity, precision, and F1 score were 95.24%, 95.00%,
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95.50%, 91.67%, and 95.30%, respectively. For successful model robustification,

tailoring perturbations for robustness testing to the target dataset is key. Robust

radiomics/deep learning features, when paired with machine-learning

methodologies, will work on the exactness and the repeatability of

anticipating immunotherapy adequacy.
KEYWORDS

NSCLC, radiomics, deep learning, robustness, immunotherapy
Introduction

The introduction of programmed death 1 receptor (PD-1)/

programmed death ligand 1 (PD-L1) blocking antibodies and

targeted agents have substantially changed the therapeutic

strategies for advanced lung cancer. In the setting of pre-treated

patients with advanced non-small cell lung carcinoma (NSCLC),

Nivolumab and Pembrolizumab monotherapy showed

significantly better overall survival (OS), compared with

traditional chemotherapy (1–3). Several predictive biomarkers

based on cellular phenotypes, immunohistochemical, mutational

tests, and expression-based approaches have been proposed to

predict response to immune checkpoint inhibition. However, the

predictive power of these methods was far from perfect. For

example, only 44.8% of PD-L1–positive NSCLCs were

responsive to Pembrolizumab in a first-line setting (4).

Furthermore, it is difficult to identify the current status of

immune profiles from an archival sample due to the dynamical

evolution of the immune-escape mechanism during anti-cancer

treatment (5, 6). Therefore, non-invasive methods, understanding

the dynamics of the tumors in clinical practice, and assessing the

immune landscape of tumors are critical.
t; NSCLC, non-small

SD, relative standard
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RR, response rates;

n Criteria In Solid
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Radiomics/deep learning (DL) image features are becoming

a promising non-invasive method to obtain quantitative

measurements for tumor classification and assessment for

therapy response in oncological research (7–9). An imaging

biomarker should be reproducible, robust, and accurate.

However, image features are susceptible to several factors, such

as imaging protocol variability, different vendors, image

reconstruction processes, inter-rater tumor segmentation

variability, patient motion artifact, overall image quality, and

tumor phenotype (10–13). Ideally, only features that are robust

to these variations would be incorporated into a predictive

model for good generalizability (14).

We hypothesized that the combination of machine learning

(ML) technologies and high-dimensional radiomics/DL features

would facilitate the prediction of immunotherapy efficacy.

Therefore, we investigated the robustness of radiomics/DL

features against different perturbations and then determined

the optimal model by combining feature extractors, feature

selectors, and ML classifiers.
Materials and methods

Whuh (Wuhan Union Hospital) data

The medical records of patients with advanced NSCLC who

had received Nivolumab (3 mg/kg every 2 weeks) or

Pembrolizumab (200 mg every 3 weeks) monotherapy between

January 2019 and January 2021 were retrospectively reviewed at

Union Hospital, Tongji Medical College, Huazhong University

of Science and Technology. Treatments were provided until

disease progression, intolerable side effects, or consent to the

withdrawal. The retrospective study was approved by the Ethics

Committee of Union Hospital, which also waived the written

informed consent, because the data were analyzed anonymously.

Patient inclusion criteria were (1) pathologically confirmed

NSCLC, (2) enhanced computed tomography (CT) performed

fewer than 15 days before treatment, and (3) availability of

clinical data. The exclusion criteria were (1) missing or low-
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quality treatment CT, (2) suffering from other tumor diseases at

the same time, (3) combining other treatments while using

immunotherapy, (4) Patients with no measurable lesion by

Immune-Modified Response Evaluation Criteria In Solid

Tumors (imRECIST) or no available response evaluation (15).

Tumor response to Nivolumab or Pembrolizumab monotherapy

was objectively assessed by experienced radiologists (QQ. R, QN.

J) using imRECIST in the third month. The details regarding the

response assessment were described in the supplemental. The

data pertaining to demographics, smoking history, histology

type, TNM stage, and molecular testing and the number of

prior lines of therapy were extracted from electronic medical

records (Table 1).
Test–retest cohorts

The test–retest cohort with 31 NSCLC patients was available

from the Cancer Imaging Archive (16, 17). Images in the test–

retest cohort using the same scanner and acquisition protocol

were acquired every 15 min. Informed consent was waived.
Computed tomography acquisition
and segmentation

CT scans were acquired using a multi-slice spiral CT system

(Philips Healthcare, General Electric Health Care, and Siemens

Healthcare) with a tube voltage of 100–120 kVp, slice thickness

(spacing) of 1–5mm, and in-plane resolution of 0.75 mm × 0.75

mm. All scans were acquired using the facilities’ CT chest

protocol and standard image reconstruction.
Pre-processing and tumor segmentation

The tumor regions of interest (ROIs), which corresponded to

the biggest target lesion, were manually performed using three-

dimensional Slicer software, which was based on a consensus

reached by two experienced radiologists (one with 5 years of

experience, another with 10 years of experience). For those cases

with a blurred edge around the lesion, the maximum range was

drawn and regarded as the border. Large vessels, adjacent

organs, and air cavities were excluded. On contrast-enhanced

CT, difficult-to-identify lesions were labeled with reference to the

corresponding nuclear positron emission tomography (PET)

image (some patients had PET scans) or with the permission

of two physicians. The two readers repeated the same procedures

2 weeks later and any disagreement was resolved

through consultation.
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Feature extraction

To be consistent with DL features, three consecutive slices

with the maximum cross-sectional area of the tumor lesion were

selected. Radiomic feature calculations were automatically done

using the PyRadiomics package implemented in Python (18).

Radiomics features with or without wavelet filtration included

three groups: (1) first-order statistics, (2) shape features, and (3)

second-order features: gray-level co-occurrence matrix (GLCM),

gray-level size zone matrix (GLSZM), gray-level run-length
TABLE 1 Demographic and clinical characteristics of patient
populations.

Characteristic Responsive to
Immunotherapy

(n=124)

Unresponsive to
Immunotherapy

(n=33)

p

Age (mean±SD
[years])

59.69±8.19 58.42±8.89

Gender 0.336

Male 103 25

Female 21 8

Smoking History 0.140

Yes 89 19

No 35 14

HistoType 0.108

A 85 19

S 36 10

U 2 3

AS 1 1

Clinical Stage 0.378

IIIB 25 9

IV 99 24

The expression of
EGFR

0.267

Positive 16 1

Negative 28 8

Unknown 80 24

The expression of
ALK

0.556

Positive 1 1

Negative 35 8

Unknown 88 24

The level of PD-
Ll

0.235

High 36 6

Low 20 9

Unknown 68 18

Chemotherapy 0.194

1 course 21 10

2 courses 43 8

3 courses 60 15
frontiersi
U, undifferentiated large cell carcinoma; A, adenocarcinoma; S, squamous cell carcinoma;
AS, adenosquamous carcinoma.
n.org

https://doi.org/10.3389/fonc.2022.952749
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ren et al. 10.3389/fonc.2022.952749
matrix (GLRLM), neighborhood gray-tone difference matrix

(NGTDM), and gray-level dependence matrix (GLDM)

features (18).

ImageNet, which has numerous object categories and

manually annotated training photos, was used to pre-train

InceptionResnetV2, InceptionV3, Resnet50, VGG16, VGG19,

and Xception (19). The six pre-trained CNNs were used as an

arbitrary feature extractor while executing DL feature

extraction, allowing the input picture to propagate forward,

halting at the penultimate layer, and using the outputs of that

layer as our features. We used global max pooling to extract the

feature map’s maximum value before converting it to its

original value.
Image normalization

An image interpolation procedure was needed to standardize

the images after CT image acquisition and segmentation. The

image brightness was adjusted through the adaptive window

level. The histogram equalization method was applied to CT

images to get better visualization. The size of the three axial slices

was adjusted to 224 mm × 224 mm, consistent with the input

layer size of the pre-trained CNN models. The Gaussian filter

was used to remove noise in images since CT images were

mainly affected by quantum noise, which would be caused by the

variability of the electron density of tissue voxels, and

represented by random Gaussian process statistics (20).
Robust features for test–retest imaging
and image perturbations

We tested feature robustness against various perturbations

in Whuh data, then feature robustness was verified in the test–

retest cohort.

According to the imaging guidelines (21) and the

radiologist’s visual inspection, we defined the expected

perturbations in a multicenter setting.
Fron
(1) Axial slice spacing (S): CT images were reconstructed

contiguously at 1, 2, 3, and 5 mm section thicknesses.

(2) Rotation (R): The depicted tumor rotation would be

affected by the patient’s position. Therefore, we

generated a set angle q [−30°, −15°, 15° 30°] and

rotated the image, and segmented tumor in the axial

(x, y) plane.

(3) ROI variation (Seg): The depicted tumor edge might be

affected by the patient’s respiratory motion artifact and

the variability of intra- and inter-observer ROI

segmentation. Therefore, ROI enlargement and
tiers in Oncology 04
shrinking were considered (enlargement and shrinking

were shown in Figure 1) (14, 22).
Robust features evaluation: ICC (2,1) for each feature was

calculated and only those that reach the cutoff (ICC > 0.75) for all

tested perturbations were entered following the feature selection

and modeling process. Raw feature vectors were further

standardized by being centered to the mean and scaled to unit

variance. Features with zero median absolute deviation (MAD),

regarded as nonpredictive features, were further removed.
Feature selectors and machine learning
methods

The feature selection methods included chi-square score

(CHSQ), ReliefF(RELF), mutual information maximization

(MIM), Fischer Score (FSCR), mutual information feature

selection (MIFS), Gini index (GINI), interaction capping

(ICAP), joint mutual information (JMI), conditional infomax

feature extraction (CIFE), conditional mutual information

maximization (CMIM), double input symmetric relevance

(DISR), minimum redundancy maximum relevance (MRMR),

and test score (TSCR).

The 12 ML classifiers included logistic regression, k-nearest

neighbors, quadratic discriminant analysis (QDA), Support

Vector Classifiers (SVCs) with linear and radial basis function

(RBF) kernels, XGBoost, multilayer perceptrons, Gaussian

processes, decision trees, naive Bayes, random forests, and

AdaBoost. These classifiers were all imported from a Python

(version 3.6.4) ML library named scikit-learn (version 19.0)

(23). Further details about the feature selection methods were in

Supplementary S2, and the parameter settings and tuning range of

ML classifiers were detailed in the Supplementary Materials.
Machine learning and model
performance evaluation

Seven feature extractors, 13 feature selectors, and 12

classifiers were combined, then 1,092 (7 × 13 × 12 = 1092) ML

models were generated. The nomenclature of each model

combined the feature exactor, the names of the feature

selector, and the classification method. For example, Rnest50_

RELF _ nearest neighbors was a model trained by a k-nearest

neighbors classifier with features selected by the ReliefF and

extracted from Rnest50.

Each of the 1,092 models was trained during the 10-fold

stratified cross-validation using the StratifiedKFold iterator in

scikit-learn, which is a variation of kfold cross-validation that

ensured each set contained approximately the same percentage

of samples of each target class as the whole training dataset.
frontiersin.org
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Synthetic minority over-sampling technique was adopted to

handle the imbalanced data.

The best performing model was selected based on AUC and

relative standard deviation (RSD). RSD was defined as the ratio

between the standard deviation and mean of the 10-fold cross-

validated AUC values: RSD = (sdAUC/mean AUC) ×100. The

lower the RSD value, the higher the stability of the predicting

model. The model with the highest AUC value and the lowest

RSD was considered the best performing model. The

performance of the best performing model was further

measured by accuracy (ACC), sensitivity, specificity, F1 score,

and precision.
Statistical analysis

Continuous variables were presented by using median with

mean + SD and the statistic difference was compared by

Wilcoxon signed-rank test. For differences in categorical

variables, Fisher’s exact test was adopted, and the results were

shown as the number of events followed by relative frequencies
Frontiers in Oncology 05
(%). A two-sided p < 0.05 was used as the criterion to indicate a

statistically significant difference.
Results

The study flowchart was presented in Figure 1.
Patient characteristics

Of 157 patients with advanced NSCLC (128 men, 29

women), 109 patients underwent nivolumab monotherapy and

48 underwent pembrolizumab monotherapy during the study

period. The median age was 59 (range: 29–78) years. One

hund r ed f ou r ( 6 6%) we r e d i a gno s ed a s ha v i ng

adenocarcinoma, 46 (29.3%) were squamous cell carcinoma,

five (3.2%) were undifferentiated large cell carcinoma, and two

(1.3%) were adenosquamous carcinoma. Mutations in epidermal

growth factor receptors were present in 17 patients (10.8%).

Thirty-one patients (19.7%) had received one course of
FIGURE 1

The study flowchart. After pre-processing and tumor segmentation, the images were artificially perturbed. Robust features were evaluated by
machine learning (ML) models.
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chemotherapy, 51 patients (32.5%) had received two courses,

and 75 patients (47.8%) had received three or more courses. The

expression of PD-L1 was abundant (tumor proportion score

[TPS] ≥ 50%) in 42 patients (26.8%), at low levels (1% ≤ TPS <

50%) in 29 patients (18.5%), and unknown in the remaining 86

(54.8%). According to Response Evaluation Criteria in Solid

Tumors, version 1.1, after anti–PD-1 immunotherapy, 65

patients (41.4%) had a partial response, 59 patients (37.6%)

had stable disease, and 33 patients (21.0%) had progressive

disease (Table 1).
Feature robustness

One hundred seven original features and 744 wavelet

features were extracted concerning radiomics features.

Radiomics features included 14 shape parameters, 162 first-

order parameters, 216 GLCM parameters, 144 GLRLM

parameters, 144 GLSZM parameters, 126 GLDM features, and

45 NGTDM parameters. The number of features for DL models

was InceptionResNetV2 1536, InceptionV3 2048, Xception

2048, and Resnet50 2048, VGG16 512 and VGG19 512. The

representative feature heatmaps of features generated from

InceptionV3 were presented in Figure 2.

In DL and radiomics features, ICCs ranging from 0.80 to

0.90 demonstrated favorable feature reproducibility for S (axial

slice spacing). The features from InceptionResnetV2 and
Frontiers in Oncology 06
InceptionV3 were robust against R(rotation) but have a lower

agreement if the ROI changed. For features from Resnet50 and

Xception, robustness against S and Seg (ROI variation) were

comparable. The features from VGG16 and VGG19 were robust

against Seg but had a lower ICC for R. Radiomics features were

robust against each perturbation, especially against Seg. The

percentage of robust features against all perturbations for each

feature extractor was presented in Figure 3 (The performance of

each feature extractor against each image perturbation was

reported in Supplementary Table 1 with median and the

interquartile range (IQR)). The number of robust features for

different ICC threshold settings was reported in the

Supplementary Material Figure 1.

Compared with the consistency test for various

perturbations, the repeatability in the test–retest group was

much worse. The ICC of the best radiomic features in

the above robustness testing was 0.6 in the test–retest group.

The performance of each feature extractor regarding the

test_retesting images was reported in Supplementary Table 2

with median and IQR.

We then reduced the number of features by removing

features with zero MAD across the two cohorts. With the ICC

threshold set to 0.75, the numbers of features remaining after

robustness testing were radiomics 233, InceptionResNetV2 25,

InceptionV3 74, Resnet50 109, VGG16 30, VGG19 73, and

Xception 50. These features were first screened by the 13

feature selectors mentioned, and then the best combination
FIGURE 2

The heatmap of features generated from InceptionV3 for representative patients.
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was further screened by the wrapper feature selection method

based on the recursive feature addition algorithm.
Feature selection and machine
learning models

The optimal model InceptionV3_RELF_ Nearest Neighbors

was selected with the AUC value 0.96 and RSD 0.50 among

the 1,092 machine-learning models (list of all feature selectors

were in Supplementary Table 3, and the parameter settings

and tuning range of ML methods were presented in

Supplementary Material). Analysis of the confusion matrix-

related classification metrics of InceptionV3_RELF_ Nearest

Neighbors showed that the ACC, sensitivity, specificity,

precision, and F1 score were 95.24%, 95.00%, 95.50%, 91.67%,

and 95.30%, respectively. The illustration of the 10-fold cross-

validated AUC for InceptionV3 features was presented in

Figure 4A. Interestingly, the radiomics models had equal

performance. The AUC value of Radiomics_CIFE_Nearest

Neighbors, Radiomics_CIFE_QDA, Radiomics_CMIM_Nearest

Neighbors, and Radiomics_CMIM_Multilayer Perceptron) was

0.96 in each model, and the RSD was 0.61, 0.67, 0.61, and 0.67.

The heatmap of the 10-fold cross-validated AUC concerning

radiomics features were presented in Figure 4B. Regarding the
Frontiers in Oncology 07
ML classifiers, the Nearest Neighbors classification outperformed

other classifications, with the median AUC 0.79 (IQR 0.75–0.85).

Supplementary Figure 2 reported the mean AUC of the Nearest

Neighbors classification.
Discussion

In this study, by utilizing quantitative image analysis to

extract features in conjunction with a ML classifier, we

constructed accurate and reproducible models to predict

immunotherapy response for advanced NSCLC. Importantly,

these efficient models were obtained using cross-validation, and

the inputs of the models were robust.

PD-L1 immunohistochemistry (IHC) expression, tumor

mutation burden, and tumor-infiltrating lymphocytes have

been suggested to predict the response to immunotherapy (24,

25). However, tissue-based biomarkers rely on individual tumor

samples from accessible lesions in clinic practice and may not

truly reflect the complexity of inter-tumoral heterogeneity.

Furthermore, it is difficult to determine the current status of

immune profiles from archival samples, as immune-escape

mechanisms evolve dynamically during anti-cancer treatment

(5, 6).
FIGURE 3

Overall percentage of robust features against image perturbations.
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A

B

FIGURE 4

The predictive performance (area under the curve, AUC) of different combinations of feature selection methods (rows) and classification
algorithms (columns) were presented in the heatmap. (A) Cross-validated AUC values of 156 models with InceptionV3 features. (B) Cross-
validated AUC values of 156 models with radiomics features.
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The main idea of DL is to employ a deep neural network,

which provides a unique set of novel tools to improve NSCLC

detection (26), characterization (27), survival prediction, and

treatment outcome (28). However, compared with statistical ML

models, DL models typically required a much larger amount of

data to train for optimal results. To overcome the limitations of

small datasets, transfer learning patterns (29) facilitate DL

models as powerful extractors of useful feature sets.

Radiomic features have been used to predict the benefit of

adjuvant chemotherapy, disease risk in early stage lung cancer

(30), treatment response to concurrent chemoradiation in locally

advanced lung cancer (31), and response to immune checkpoint

inhibition in advanced NSCLC (32, 33). Most studies focused on

the AUC of predictive models on a given dataset without

considering the robustness of imaging features.

Our model is reliable and reproducible, because it uses

robust features following the standardization of the model’s

input images and can be applied to CT data of various

institutions. This model can minimize possible differences

between different medical centers, inspection machines, and

image reconstruction methods.

The evaluation of the robustness feature is based on the

assumption that test–retest images and perturbations do not

have consistent bias. We tested the robustness of features against

perturbations, such as slice thickness spacing(S), rotation(R),

and ROI variation (Seg). Both DL and radiomic features show

excellent robustness to S perturbation and have a modest

performance to Seg perturbation. The Seg perturbation

captured the range of variability that occurred with human

inter-observer variability and patient respiratory motion

artifact. It is better to underestimate rather than overestimate

the ROI when segmenting.

Several major limitations remained in the present study. First,

our data were relatively small, and baseline characteristics maybe

not in accordance with the population-based dataset. For example,

the objective response rate was higher than in the previous study

(34, 35). Thirty-two patients chose immunotherapy, because they

could not tolerate chemotherapy toxicity rather than disease

progression, which partly explained the high efficiency. Second,

three consecutive slices of the tumor were sampled for the

analysis, and volumetric assessments were not performed. In a

previous study, data from a single slice were found to be sufficient

for this type of analysis (36). Third, whether our algorithm model

for predicting immunotherapy response can be applied to cancer

types other than NSCLC is another potential research question to

be solved. Fourth, our model lacks external verification.

Compared with the DL model, the characteristic stability of

radiomics model was higher; however, the prediction

capabilities of the DL and radiomics model were comparable.

Which model is better requires further verification. Fifth, the

factors involved with image features, such as histogram

equalization approaches, noise removal methods, and image

reconstruction methods, require more in-depth study. Sixth,
Frontiers in Oncology 09
more study is required to determine whether transfer learning

may take the role of the specifically created model for NSCLC due

to the heterogeneity between the source and destination databases.

In addition, PD-L1 expression data were unavailable for a

majority of patients in our cohort. The correlation between PD-

L1 expression, which was a clinically validated biomarker of

benefit from PD1/PD-L1 blockade, and the instructed model,

was not involved in our study.

To the best of our knowledge, this is the first work assessing

the robustness of image features in CT imaging of NSCLC

patients. In addition, we perform a comparative analysis to

select the best machine-learning methods with favorable

predictive AUC and stability. Inception V3_RELF_Nearest

Neighbors classifiers provided a robust, non-invasive way to

identify NSCLC patients who may benefit from immunotherapy.

We believe that combining machine-learning methods and

radiomics/DL features will improve the AUC in predicting

immunotherapy efficacy.
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